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Abstract—We present a simulation framework for evaluating the
effect of location-dependent variability in photonic integrated cir-
cuits. The framework combines a fast circuit simulator with circuit
layout information and wafer maps of waveguide width and layer
thickness variations to estimate the statistics of the circuit perfor-
mance through Monte Carlo simulations. We illustrate this with
ring resonator filters, a design sweep of Mach–Zehnder lattice fil-
ters, and the tolerance optimization of a Mach–Zehnder interfer-
ometer, and show how variability aware design can be essential
for future photonic circuit design, especially in a fabless ecosys-
tem where details of the foundry processes are not available to the
designers.

Index Terms—Integrated optics, design automation, circuit sim-
ulation, yield estimation.

I. INTRODUCTION

S
ILICON Photonics has rapidly gained adoption as one of

the most promising technologies for photonic integrated

circuits (PIC) [1]. It is especially attractive because it combines

the use of industrial CMOS manufacturing technology with the

potential of large-scale integration [2]. Like with CMOS elec-

tronics, the high cost of the fabrication facilities has spurred an

ecosystem of foundries and fabless users, where circuit design-

ers become disconnected from the fabrication process [3], [4].

At the same time, circuit complexity is rapidly growing. Espe-

cially in silicon photonics, this is made possible by the extremely

high refractive index contrast, allowing submicrometer-scale

waveguides with tight bends [5]. However, this high index con-

trast introduces its own set of challenges. In particular, it makes

the submicron waveguide components extremely sensitive to

very small variations in the geometry. Even nanometer-scale

deviations in waveguide width or layer thickness can induce

non-negligible changes in the optical behavior [6]. This sensi-

tivity introduces significant challenges for the design of photonic

circuits [4]: as circuits increase in size, the effects of variability
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accumulate, and the overall circuit yield will rapidly decrease

as individual devices do not meet specifications, or the proper-

ties of devices within a circuit are not properly matched. This

is especially true in interferometric wavelength filters based on

delay lines, such as Mach-Zehnder interferometers (MZI), ring

resonators and arrayed waveguide gratings (AWG) [7]. In wave-

length filters with submicrometer silicon waveguides, a width

variation of 1 nm can give rise to a 1 nm wavelength shift of

the filter response. For thickness variations, this effect is even

twice as strong, close to 2 nm wavelength shift per 1 nm thick-

ness change. Taking into account that even in a good silicon

photonics process the waveguide width and thickness can vary

with several nanometers over a wafer, fabrication variability can

induce non-negligible performance variations. For instance, in

dense wavelength division multiplexing (WDM) telecommuni-

cation systems wavelength channels can be spaced as closely as

0.2 nm (or 25 GHz in the C-band); wavelength shifts of a few

nanometer are really unacceptable. By integrating active tuning

elements, such as heaters, some of the imperfections introduced

by variability can be corrected. But this active compensation in-

troduces more complexity, and requires additional footprint and

power consumption. To compensate for a 1 nm width change, a

temperature increase of approximately 10 ◦C is required.

Therefore, it is always preferable to minimize the effects of

variability at the design stage. This is especially needed in an

ecosystem based on foundries, where the fabless users typically

have only a limited insight into the process specifics of the fab-

rication, but still want to design circuits that meet specifica-

tions. As a result, in the past few years variability modelling

of photonic circuits has been recognized as a significant need.

It is important that this happens at the circuit level, using effi-

cient behavioral models, rather than full-vectorial electromag-

netic simulations which are too computationally intensive. With

such efficient models, the most straightforward method is to

apply random variations on the model parameters and perform

Monte-Carlo simulations to assess the impact of the variations

[8]. When comparing these simulation results with the original

performance specifications for the circuits, the overall yield can

be predicted. More advanced stochastic methods, such as poly-

nomial chaos expansion [9]–[11] and stochastic collocation [12]

can replace the brute-force Monte-Carlo simulations with more

efficient simulations that incorporate the stochastic properties of

the circuit elements.

However, purely random circuit variations only give a qual-

itative estimate of the yield: by just looking at the circuit pa-

rameters the impact of the actual layout is ignored. It can be
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Fig. 1. Variability in the fabrication process can propagate all the way to the performance at system level. During the processing of silicon waveguides typical
parameters that are monitored are the width and layer thickness. This has a direct effect on the propagation constant of the waveguides, or the coupling coefficients
of directional couplers. In turn these will influence the circuit behavior and ultimately the yield of the overall circuit.

intuitively understood that circuit elements close together are

more likely to have similar properties than circuit elements far

apart on the chip. Therefore, layout-aware circuit modeling and

variability analysis can give a more accurate estimate of the cir-

cuit performance [13]. To realize this, three essential elements

are required:

1) Compact models of all building blocks in the circuits, and

the sensitivity of the model parameters to the global vari-

ables, such as waveguide width and thickness changes.

