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Abstract

Deep neural networks achieve state-of-the-art and some-

times super-human performance across various domains.

However, when learning tasks sequentially, the networks

easily forget the knowledge of previous tasks, known as

“catastrophic forgetting”. To achieve the consistencies be-

tween the old tasks and the new task, one effective solution

is to modify the gradient for update. Previous methods en-

force independent gradient constraints for different tasks,

while we consider these gradients contain complex informa-

tion, and propose to leverage inter-task information by gra-

dient decomposition. In particular, the gradient of an old

task is decomposed into a part shared by all old tasks and a

part specific to that task. The gradient for update should be

close to the gradient of the new task, consistent with the gra-

dients shared by all old tasks, and orthogonal to the space

spanned by the gradients specific to the old tasks. In this

way, our approach encourages common knowledge consol-

idation without impairing the task-specific knowledge. Fur-

thermore, the optimization is performed for the gradients of

each layer separately rather than the concatenation of all

gradients as in previous works. This effectively avoids the

influence of the magnitude variation of the gradients in dif-

ferent layers. Extensive experiments validate the effective-

ness of both gradient-decomposed optimization and layer-

wise updates. Our proposed method achieves state-of-the-

art results on various benchmarks of continual learning.

1. Introduction

Recent years have witnessed the great progress in deep

learning (DL) through training on large datasets. A typ-

ical supervised DL task requires independent and identi-

cally distributed (i.i.d) samples from a stationary distribu-

tion [15, 39, 46]. However, many DL models deployed

in the real-world are exposed to non-stationary situations

where data is acquired sequentially and its distribution

varies over time. In this scenario, DNNs trained by Stochas-

2This work was done when Shixiang Tang was an intern at SenseTime.

tic Gradient Descent (SGD) will easily forget the knowl-

edge from previous tasks while adapting to the informa-

tion from the incoming tasks. This phenomenon, known as

catastrophic forgetting, invokes more effective algorithms

for continual learning (CL), the goal of which is to learn

consecutive tasks without severe performance degradation

on previous tasks [5, 30, 34, 38, 44, 43, 57, 57, 50].

One of the popular attempts for continual learning relies

on a set of episodic memories, where each episodic mem-

ory stores representative data from an old task [5, 38, 30].

In particular, the network parameters are jointly optimized

by the recorded samples that are regularly replayed and the

samples drawn from the new task. An effective solution

is to modify the gradients for updates. The methods like

GEM, A-GEM and S-GEM obtain gradient update by re-

quiring the loss of each old task does not increase [7, 30].

In practice, the constraints are imposed by forcing the inner

product between the gradient for update and the gradient of

every old task non-negative.

In this work, we consider that the gradients of multi-

ple tasks have mixed information and should be disentan-

gled when used for learning. There are two parts mixed

in the gradients, shared gradient and task-specific gradi-

ents. Optimization along the shared gradient will be ben-

eficial for memorizing all old tasks, but optimization along

task-specific gradients will fall into a dilemma that optimiz-

ing one episodic memory will inevitably damage another.

Therefore, different constraints are imposed on two gradi-

ents. We encourage the consistency between gradient for

update and the shared gradient but expect that the gradient

for update will be orthogonal to all task-specific gradients.

The first constraint can be mathematically presented as the

inner product of shared gradient and gradient for update

non-negative. The second constraint requires the gradient

for update should be orthogonal to the space spanned by

all task-specific gradients. Our further analysis points out

that the second constraints can be relaxed by PCA, which

captures the most important gradient constraints.

Furthermore, we observe the large variation of magni-

tudes for the gradients in different layers. However, the

previous gradient modification methods ignore the intrinsic
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magnitude variations of different layers. They concatenate

the gradients from different layers into a vector and con-

struct optimization problems under the constraints made by

these concatenated vectors. We argue that during optimiza-

tion, gradients from some layers have larger magnitudes and

they will dominate the solution of the optimization problem.

However, no evidence shows that these layers are more im-

portant for loss minimization than the others. To address

this problem, we propose a layer-wise gradient update strat-

egy, where unique gradient constraints are imposed by each

layer for optimization and the solution is only specific to the

parameters in that layer. Our further analysis manifests that

the layer-wise optimization strategy increases the efficiency

of reducing old task losses.

The contribution of this paper is two-fold: (1) Gradient

decomposition is leveraged to specify the shared and task-

specific information in the episodic memory. Different con-

straints are imposed based on the shared gradient and tasks-

specific gradient respectively. (2) Layer-wise gradient up-

date strategy is proposed to deal with large magnitude vari-

ations between gradients from different layers and thus it

can reduce the losses of episodic memory more efficiently.

Extensive ablation studies validate the effectiveness of the

two improvements.

2. Related Work

2.1. Continual Learning

Continual learning has been a long-standing research

problem in the field of machine learning [32, 45, 36, 47].

Generally speaking, there are three different types of sce-

narios for continual learning: (1) class-incremental sce-

nario, where the number of class labels keeps growing but

no explicit task boundary is defined under test; (2) task-

incremental scenario, where the boundaries among tasks

are assumed known and the information about the task un-

der test is given. (3) data-incremental scenario, where the

set of class labels are identical for all tasks. Existing work

of above three scenarios mainly falls into two categories:

Regularization-based and Memory-based approaches.

Regularization-based Approach: Regularization ap-

proaches do not require data from old tasks. Rather, they

attempted to tackle catastrophic forgetting by discouraging

changes on important parameters or penalizing the change

of activations on old tasks. The former approaches, such as

EWC [22], SI [55], MAS [1] and ALASSO [35] relied on

different estimations of parameters importance, which was

usually conducted by exhaustive search [42] or variational

Bayesian methods [33, 56]. The latter approaches, such as

LWF [29], LFL [20], LWM [9] and BLD [11], leveraged

knowledge distillation [16, 58] among consecutive tasks.

Memory-based Approach: Memory-based approaches

leverage episodic memory that stores representative sam-

ples from each old task to overcome catastrophic forgetting.

One popular framework is multitask learning, where the

model shares the same backbone but is equipped with dif-

ferent task-specific classifiers. During training, all episodic

memory are mixed to form an old task and the loss of the

model is defined by both old and new tasks. Example meth-

ods of this framework were iCarl [38], End2End [5] and

DR [17]. Under this framework, various problems were

considered, such as data imbalance [18, 35], using unla-

beled data [26] and the bias of fully-connected layers [53].

Another popular framework for memory-based approaches

is to use episodic memory tasks to construct the optimiza-

tion problems. GEM [30] was the first work under this

framework. In the method, each episodic memory con-

structed one constraint independently. During training the

new task, GEM ensured the loss of every episodic mem-

ory non-increase. Further improvements on GEM such as

A-GEM [7] and S-GEM [7] relaxed the constraints by ei-

ther considering the loss averaged on all old tasks or con-

straining the loss of a random episodic memory every train-

ing iteration. Although these methods improved GEM in

different aspects, they treated every episodic memory inde-

pendently and no further analysis or decomposition of these

gradients was considered in these works.

2.2. Layerwise Gradient Update

Stochastic Gradient Descent is the most widely used op-

timization techniques for training DNNs [3, 31, 2]. How-

ever, it applied the same hyper-parameters to update all pa-

rameters in different layers, which may not be optimal for

loss minimization. Therefore, layerwise adaptive optimiza-

tion algorithms were proposed[10, 21]. RMSProp [41] al-

tered the learning rate of each layer by dividing the square

root of its exponential moving average. LARS [54] let the

layerwise learning rate be proportional to the ratio of the

norm of the weights to the norm of the gradients. Both

layerwise adaptive optimizers solved the variation of up-

date frequencies for different layers and thus outperformed

SGD in various large-scale benchmarks. Layerwise gra-

dient update strategy is also applied in meta-learning for

rapid loss convergence on transfer learning [13, 14, 48] and

few-shot learning [49, 28]. [12] proposed WarpGrad which

layerwisely meta-learned to warp task loss surfaces across

the joint task-parameter distribution to facilitate gradient

descent. MT-Net [27] enabled the meta-learner to learn

on each layer’s activation space, a subspace that the task-

specific learner performed gradient descent on. Our method

differs from the above methods in two aspects. Our layer-

wise gradient update strategy aims at preserving old knowl-

edge. Instead, RMSProp, LARS aimed to learn new tasks

more efficiently, and WarpGrad, MT-Net aimed to transfer

more related information in source data to target samples,

which have different targets with our method. Secondly,

RMSProp and LARS tried to handle the different update

frequency between parameters in different layers but our
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method aims at handling large magnitude variation of pa-

rameters in different layers.

3. Methodology

For continual learning, we first define a task sequence

{T1, T2, · · · , TN} of N tasks. For the t-th task Tt, there

is a training dataset Dt and a memory coreset Mcor
t . In

particular,Dt = {(x
i
t, y

i
t)}

nt

i=1, where each instance (xi
t, y

i
t)

is composed of an image xi
t ∈ Xt and a label yit ∈ Yt. The

coreset is represented byMcor
t =Mcor

t−1 ∪Mt, whereMt

is the episodic memory of task Tt that stores representative

data from Dt.