2) A representative model of how these global variables vary

over a wafer, and from wafer to wafer. Variations of width

and thickness usually have different contributions, and

such a wafer map therefore has multiple components with

different length scales.

3) The layout of the circuit, with the positions (and orienta-

tion) of the individual building blocks.

We have implemented a simulation engine that combines

these three elements for layout-aware variability analysis, by

adding variability extensions to the commercial circuit simula-

tor Caphe by Luceda Photonics [14]. In this paper, we will dis-

cuss the basic operation of the Caphe simulator with variability

extensions, and we will illustrate it through three examples of

wavelength filters, showing how variability modelling can guide

the design process and make circuits more robust against pro-

cess variations. In Section II we discuss the origin of variability

in photonic circuits. Then, the operation of our simulation en-

gine is discussed in more detail in Section III. We illustrate the

functionality with three examples in Section IV: We design a

Mach-Zehnder lattice filter, analyze its performance under con-

ditions of waveguide width and thickness variability, and then

optimize the number of stages to obtain the highest yield. A

second example illustrates the problem of device matching, by

modelling a 4-channel wavelength demultiplexer based on ring

resonators. In a third example, we apply our technique to a design

of an MZI which is already tolerant to long-range width varia-

tions, and we illustrate how our tool can differentiate between

long-range and short-range variations. Finally, in Section V, we

discuss the strengths and weaknesses of the technique in more

detail and offer some perspectives for future developments.

II. MODELLING OF VARIABILITY IN PHOTONIC CIRCUITS

Accurately capturing the effects of variability in photonic cir-

cuits has been studied for well over a decade. the problem is not

unique to photonics; in electronics, the effects of device vari-

ability on the performance of circuits has been known for quite

some time, and support for variability modelling has been built

into electronic design automation (EDA) tools. Still the most

commonly used technique is corner analysis, where circuits are

tested with models for worst-case and best-case scenarios (cor-

ners). Usually, this translates into slow and fast transistors. While

this has proven its use in electronics for many decades, it is grad-

ually becoming inadequate, as for more advanced electronic

nodes better understanding of the statistics is needed, beyond

best-case and worst-case. For photonics, corner analysis is also

not very applicable. While it might be possible to define best-

case and worst-case behaviour for many photonic devices (e.g.

responsivity of a photodetector, or propagation losses in waveg-

uides), many properties are not inherently good or bad, such as

the effective index of a waveguide. Instead, it is important to

know the distribution of the properties, and how well some of

these properties vary from device to device.

A. Variability Contributions

To effectively model variability in photonic circuits, one has

to go back to the origins of the variability. This is illustrated

in Fig. 1. Most variations in a photonic circuit originate in the

fabrication process. Patterns on a photomask (which itself also

carries some variability) are illuminated using photolithogra-

phy and transferred into the substrate material through plasma

etching. Layers are deposited using a multitude of techniques,

and planarized using chemical/mechanical polishing (CMP). All

these steps are not 100% reproducible from wafer to wafer and

lot to lot, and not always uniform over an entire wafer.

These process variations result into small changes in the ge-

ometries and material distributions in the photonic circuit, such

as layer thicknesses, doping profiles, sidewall slope, etc. In sil-

icon waveguides, the most influential geometric properties are

the width and the thickness of the guided silicon layer. The first is

largely determined by the lithography and etching, while the sec-

ond originates often from the silicon-on-insulator (SOI) wafer

bonding. Therefore, the distribution over the wafer of these two

properties can be very different. Changes in geometry are usu-

ally monitored during fabrication using process control monitor

(PCM) structures.

The geometry variations translate directly into a variation in

optical properties. For instance, waveguide width and thickness
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variations of a silicon waveguide can be mapped directly onto

the effective index neff and group index ng of the guided mode

[15]. For other devices, such as directional couplers, a similar

mapping can be done to the coupling coefficients.

Variation in the device parameters propagates into the circuits

where the devices are being used. Here, the variations accumu-

late, and because circuits can connect devices that are spaced

quite apart on the chip, it is not trivial to assess the impact,

and how the system performance will be affected. For instance,

variations in the effective index of waveguides will result in a

shift of the response of wavelength filters, but when multiple

delay lines in the filter experience different variations, the mis-

matched phases can cause ripple on the transmission spectrum,

and increase the crosstalk. Similarly, filters based on directional

couplers will have increased crosstalk and insertion loss if the

couplers deviate from their designed specifications.

B. Modelling Variability

The classical approach to model variability is the Monte-

Carlo process, where a large number of simulations are run with

stochastic variations in the parameters. The advantage of Monte-

Carlo simulations is the simplicity of implementation and the

support for large numbers of independent variables. However,

the Monte-Carlo method is computationally expensive, just be-

cause of the large number of simulations.