The goal at the t-th step is to train a function f to

perform the current task Tt as well as the previous tasks

T1:(t−1) = {T1, T2, · · · , Tt−1}. During training, all data

in Dt andMcor
t−1 are used. Considering f is parameterized

by θt, we define the losses for new task Tt and any previ-

ous task Ti(i < t) using the training data Dt and episodic

memoryMi respectively, i.e.,

Lnew(θt,Dt) =
1

|Dt|

∑

(x,y)∈Dt

CE(f(x; θt), y)

Lold(θt,Mi) =
1

|Mi|

∑

(x,y)∈Mi

CE(f(x; θt), y).

(1)

where CE is the standard cross-entropy loss. The gradient

of new task is defined as:

g =
∂Lnew(θt,Dt)

∂θt
. (2)

3.1. Gradient Decomposition

Biologically, continual learning is inspired by human

learning. We learn the new tasks by applying the knowl-

edge previously learned from the related tasks. In this

way, there exists common knowledge shared among the old

tasks. Given the losses of old task {Lold(θt,Mi)}
t−1
i=1 , we

assume each loss has two components. One is the shared

loss, which is the same for any previous task. Minimiz-

ing the shared loss would improve the overall performance

across all previous tasks. The other is task-specific com-

ponent, reflecting the task-specific knowledge of every old

task. For Lold(θt,Mi) about the i-th episodic memory, it

can be written as:

Lold(θt,Mi) = L
old
shared(θt,M

cor
t−1)+R

old
specific(θt,Mi) (3)

where Lold
shared(θ

t,Mcor
t−1) is the shared loss term, which is

the same for different old tasks, and Rold
specific(θt,Mi) is the

residual for the task Ti.
Shared Gradient. The shared gradient is driven by

Lold
shared(θ

t,Mcor
t−1). We define the shared loss by averaging

all losses in the memory coreset Lold
shared(θ

t,Mcor
t−1)

= 1
t−1

∑t−1
i=1 L

old(θt,Mi). Thus, the shared gradient ḡ can

be obtained as follows:

ḡ =
∂Lold

shared(θ
t,Mcor

t−1)

∂θt
=

1

t− 1

t−1
∑

i=1

∂Lold(θt,Mi)

∂θt
,

(4)

where the equality holds since partial derivatives are linear.

Task-specific Gradients. The task-specific gradients ĝi are

then obtained by subtracting the shared gradient from the

gradient of each task,

ĝi =
∂Lold(θt,Mi)

∂θt
− ḡ. (5)

We further construct the task-specific matrix Ĝ =
[ĝ1, ĝ2, · · · , ĝt−1] ∈ R

|θt|×(t−1), where | · | represents car-

dinality. We denote the column space of Ĝ by Ĝ. Since the

shared component is subtracted, the dimension of Ĝ is at

most t− 2. Here we assume that the number of tasks is less

than the number of parameters of the model, i.e., N < |θt|,
which generally holds for deep network. The schematic

illustration of gradient decomposition is presented in Fig-

ure 1(a).

3.2. Gradient Optimization

Our algorithm aims to find a gradient w that reduces

the loss of the new task but does not increase the losses

of any memory tasks. Inspired by GEM, if we assume the

shared loss function is locally linear, the change of loss can

be diagnosed by the sign of the inner product between its

corresponding gradient ḡ and the update w. The positive,

zero, or negative inner product of w and ḡ indicates that the

shared loss will decrease, preserve or increase respectively

if we update the network by −ηw, where η is a small posi-

tive value. Similar consideration applies to the task-specific

residuals by replacing ḡ with ĝi.

Based on the above observations, our algorithm requires

that the gradient update w should be close to g by mini-

mizing ‖w − g‖22 and will not increase the shared loss by

constraining ḡ⊤w ≥ 0, That is:

min
w

1

2
||w − g||22, s.t. ḡ⊤w ≥ 0. (6)

However, when considering the task-specific gradients

ĝi, we find that the only solution to ĝ⊤i w ≥ 0, ∀i < t is

ĝ⊤i w = 0, ∀i < t. According to Equ. (5), for any gradient

update w, we have
∑t−1

i=1 ĝ
⊤
i w = 0 because

∑t−1
i=1 ĝi =

0. It means that unless ĝ⊤i w = 0, ∀i < t, any other w

would result in ĝ⊤i w > 0 for some i while ĝ⊤i w < 0 for

some other i, i.e., the losses of some tasks will increase but

the losses of others will decrease. To better preserve the

knowledge from each old task, the only choice is to require
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Figure 1: (a) Illustration of gradient decomposition. Light grey arrow: gradients of episodic memory. Green arrow: shared gradient

ḡ. Purple arrow: task-specific gradients. Every gradient of episodic memory equals to the sum of the shared gradient ḡ and its specific

gradient ĝ. Task-specific Space Ĝ is spanned by all task-specific gradients. (b) Illustration of gradient optimization. β is the angle between

the shared gradient ḡ and the projection of g onto the null space of Ĝ. β < π

2
and β > π

2
means condition ḡ⊤Pg ≥ 0 and ḡ⊤Pg < 0

respectively. If β < π

2
, the gradient for update w is the projection of g onto the null space of Ĝ. If β > π

2
, the gradient for update w should

be orthogonal to both task-specific space Ĝ and the shared gradient ḡ.

the gradient update w orthogonal to the column space of the

task-specific gradients, i.e.,

Ĝ⊤w = 0 (7)

For the ease of optimization, Ĝ⊤w = 0 can be trans-

formed according to the following lemma:

Lemma 1. For a matrix X ∈ R
N×n, where rank(X) = r

and r ≤ n < N , there must exist Y ∈ R
N×r and A ∈

R
r×n that satisfy:

X = Y A, (8)

where Y ⊤Y = I, rank(Y ) = r and rank(A) = r. More-

over, for a vector v ∈ R
N , X⊤v = 0 if and only if

Y ⊤v = 0.

Proof. See supplementary material.

This lemma states that each column vector of an arbitrary

matrix X with rank r can be represented by the linear com-

bination of r linearly independent column vectors. There-

fore, the equality constraints Ĝ⊤w = 0 can be transferred

into

B⊤w = 0, (9)

where B = [b1, · · · , br] ∈ R
|θt|×r is an orthogonal matrix

that can be obtained by Gram-Schmidt process. The column

space of B equals to that of Ĝ, i.e., Ĝ.

Based on the above analysis, the gradient update w can

be obtained by solving the following optimization problem:

min
w

1

2
||w − g||22,

s.t. ḡ⊤w ≥ 0,

B⊤w = 0

(10)

After transformation, we can solve the optimization prob-

lem in Equ. (10) by Karush-Kuhn-Tucker condition [4]. The

solution is as follows:

w =

{

Pg, ḡ⊤Pg ≥ 0

Pg − ḡ⊤Pg

ḡ⊤P ḡ
P ḡ, ḡ⊤Pg < 0

(11)

where P = I − BB⊤, which is positive semidefinite. The

schematic representation of gradient optimization is present

in Figure 1(b).

PCA relaxation: The equality constrains in the optimiza-

tion problem in Equ. (10), i.e., B⊤w = 0, enforce w to

be perpendicular to the whole residue space of old tasks.

These constrains will become stronger as the number of old

tasks increases, which may prevent w from learning the new

task. To address this problem, we propose a method to relax

these constrains by replacing B with its first few principal

components, which can be obtained by principal compo-

nent analysis. Although the above analysis defines the loss

on the whole dataset, this analysis also applies to the loss on

the data within each mini-batch, which replaces the whole

data in Equ. (1) by the data from a mini-batch. In each mini-

batch, we update the parameters by θt ← θt − ηw, where η

is the learning rate and w is obtained from Equ. (11).

3.3. Layerwise Gradient Update

Traditional gradient-based CL algorithms, e.g. GEM,
concatenate gradients from all layers together and the op-
timization is based on this concatenated gradient. The loss
decrease of episodic memoryMi after updating parameters
θt by −ηw is

∆L
old
1 (θt,Mi) ≈ −η

∑

l

∂Lold(θt,Mi)

∂θt
w,
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Figure 2: Illustration of layerwise gradient update strategy, which applies the proposed gradient decomposition and optimization to each

layer independently.

Figure 3: Histogram of the magnitude of gradients from different

layers. We use L2-Norm to quantify the magnitude.

where w is obtained by Equ. (11). Considering
∂Lold(θt,Mi)

∂θt
is the summation of the shared gradient ḡ and its task-
specific gradient ĝ, the loss change of episodic memory
Mi will be negative if ḡP g ≥ 0 holds but will be zero
if ḡP g < 0 after replacing w with Equ (11). Specifically,

∆L
old
1 (θt,Mi) =

{

−ηḡ⊤Pg, ḡ⊤Pg ≥ 0
0, ḡ⊤Pg < 0

(12)

We notice that the condition ḡ⊤Pg heavily depends on the

elements with large magnitude in concatenated gradients as

inner product is used. Since we have observed that the mag-

nitude of gradients have a large variation among different

layers from Figure 3, ∆Lold
1 (θt,Mi) will be dominated by

some layers where the magnitude of new gradient g, shared

gradient ḡ and task-specific gradients Ĝ is large.