Therefore, over the past decade, novel techniques have

emerged. For instance, in stochastic collocation, the simulation

models are replaced with a cheaper surrogate model that captures

the stochastic properties of the original model in a minimum of

expensive simulations, after which a Monte-Carlo simulation

can be run on the surrogate model [12]. This can be applied to

component simulation, but also to circuits.

In polynomial chaos expansion (PCE), the component or cir-

cuit model is extended to incorporate not just the original model

parameters, but also the moments of their distribution [16],

[17]. A new, larger model is created which can solve the cir-

cuit in a single simulation, including the stochastic moments of

the performance metrics. while extremely powerful, this tech-

nique requires good a-priori knowledge of the probability den-

sity functions (PDF) of the model parameters. Also, it assumes

pure stochastic variables, which makes it harder to incorporate

knowledge of the circuit layout into the technique.

C. Location-Aware Variability Modelling

Because the fundamental sources of variability in photonic

circuits are present on different length scales, it is important

to incorporate the actual layout information into the variability

analysis. An effective technique to photonic layouts with vari-

ability modelling was first introduced in [13]. It starts from a

wafer map of geometry variations (width and thickness) and

the layout of the photonic circuit. The photonic circuit is pro-

jected onto the wafer map, and the local width and thickness

are extracted for each circuit component. The circuit models

have waveguide width and thickness as parameters, and can be

evaluated based on these local values. This is then repeated for

different positions on the wafer, and for different wafer maps,

to obtain a valid Monte-Carlo simulation.

This approach requires that the circuit models support these

global geometry variables, or at least can evaluate their actual

parameters (e.g. effective index, loss) from these global geome-

try parameters. In its simplest form, the perturbation of a circuit

model parameter C by a global parameter X at position p could

be implemented as a linear perturbation:

C(p) = C0 +
∂C

∂X
∆X(p) (1)

For this, the sensitivity of C to X should be known. This can

be characterized through measurements or simulations.

Such layout-aware variability modelling requires that the lay-

out information is coupled to the corresponding circuit models.

This can be done either by annotating the layout files (GDSII)

with the model and its parameters [13], or by using a cell-driven

design tool where the layout and models are embedded (para-

metric) cells that are generated by code or stored in a database

[19], [20].

III. THE CAPHE VARIABILITY EXTENSIONS (CAPHEVE)

We have implemented such a simulation scheme on top of

the IPKISS design framework by Luceda Photonics [20]. This

design tool combines layout, connectivity and circuit model into

parametric cells. It also has a built-in photonic circuit simulator,

Caphe, that supports both frequency domain and time-domain

simulations, with efficient circuit models that can be custom-

written in Python [14]. The circuit design flow for a photonic

circuit is depicted in the top part of Fig. 2. Starting from a compo-

nent library in a process design kit (PDK), a circuit is composed

of parametric building blocks, and a mask layout is generated

[4], [20]. The resulting circuit is then simulated and optimized

until it meets the specifications.

To extend this design flow with variability analysis and yield

prediction, we did not want to impose any restrictions on how

the fab has constructed its circuit models, and how designers

generate their layout. The IPKISS framework, which is written

in Python, can be easily extended with additional functionality

[20], [21], so we created the necessary data structures and pro-

cesses without perturbing the original framework and without

requiring the fab to change their circuit models.

To describe the sensitivity, we annotated the existing circuit

models with a variability matrix, describing how every circuit

model parameter varies with changes in local width and thick-

ness. These annotations can be of the linear form in Eq. (1),

higher-order polynomial expressions, or a custom Python func-

tion. The sensitivity data structure is added to the existing mod-

els. The actual sensitivity data is not generated automatically; if

this is not supplied by the fab, it is up to the designer to eval-

uate this by running simulations or experimentally characterize

fabricated devices. By default, the sensitivity of component pa-

rameters is set to zero.

A second data structure which is injected is a set of sampling

points for each component. This determines where in the layout

the global variables such as width and thickness are evaluated.

For most (small) building blocks, a single sampling point is

sufficient, but longer waveguides are automatically sampled with

a regular spacing (which is parametric).
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Fig. 2. Adding layout-aware variability modelling to the photonic circuit design flow. Above the dotted line, the classical photonic circuit design flow is depicted
[4], starting from PDK blocks and composing circuits first as a schematic and then as a layout. Only the nominal circuit response is simulated. We extend the PDK
models with sensitivity data (either from measurement or simulation) and generate wafer maps of global variables (waveguide width, thickness) [13], [18]. We can
then perform Monte-Carlo simulations by placing the circuit on different wafer positions (and different virtual wafers). From the many circuit responses we can
then extract the yield, i.e. the fraction of circuits that meet the specifications set out in the system requirements.

Finally, representative wafer maps of the global variables are

needed. Because waveguide width and thickness variations can

have multiple causes, wafer maps can have variations over dif-

ferent length scales. A hierarchical model captures wafer-to-

wafer, die-to-die and intra-die variability of both systematic and

stochastic nature [18], [22].

The CapheVE framework combines these three elements with

the existing circuit models and layout. First it positions the circuit

on the wafer, then evaluates the local width and thickness for

each sample point, and for building blocks with multiple sample

points these values are aggregated. Using the sensitivity matrix,

the updated model parameters for each instance are calculated

and a circuit simulation is launched. This is repeated for multiple

positions on the wafer. In this process, the original circuit design

is not altered.

Based on the results, plotting and data analysis routines from

scientific Python libraries can be used to evaluate the impact of

the variability or predict the yield of the circuit after fabrication.

Because the whole process is scriptable from Python, this simu-

lation routine can easily be embedded in an optimization loop to

optimize a circuit for yield, rather than for ultimate performance.

IV. EXAMPLES

To illustrate the use of this tool, we performed variability

analysis on a number of interferometric wavelength filter cir-

cuits, because such circuits are extremely sensitive to effects

that perturb the relative phase between different light paths.

We designed these filters using the design kit of the iSiPP50G

silicon photonics technology platform of IMEC. This platform

features a 220 nm thick silicon waveguide layer on a 2µm buried

oxide layer. The 200 mm wafers are sourced from a commer-

cial supplier and can have a variation of a few nanometer on the

silicon waveguide layer. Due to the wafer fabrication processes,

this variation changes slowly over the wafer, often with a radial

pattern. The waveguides are defined with a 193 nm projection

lithography system and transferred into the silicon layer with

a plasma etching process. Unless otherwise specified, we use a

nominal waveguide width of 450 nm. Of course, the lithography

step can induce small variations in the width, and the plasma

etching can also affect the width due to variations in plasma

composition and density. These are either induced by gradients

in the etch chamber (usually with a radial pattern) or by pat-

tern density variations on the wafer, which can change the local

concentration of etch residues in the plasma.

When we model the wafer maps for waveguide width and

thickness variations in the following examples, we use differ-

ent techniques, as shown in Fig. 3. For the thickness variations

we use an interpolated map measured on an actual wafer. For

the waveguide width variations we use an OpenSimplex noise

generator, which gives a uniform, isotropic random variation

with a given amplitude and correlation length, similar to Perlin

noise [23].

The three example circuits consist of a combination of waveg-

uides and directional couplers. The waveguide model has a

first-order dispersion model described by an effective index

neff0 = neff (λ0) at a center wavelength λ0 and a group in-

dex ng0 = ng(λ0). The wavelength dependent effective index

in calculated as:

neff (λ) = neff0 −∆λ
ng0 − neff (λ0)

λ0

(2)

with ∆λ = (λ − λ0). The model parameters neff (λ0) and

ng(λ0) have been precalculated for different design widths of

the waveguide. And for each design width, the sensitivity of the
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Fig. 3. Wafer maps of width and thickness variations used for the examples.
(a) The width map uses an OpenSimplex noise generator, which gives uniform,
isotropic fluctuations with a 1 nm peak-to-peak variation. (b) The thickness map
was extracted from a wafer through ellipsometry and interpolated. It shows a
deviation of [−6 −2] nm from the nominal thickness of 220 nm.

model parameters neff0 and ng0 are calculated as a second-

order Taylor-expansion in width and thickness:

C(p) = C0 +
∂C

∂X
∆X(p) +

1

2

∂2C

∂X2
∆X(p)2 (3)

For width and thickness sampling, sample points every 10µm

along the waveguide center line are added. This sampling dis-

tance is parametric, so it can be increased and decreased de-

pending on the need, which depends on the typical correlation

lengths of the variability maps we use.

The directional couplers are modelled as a small circuit

consisting of four waveguides and a zero-length coupler, as il-

lustrated Fig. 4. The waveguide segments model the phase prop-

agation in the coupler, while the zero-length coupler provides a

parametric coupling between the waveguides, with a π/2 phase

delay for the cross coupling. The power coupling K in the zero-

length coupler is modelled with a sinusoidal behavior as function

of the total coupler length L [24]:

K(λ) = sin2(κ0(λ) + κ′(λ).L) (4)

The wavelength dependent behavior of the specific coupling

κ′(λ) is modelled as a second-order Taylor expansion around a

center wavelength λ0:

κ′(λ) = κ′(λ0) + ∆λ.
∂κ′

∂λ
(λ0) +

1

2
∆λ

2.
∂2κ′

∂λ2
(λ0) (5)

Similarly, the contribution of the bends is modelled as the

lumped coupling κ0, which is also expanded as a Taylor series:

κ0(λ) = κ0(λ0) + ∆λ.
∂κ0

∂λ
(λ0) +

1

2
∆λ

2.
∂2κ0

∂λ2
(λ0) (6)

This results in six model parameters for the directional cou-

pler, which are extracted from measurement of a design sweep

of directional couplers with different lengths.