For our proposed layerwise gradient update strategy,

we replace concatenated g, P in Equ.(11) with layer-

specific gradients g(l), P (l), where l is layer index. Sup-

pose the network is updated layerise, i.e., θ
(l)
t ←

θ
(l)
t − ηw(l), the loss change of episodic memory MI is

−η
∑L

l=1 ḡ
(l)⊤P (l)⊤g(l)⊤, where L is the number of lay-

ers. For layer l that satisfies ḡ(l)⊤P (l)⊤g(l) ≥ 0, its con-

tribution to ∆Lold
2 is −ηḡ(l)⊤P (l)⊤g(l) ≤ 0. For layer l

that satisfies ḡ(l)⊤P (l)⊤g(l) < 0, its contribution to ∆Lold
2

is zero. Therefore, the total loss change of episodic memory

Mi, ∆L
old
2 , can be presented as

∆Lold
2 = −η

∑

l∈W+

ḡ(l)⊤P (l)⊤g(l) < 0 (13)

where {W+} is the set of layer index whose condition

ḡ(l)⊤P (l)⊤g(l) ≥ 0 is satisfied. We notice that since the

gradient magnitude will not have a large variation within

one layer, ∆Lold
2 calculated layerwise is not dominated by a

few elements with large magnitudes in g(l) and P (l).

Comparing Equ. (12) with Equ. (13), the layerwise

method has two advantages: first, instead of heavily de-

pending on the gradients with large magnitude in the con-

catenating method, the layerwise method treats each layer

equally by letting each layer determine its own condition.

Second, as each layer determines its own condition,

ḡ(l)⊤P (l)⊤g(l) ≥ 0 holds for some layers even though

ḡ⊤P⊤g < 0, which may reduce the loss more efficiently.

3.4. Comparisons with GEM and A­GEM

Since GEM and A-GEM are two closest algorithms to

our method, we would make more explicit comparisons

with them to clarify our innovations.

Similarity. All three methods tackle “catastrophic forget-

ting” by modifying the gradients of new task under the con-

straints related to the gradients of old tasks.

Difference. They are different in three aspects. (1) They

differ by the constraints: GEM considers the old tasks to be

independent by enforcing independent losses for old tasks.

A-GEM only uses a global loss for all old tasks. As ad-

mitted in [7], due to the use of single global loss, A-GEM

may lead to the performance drop of some tasks. Our task-

specific constraints can better exploit the inter-task depen-

dency, as analyzed in Section 3.2. (2) They differ in the ef-

ficiency for solving the optimization problem. GEM has to

solve QP online, while A-GEM and ours have closed-form

solutions, which is computationally efficient. (3) Our pro-

posed Layerwise gradient update and PCA relaxation are
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not investigated in GEM or A-GEM. The advantage and

motivation of our contribution on layerwise gradient update

are introduced in Section 3.3.

4. Experiments

4.1. Setup

Datasets. We employ four standard benchmark datasets

to evaluate the proposed continual learning framework,

including MNIST Permutation, the split CIFAR10, the

split CIFAR100 and the split tinyImageNet datasets. The

MNIST Permutation is a synthetic dataset based on

MNIST [25], where all pixels of an image are permuted dif-

ferently but coherently in each task. The split CIFAR10/100

dataset is generated from CIFAR10/100 [23]. The split

tinyImageNet is derived from tinyImageNet [24]. These

datasets equally divide their target classes into multiple sub-

sets, where each subset corresponds to individual task. We

considered T = 20 tasks for MNIST Permutation, Split

CIFAR100 and Split tinyImageNet, and T = 5 for Split

CIFAR 10. For each dataset, each task contained samples

from a disjoint subset of classes, except that on MNIST two

consecutive tasks contained disjoint samples from the same

class. The evaluation was performed on the test partition of

each dataset.

Implementation Details. We trained our models following

the description in GEM [30]. On the MNIST tasks, we used

fully-connected neural networks with two hidden layers of

100 ReLU units. On the CIFAR10/CIFAR100 tasks, we

used a smaller version of ResNet18 [15], which has three

times less number of feature maps for all layers than the

standard ResNet18. On the tinyImageNet, we empolyed the

standard ResNet18. We trained all networks using the plain

stochastic gradient descent optimizer with mini-batches of

10 samples for the new task on MNIST Permutation, Split

Cifar10/Cifar100 and 20 samples on tinyImageNet. The

batch size for each episodic memory task is 20. We fol-

lowed the same one/three epoch(s) settings as GEM, where

the samples in the new task were only trained once/three

times but samples in the memory could be trained for sev-

eral times. The learning rate was 0.1 for all datasets. The

pseudo code of training is presented in Algorithm 1.

Evaluation Metrics. Following [6, 30, 7], we measure the

performance by mean classification accuracy (ACC) and

Backward Transfer (BWT). BWT is defined as the change

of average accuracy for old tasks after learning a new task.