Fig. 4. Directional coupler circuit block. (a) Internally, the model of the direc-
tional coupler consists of 4 waveguide segments which capture the propagation,
and a zero-length ’logical’ coupler which models the actual coupling. The sensi-
tivity of the coupler parameters and the waveguide parameters is modelled using
a combination of eigenmode expansion and finite-difference time-domain sim-
ulations (FDTD) (b) To model the effect of variability, the width and thickness
variations are sampled on multiple locations in the layout, both for the waveg-
uides (cyan dots) and for the logical coupler (red dots). (c) Nominal coupler
response for a coupler designed at different coupling ratios at a wavelength of
1550nm. (d) Response of the directional coupler with a nominal 50/50 splitting
ratio but with different width variations, up to quite extreme cases of ±10 nm.

A. Four-Channel Ring Resonator Demultiplexer

As a first example, we simulate the performance of a four-

channel wavelength demultiplexer that consists of four ring res-

onators on a common bus waveguide [13], [25]. As illustrated in

Fig. 5, the ring resonators are constructed from two directional

couplers and two short waveguide segments. The directional

coupler are designed with a nominal power coupling of 10% (at
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Fig. 5. (a) 4-channel wavelength demultiplexer based on ring resonators. (b)
Each ring resonator consists of two directional couplers connected with straight
waveguides of different length, to obtain resonances spaced 1.6 nm in wavelength
(200 GHz in frequency). (c) Simulated transmission of the nominal devices at
the four drop channel outputs.

the center wavelength of 1550 nm). The resonance wavelength

of the rings is controlled by adjusting the lengths of the short

waveguide segments in the ring, and the four rings are designed

to have a wavelength spacing of 1.6 nm, which corresponds to

200 GHz channel spacing near 1550 nm. The nominal transmis-

sion of the four rings is also shown in Fig. 5c. For the operation

of the wavelength demultiplexer, the channel spacing is impor-

tant: when the channel spacing is sufficiently accurate, we can

compensate wavelength shifts by collectively tuning all rings

(e.g. using a heater/cooler in the package of the chip).

Figure 6 shows the results of a variability analysis. The top

result (Fig. 6a) shows the performance of the ring demulti-

plexer over a wafer when we only consider waveguide width

variations, with an amplitude of 1 nm. In this design, the rings

are widely spaced, with a center-to-center distance of 200 µm.

We see that the transmission spectra are spread over approxi-

mately half the channel spacing, which is consistent with the

aforementioned width sensitivity of 0.9 nm/nm. However, when

we look at the histogram of channel spacings between every

two adjacent channels in the same circuit, we see that there

is a huge spread. Because the rings are spaced far apart, the

width deviations within a single circuit are effectively decor-

related. As a result, the channel wavelengths within the same

circuit are not evenly spaced, which ruins the functionality as a

demultiplexer.

In Fig. 6b we have brought the four rings much closer together.

Now the waveguide width s of the rings are correlated. While we

see a similar spread in the transmission spectra over the wafer,

the histogram of the channel spacings shows a much improved

performance, with most channels spaced within 0.2 nm of the

desired 1.6 nm channel spacing. This confirms quantitatively

that the common-sense practice of grouping devices together

for better matching is a valid strategy.

Finally, we also assessed the performance of the closely

packed ring circuit when we add thickness variations. Figure 6c

shows that the transmission spectra are now spread out over mul-

tiple channel spacings, which is logical given the large spread in

thickness over the wafer. However, because thickness variations

are mostly a long-range effect, this has very little impact on the

relative channel spacing. Because the spread in channel spacing

remains small, the demultiplexers remain useful if we assume

a collective thermal tuning approach. The free spectral range

(FSR) of the rings is not much affected by the thickness change,

as this depends on the group index ng of the waveguide, and this

quantity is less dependent on the waveguide thickness variation

than the effective index. The change in channel spacing induced

by a collective thickness variation of the four rings is of the order

of 5 pm.

B. Mach-Zehnder Lattice Filter

In a second example we construct a Mach-Zehnder lattice fil-

ter [7], [26] consisting of a cascade of directional couplers with

different coupling coefficients and delay lines with the same

length, as shown in Fig. 7. The lengths of the couplers are calcu-

lated from the filter coefficients of a Kaiser window, which are

then mapped onto the coupling coefficients for the directional

couplers [26]. The filter performance is determined by the exact

coupling ratios, which distribute the light through the different

paths in the filter. Also, all stages should introduce the same

phase and time delay to guarantee the constructive/destructive

interference. Errors in the coupling and phase delays will cause

higher insertion loss and crosstalk levels, and a shift of the filter

passband [27].