A positive value of BWT means that learning new tasks can

benefit old tasks, while a negative value indicates that learn-

ing new task degrades the performance of old tasks.

4.2. Empirical analysis

To investigate the contribution of new components in

our proposed method, we incrementally evaluate each of

them on MNIST Permutation, Split CIFAR10, Split CI-

Algorithm 1 Training Procedures of Step t

Require:

{Mi}
t−1

i
: episodic memory of old tasks

Dt: new data of current step t

f : network architecture

θt−1: network paramters trained by last step t− 1
bsnew: batch size of the new task

bsold: batch size of the old tasks

η: learning rate

Ensure:

Mt: episodic memory of current step t

θt: network parameters trained by current step t

1: Initialization: θt = θt−1

2: for epoch = 1 : epoch stop do

3: for iter = 1 : iter stop do

4: Sample a batch snew of size bsnew from Dt

5: g ← ∇L(f(x; θt), y) for (x, y) ∈ snew

6: for i = 1 : t− 1 do

7: Sample a batch si of size bsold fromMi

8: gi ← ∇L(f(x; θt), y) for (x, y) ∈ si
9: end for

10: Compute shared component ḡ by Equ. (4)

11: Compute specific components Ĝ by Equ. (5)

12: if PCA Relaxation then

13: Compute the principal components B of Ĝ by PCA

14: else

15: Compute the orthogonal basis B of Ĝ by Schmidt orthog-

onalization

16: end if

17: Compute the gradient for update w by Equ. (11)

18: Update θt: θt ← θt − ηw

19: end for

20: end for

21: Mt ← a subset of Dt

FAR100 and Split tinyImagenet. Denote SCC as the

Shared Component Constraint, TSCC as Task-Specific

Compoent Constraint, LGU as Layerwise Gradient

Update, and PCA as Principal Compoent Analysis. We

choose a single predictor fine-tuned across all tasks

as baseline. Seven variants are then constructed on

top of baseline: (a) baseline; (b) baseline+SCC; (c)

baseline+SCC+LGU; (d) baseline+SCC+TSCC; (e) base-

line+SCC+TSCC+PCA; (f) baseline+SCC+LGU+TSCC;

(g) baseline+SCC+LGU+TSCC+PCA. Table 1 presents the

performance of all variants. All reported results are tested

on the task-incremental setting.

Effectiveness of Gradient Decomposition. We compare

Methods (a,b,d) in Table 1 to illustrate to what extent the

shared gradient constraint and task-specific gradients con-

straints contribute to the performance. Split CIFAR100 and

Split tinyImagenet are taken as examples for analysis. We

observe that the shared gradient constraint plays a signif-

icant role in continual learning task as only applying the

shared gradient constraint improves the performance of the

model from 54.7% to 65.3% on Split CIFAR100 and from

21.8% to 33.5% on Split tinyImageNet at the final continual

step. The task-specific constraints can bring additional gain

for the model. It improves the mean accuracy from 65.3%
to 67.8% on Split CIFAR100 and from 33.5% to 36.4% on
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Method (a) (b) (c) (d) (e) (f) (g)

SCC X X X X X X

TSCC X X X X

LGU X X X

PCA X X

MNIST 57.4 76.4 82.0 81.9 81.9 82.9 82.9

CIFAR10 58.7 75.8 76.2 76.8 77.5 77.3 79.0

CIFAR100 54.7 65.3 67.3 67.8 68.2 69.1 69.3

tinyImagenet 21.8 33.5 36.3 36.4 38.1 37.6 38.3

Table 1: Empirical analysis of the proposed components on

MNIST Permutation, Split CIFAR10, Split CIFAR100 and Split

tinyImagenet datasets in one epoch setting. (a-f) denotes different

methods.

Figure 4: Average Accuracy and Backward Transfer with dif-

ferent dimension of principal component space. Top row: ACC

and BWT on CIFAR 100. Bottom row: ACC and BWT on

tinyImageNet.

Split tinyImageNet at the final continual step. The more en-

hancement of performance on both two datasets verifies that

the shared gradient constraint contains most of the knowl-

edge for old tasks and it is the most important constraint for

continual learning.

Effectiveness of PCA Relaxation. To show PCA relax-

ation can empower our method a better trade-off between

learning and memorizing, we evaluate BWT and ACC un-

der different value of K on both Split CIFAR100 and Split

tinyImageNet datasets. Here we denote K as the rank of

task-specific matrix after relaxation. Figure 4 shows that

as K increases, ACC increases initially but decreases af-

terwards, while BWT keeps increasing. The continued in-

crease of BWT is expected, as more knowledge from the old

tasks is preserved as K increases. However, ACC decreases

after K = 5, indicating that although the performance on

the old tasks benefits from a large K, the ability to learn

new task would be degraded if K is too large.