We designed this filter to have a pass band at 1550 nm wave-

length, with a free spectral range of 800 Ghz (6.4 nm) and a

passband width of 80 GHz (0.64 nm). We allow for a wave-

length shift of the passband of 40 GHz (0.32 nm), an insertion

loss of −1 dB, a crosstalk level of −15 dB, and a nonuniformity

within the passband of 1 dB.
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Fig. 6. Monte-Carlo simulations of the 4-channel ring demultiplexer in Fig. 5, using the wafer maps for width and thickness in Fig. 8. (a) Transmission of the
four outputs with only the effect of the waveguide width variation, and the separation between every two adjacent channels in the same circuit. While the circuit is
designed to have a uniform 1.6 nm channel spacing, the separation in the actual circuits is much larger. (b) Same circuit, but with the rings spaced close together
in the layout. As a result, the width variations between adjacent rings is much smaller, and the channel separation is much better controlled, even if the absolute
positioning of the spectra is similar as in the wider spaced circuit. (c) The same circuit as (b) but now simulated with both width and thickness variations. The large
thickness variation causes extreme shifts of the absolute wavelength positions, but because thickness variation are a long-range effect, this has little impact on the
relative channel spacing.

The simulation of an 8-stage filter is shown in Fig. 8. We also

show the Monte-Carlo results of 277 samples on the wafer maps

in Fig. 8, plotting both the pass band (blue) and the rejection band

(red). We see than the nominal curve meets the specifications

well, but the result of the variability analysis over the wafer

paints a more dire picture.

Figure 9 shows the passband transmission curves, but now

classified in three categories:

� Good filter devices that meet all the specifications (blue).
� Filter devices that meet the specifications, except for the

absolute wavelength positioning of the passband.
� Filter devices that fail one or more of the criteria on inser-

tion loss, ripple or crosstalk.

We see that the absolute wavelength positioning is a difficult

criterion to meet. This can be intuitively understood from the

sensitivity to thickness: the wafer map in Fig. 3 shows that the
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Fig. 7. Construction of a Mach-Zehnder lattice filter [26]. Based on filter coef-
ficients, the coupling coefficients for the directional couplers are calculated, and
then translated into the coupling lengths. In this example, we set specifications
on the insertion loss, intra-band ripple, crosstalk, free spectral range (FSR) and
the absolute peak wavelengths.

thickness over the entire wafer is at least 2 nm off the ideal value,

which corresponds to a wavelength shift of 3-4 nm, which is half

the designed FSR. With the absolute wavelength criterion, our

yield is below 10%, and this is due to devices that have shifted

a full FSR. When we ignore this criterion, we find that we get

an overall yield of 77%.

With MZI lattice filters, adding additional stages should make

the passband window more box-like, with a steeper roll-off and

lower crosstalk, This is shown in Fig. 10a, which shows the de-

sign of the normalized passband when adding additional stages

to the filters, increasing from 2 to 14. when translated into an

actual circuit layout, the dispersion of the waveguides and the

couplers has to be taken into account, and this will change the

passband response. Figure 10 shows the passband response of

these different filters, and we see that the response approxi-

mates the theoretical response close to the center wavelength

of 1550 nm, but we see a sharp increase in crosstalk levels

for shorter wavelengths. The effect of dispersion is actually

most detrimental for filters with more stages: small variations in

Fig. 8. Simulating the effect of waveguide width and thickness variability on
an 8-stage MZI lattice filter. We applied a width variation map from Fig. 3, and
simulated 277 Monte-Carlo samples. The plot shows the transmission spectra
of the filter passband (blue) and rejection band (red).

coupling strengths will have a more profound impact when there

are more couplers.

On top of wavelength dependence, the filter response will

degrade as a result of width and thickness variations, as these

also induce changes in the couplers. So while we can expect

an improvement of the filter response when we increase the

number of stages, we also expect a deterioration for more stages

when the effects of variability start to kick in. This is clear from

Fig. 10c, where we plot the yield predictions after a wafer-level

simulation for each of these different lattice filters. We plot both

the yield with absolute wavelength positioning, and the yield

without absolute wavelength requirements. For only 2 stages,

we basically have a simple Mach-Zehnder interferometer, for

which it is hard to meet the design specifications. The yield

goes up for 4 and 6 stages, but then goes down again for larger

circuits, and for 10 stages there are no more working devices.

Fig. 10d shows the transmission curves of the 6-stage device

simulated over the wafer sampling points.

This shows that variability analysis should be an essential

step in optimizing filter circuits. While experienced designers

are able to identify empirically the optimum number of filter
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Fig. 9. Yield simulation of the MZI lattice filter with 8 stages designed to the
specifications in Fig. 7 and simulated with the Monte-Carlo parameters described
in Fig. 8. We differentiate between devices that pass all criteria, devices which
are OK except for the peak wavelength position, and devices which fail to pass
criteria such as crosstalk and insertion loss. The peak wavelength is a difficult
criterion in the presence of width or thickness variations, as the effective index
of silicon waveguides is particularly sensitive to geometry variations.

stages for certain specifications (or through a parameter sweep

in fabrication), with location-aware variability analysis we can

identify the sweet spot during the design stage.

C. Optimizing a Tolerant Mach-Zehnder Interferometer

As a final example, we show how layout-aware variability

analysis can evaluate the effect on local variations on circuits

that have been designed to be tolerant to those variations. For

instance, [28] describes the design process for a Mach-Zehnder

interferometer that can be made tolerant to waveguide width

variations, thickness variations or temperature variations. The

concept can be extended to multi-stage lattice filters like the one

described in the previous section.

If we take a simple Mach-Zehnder interferometer with arm

lengths L1 and L2, it will have a sinusoidal response in wave-

length, with constructive interference at

neff (L1 − L2) = m.λ0 (7)

This we see in Fig. 11a. Because the waveguides are sensi-

tive width variations, this peak wavelength will shift when the

widthw changes from its nominal value. The sensitivity to width

variations is

dλ0

dX
=

λ0

ng

dneff

dX
(8)

The principle behind the tolerant MZI is to use waveguides

with a different width in both arms to decrease this wavelength

shift. The different design widths mean that both arms now have

a different effective index and group index. So the condition

Eq. (7) for constructive interference at λ0 becomes:

neff1L
′

1
− neff2L

′

2
= m.λ0 (9)

But the two waveguides not only have a different index, the

sensitivity of the effective index and group index to width vari-

ations is different. Broader waveguides will usually have less

sensitivity to waveguide width variations. This means that the

shift of peak wavelength λ0 can now be written as

dλ0

dw
=

λ0

ng1L′

1
− ng2L′

2

(

L′

1

dneff1

dw
− L′

2

dneff2

dw

)

(10)

If we make the assumption that both arms will experience the

same waveguide width change, we can make the MZI response

tolerant to global waveguide width changes by forcing Eq. (10)

to zero. We get the following condition:

L′

1

L′

2

=
dneff2/dw

dneff1/dw
(11)

With Eq. (9) and (11) we have two equations to determine

the two lengths L′

1
and L′

2
. The remaining free parameter is the

interference order m, which can be chosen to approximate a

desired free spectral range.

In this example, we choose the waveguide widths to be

w1 = 400 nm and w2 = 500 nm. We aimed for a free spectral

range as close as possible to 10 nm, which results in an inter-

ference order m = 105. Because we use the original waveguide

width of 450 nm for the directional coupler, a taper is needed

to interface the directional coupler with the different arm wave-

guide. To make sure both arms have the same set of taper, we add

a section of narrow waveguide to the wide arm, and a section of

wide waveguide to the narrow arm. this way, each arm contains

the same three tapers, and the only difference is in the different

waveguides.

To assess the impact of both long-range (global) waveguide

width variations and short-range (local) width variations, we

provide a wafer map for waveguide width that consists of two

components
� an OpenSimplex map with a correlation length of 1 cm

and an amplitude of 10 nm to model long-range variations,

much larger than the circuit,
� an OpenSimplex map with a correlation length of 100 µm

and an amplitude of 2 nm to mimic more random short-

range fluctuations in waveguide width.

The results of the Monte-Carlo simulations over a virtual

wafer are shown in Fig. 11. We see that the standard MZI with a

single waveguide width (Fig. 11a) shifts over a wide range. The

tolerant filter in Fig. 11b has a much lower variation, but it is

still significant, and much larger than the sensitivity suggested in
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Fig. 10. Optimization of the lattice filter specified in Fig. 7 to maximize the yield under variability of width and thickness. (a) Normalized baseband response of
lattice filters with increasing number of couplers (taps), resulting in an increasingly box-like profile. (b) Simulated nominal filter response of the implemented filter
circuit for these different filters. For clarity, the responses are separated along the y-axis by −15 dB, with each new 0 dB reference indicated with dashed lines.
These also serve as a visual reference for the −15 dB specification on crosstalk. (c) Fraction of filters that pass the design criteria in a virtual wafer Monte-Carlo
simulation as outlined in Fig. 8. (d) Transmission spectra of the 6-stage lattice filter, which is the best filter when ignoring the requirement of absolute peak
wavelength position.

[28]. The origin of these fluctuations are in the local variations.

With a size of 100 µm × 130 µm. The tolerant device size is

larger than the correlation length of the width variations. On top

of that, both arms are on opposite sides of the circuit. So, while

the global variations cancel out, the local width variations still

contribute to the wavelength shift.

Using layout-aware variability analysis, we can now look into

possible improvements. Reorganizing the circuit in such a way

that the waveguides are closer together should reduce the ef-

fect of local variability. Such a layout is shown in Fig. 11c:

nesting the waveguides not only reduces the device footprint,

but also runs the waveguides of both arms largely parallel.