Effectiveness of Layer-wise Gradient Update. We pro-

pose the layer-wise gradient update strategy where the con-

straint is imposed by individual network layer. We compare

Datasets LGU
GEM A-GEM Method (d)

ACC BWT ACC BWT ACC BWT

MNIST
x 81.9 0.017 76.4 0.005 81.9 0.017

X 82.7 0.045 77.1 -0.008 82.9 0.045

CIFAR10
x 76.8 0.014 75.8 0.007 76.8 0.015

X 77.4 0.035 76.5 0.015 77.3 0.034

CIFAR100
x 65.8 -0.005 65.3 -0.005 67.8 -0.001

X 67.9 0.003 66.8 0.002 69.1 0.006

tinyImagenet
x 34.2 -0.001 33.5 -0.003 36.4 0.008

X 35.8 0.006 35.6 0.005 37.6 0.018

Table 2: Empirical Analysis of layerwise gradient update on

GEM, A-GEM and Method (d).

Methods (b,c) in Table 1 to manifest its general effective-

ness. The results show that with layer-wise gradient update

strategy, Average Accuracy ACC is higher than those by the

method without layer-wise gradient update strategy. In ad-

dition, from method (b-e) in Table 1, we can conclude that

Gradient decomposition (SCC, TSCC) and Layerwise Gra-

dient Update (LGU) are orthogonal and cumulative. To fur-

ther illustrate the effectiveness of layerwise gradient update

strategy, we leverage layerwise gradient update on top of

GEM, A-GEM and our proposed method (d) and present the

results in Table 2. By comparing GEM, A-GEM, Method

(d) with their layerwise gradient update counterparts, we

observe that both ACC and Backward Transfer (BWT) of

algorithms with layerwise gradient update are systemati-

cally higher than those without the strategy. The results em-

pirically prove the general effectiveness of layerwise gradi-

ent update on GEM Families.

4.3. Main results

Our main results except MNIST are tested on the online

task-incremental setting while MNIST is tested on the data-

incremental setting. We compare our proposed method with

several existing and state-of-the-art methods, including Sin-

gle [40], Independent1 [30], Multimodel [30], EWC [22],

iCARL [38], GEM [30], A-GEM [7] and S-GEM [7]. For

fair comparison, the size of each episodic memory is also

256 for GEM, A-GEM and S-GEM. The results are reported

in Tab. 3. Our method achieves state-of-the-art results on all

four datasets in both one epoch and three epochs settings.

MNIST Permutation. Our method achieves 82.9% for one

epoch setting and 84.3% for three epochs setting, which

outperforms the competitive GEM [30] by 1.0% and 0.2%,

respectively. We only marginally outperforms GEM at the

three epochs setting because the network has been saturated.

Split CIFAR10. On Split CIFAR10, our method signif-

icantly outperforms GEM by 2.2% in one epoch setting.

In three epochs setting, our method achieves similar re-

sults with S-GEM where we only improve by 0.1% on Split

1For fair comparison, we follow the setting in GEM. In GEM, the chan-

nels of each feature map are divided by the number of tasks. As such, the

model size in Independent method equals to the model size in other meth-

ods.
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Method
MNIST Permutation Split CIFAR10 Split CIFAR100 Split tinyImageNet

1 epoch 3 epochs 1 epoch 3 epochs 1 epoch 3 epochs 1 epoch 3 epochs

Single [40] 57.4± 0.7 53.0± 0.6 57.7± 0.3 68.4± 0.8 54.7± 1.0 55.4± 0.9 25.7± 0.8 28.7± 0.5
Independent [30] 37.0± 0.6 61.3± 0.4 43.3± 0.8 71.9± 0.7 43.3± 0.3 53.5± 0.5 26.9± 0.6 35.9± 0.6
Multimodel [30] 71.9± 0.5 59.4± 0.5 - - - - - -

EWC [22] 57.5± 0.6 61.9± 0.5 59.8± 0.4 67.8± 0.5 48.3± 0.6 56.9± 0.6 22.2± 0.4 25.4± 0.3
iCARL [38] - - 63.9± 0.5 66.5± 0.6 55.7± 0.8 55.8± 0.4 26.5± 0.6 28.9± 0.4
GEM [30] 81.9± 0.4 84.1± 0.4 76.8± 0.3 80.8± 0.3 65.8± 0.5 69.6± 0.4 34.2± 0.5 37.3± 0.4