In terms of waveguide lengths and building blocks, this cir-

cuit is equivalent to the circuit with opposing arms. How-

ever, the Monte-Carlo simulations demonstrate that this nested

layout performs much better in the face of waveguide width

variability.

Again, this is an effect that an experienced designed might

anticipate, so he might choose a nested layout accordingly.

However, layout-aware variability analysis makes it possible to

quantitatively assess the impact on the circuit yield.

V. DISCUSSION

The three examples show that layout-aware variability anal-

ysis can expose potential problems in circuit due to variability

that cannot be quantitatively predicted with other techniques. It

also makes it possible to optimize layouts for reduced sensitivity

to fabrication variables such as width and thickness.

The applicability of this technique could have some limita-

tions. A reliable analysis is only possible if the necessary data is

available. First of all, the sensitivity of the device model param-

eters is needed. Ideally, this is provided by the device designer

or the fab. In case this data is not provided, the circuit designer
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Fig. 11. Testing the design of a Mach-Zehnder interferometer that is tolerant to waveguide width variations [28]. The devices were simulated over a virtual wafer
with both long-range (5 cm) width variations with an amplitude of 10 nm, and short-range (100 µm) variations with an amplitude of 2 nm. (a) A regular MZI,
without any design for tolerance to waveguide width variations. The transmission peaks shift with 0.9 nm/nm width change. (b) A tolerant MZI, designed according
to [28], using waveguides of different widths, including short compensation sections to balance the use of tapers in both arms. This device is tolerant to long-range
width variations where both arms feel the same effect, but not to short-range variations where the arms feel a different effect. (c) A folded version of the tolerant
device, where the arms are brought closer together, shows a good tolerance to both long-range and short-range width variations.

could invest the effort to simulate or measure these effects, but

this is not always possible. In some cases, fabs do not provide

the designer with the actual layout/geometry of a building block.

Such ’black-box’ building blocks are substituted by the actual

geometry only at the fabrication stage, in order to protect the

intellectual property of the fab. In this situation, the designer

cannot simulate the building block with modified width /thick-

ness variations, or other variables such as doping implant dose

and energy.

Similarly, the Monte-Carlo analysis is only meaningful

if the circuit designer has a representative model of the

wafer-scale variability of the relevant external variables, such

as waveguide width and thickness. Because these numbers

could give unnecessarily detailed insight into a fab’s fabri-

cation process quality, fabs are generally reluctant to release

such data, and variations are often specified as guaranteed

bounds that are not really representative of the actual spatial

distribution.

A possible solution would be to map the physical variables

such as waveguide width and thickness onto a new set of vari-

ables that without a direct physical meaning. Also, the sensitiv-

ities of the building blocks could be remapped to these abstract
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variables. This way, the fab can provide, as part of the PDK,

a set of building blocks with models, including sensitivity, and

some generator functions to generate the maps of these new ab-

stract variables. The drawback of this technique is that it is not

possible for a device designer to test new geometries against

the variability of the fab, as the transformation of the abstract

variables into the physical dimensions is not disclosed.

The tools developed here for layout-aware variability analysis

are not limited to evaluating fabrication-related variability. It

could also be used to model the effects of operational variability.

For instance, the effect of temperature gradients on a component

could be evaluated, or the impact of the placement of a hot

component (e.g. a laser diode) on the chip.

The main weakness of our variability analysis tool is that it

still relies on Monte-Carlo simulations. While these simulations

can be parallelized, they can still become computationally ex-

pensive, especially with larger circuits. The small filter circuits

used in this example consisted of 20–50 components (includ-

ing waveguides, tapers, and couplers), and were simulated for

2000 wavelength points. A Monte-Carlo simulation run for one

of these circuits required between 5 and 10 minutes, depending

on the complexity of the circuit, running on a single processor

core of a powerful laptop with a Core-i7 processor. So while

computationally expensive, parallelization on moderate cluster

infrastructure of a few tens or hundreds of cores brings the sim-

ulation time down to less than 1 minute, which is acceptable for

interactive design.

VI. CONCLUSION

Variability analysis and yield prediction at circuit level will

become more important as circuit complexity increases and

designers become disconnected from the foundry fabrication

processes. We developed a set of variability extensions for the

commercial circuit simulator Caphe, to evaluate the effect of pro-

cess variability on photonic integrated circuits. This is especially

critical for wavelength filter design in high-contrast waveguide

systems such as silicon photonics. The CapheVE engine com-

bines knowledge of the circuit layout with virtual wafer maps

of fabrication variables such as waveguide width and thickness

and circuit models with sensitivity data to these variables. Us-

ing Monte-Carlo simulations over these virtual wafers, the cir-

cuit performance can be evaluated, or the circuit layout can be

optimized to maximize fabrication yield.
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