A-GEM [7] 76.4± 0.3 82.9± 0.5 75.8± 0.6 81.0± 0.4 65.3± 0.4 69.1± 0.5 33.5± 0.3 36.9± 0.3
S-GEM [7] 76.3± 0.4 82.3± 0.4 75.9± 0.3 81.5± 0.3 64.2± 0.3 68.8± 0.2 33.8± 0.4 36.1± 0.3
tinyER† [8] 82.5± 0.8 - 77.5± 0.5 - 68.3± 0.7 - 36.5± 0.3 -

GDumb† [37] 73.4± 0.4 - 74.2± 0.3 - 60.3± 0.9 - 32.1± 0.3 -

Ours 82.9± 0.3 84.3± 0.3 79.0± 0.4 81.6± 0.5 69.3± 0.4 71.0± 0.3 38.3± 0.4 39.5± 0.3

Table 3: Comparison of our proposed method with state-of-the-art methods on MNIST Permutation, Split CIFAR10, Split CIFAR100

and Split tinyImageNet in Online Task Incremental setting. All the experiments are conducted in three runs. †indicates that we follow the

training schedule of Online Task Incremental Disjoint setting in [8] and [37] respectively, which means every new sample can only be

trained once.

CIFAR10, which is within statistical error. The marginal

improvement can be explained by that the Split Cifar10 is

oversimple and various medels can touch the upper bound

accuracy of each task.

Split CIFAR100. On Split CIFAR100, we improve the

ACC from 65.8% to 69.3% by 3.5% in one epoch setting.

In three epochs setting, we improve ACC from 69.6% to

71.0% by 1.4%.

Split tinyImageNet. As illustrated in Tab. 3, we signif-

icantly improve the benchmark by 3.9%, which is from

34.2% to 38.1% in one epoch setting. In three epoches set-

ting, our method also outperforms GEM by 2.6%.

4.4. Results for the class­incremental setting

Different from task-incremental continual learning set-

ting mainly discussed in this paper, class-incremental con-

tinual learning setting do not provide task identity in the

test data [19, 52]. In such setting, task boundaries natu-

rally formed in the continual training set ought to be bro-

ken because we need classify classes from different con-

tinual tasks. In order to break the task boundary, we first

stack all episodic memories as one replay buffer. When

training, we randomly split the replay buffer into N sub-

replay buffers. The gradient decomposition is implemented

on such N sub-replay buffers instead of episodic memories.

We assess our method on Split CIFAR100 dataset for con-

sistency with other approaches. We employ Resnet34 as

our backbone and train the network for 200 epochs for each

continual step. The initial learning rate is 0.1 and decays

when the epoch equals 80, 160. The size of replay buffer is

restricted to be 2000 images and the memory update strat-

egy is the same as that in [38, 5] for fair comparison.

We compare our approach with other competing meth-

ods, including LWF [29], iCarl [38], DR [17], End2End [5],

LUCR2 [18], GD [26], MUC [11] and TPL [51]. We fix

N = 5 when implementing the experiments. The compar-

isons with other competing methods are presented in Ta-

2LUCR is short for Learning a Unified Classifier via Rebalancing

Method Ref Results Method Ref Results

LwFa PAMI’ 17 58.4 GD ICCV’ 19 62.1

iCarl CVPR’ 17 58.7 A-GEMb ICLR’ 19 60.43

DRa ECCV’ 18 59.1 S-GEMb ICLR’ 19 59.98

End2Enda ECCV’ 18 60.2 GEMb NIPS’ 17 61.9

LUCR CVPR’ 19 61.2 TPL ECCV’20 65.3

MUC ECCV’ 20 64.7 Ours - 65.3

a LwF and DR were adapted for class-incremental setting. Results of LwF, DR and
End2End were reported in [26].
b GEM, A-GEM, S-GEM are re-implemented by ourselves.

Table 4: Comparison of our proposed method with state-of-the-

art methods on Split CIFAR100 in the class-incremental setting.

ble 4. As illustrated in Table 4, our method outperforms

GEM by 3% which shows the consistency improvement

with results in task-incremental scenario. We also achieve

the state-of-the-art results which are the same MUC [11].

5. Conclusion

In this work, we presented a novel continual learning

framework including gradient decomposition, gradient op-

timization and layerwise gradient update. The gradients of

episodic memory are decomposed into the shared gradient

and task-specific gradients. Our framework encourages the

consistency between the gradient for update and the shared

gradient, and enforces the gradient for update orthogonal to

the space spanned by task-specific gradients. The former

keeps the common knowledge, while the latter can be re-

laxed by PCA to preserve the task-specific knowledge. We

observe that optimizing the gradient update layerwise can

further help the model remember the old tasks. Our method

significantly outperforms current state-of-the-art on exten-

sive benchmarks.
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