
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005 525

Layout Conscious Approach and Bus Architecture
Synthesis for Hardware/Software Codesign of

Systems on Chip Optimized for Speed
Nattawut Thepayasuwan, Member, IEEE, and Alex Doboli, Member, IEEE

Abstract—This paper presents a layout-conscious approach for
hardware/software codesign of systems-on-chip (SoCs) optimized
for latency, including an original algorithm for bus architecture
synthesis. Compared to similar work, the method addresses layout
related issues that affect system optimization, such as the depen-
dency of task communication speed on interconnect parasitic.
The codesign flow executes three consecutive steps: 1) combined
partitioning and scheduling: besides partitioning and scheduling,
this step also identifies the minimum speed constraints for each
data link; 2) IP core placement, bus architecture synthesis, and
routing: IP cores are placed using a hierarchical cluster growth
algorithm; bus architecture synthesis identifies a set of possible
building blocks and then assembles them for minimizing bus length
and complexity; poor solutions are pruned using a special table
structure and select-eliminated method; and 3) rescheduling for
the best bus architecture. This paper offers extensive experiments
for the proposed codesign method, including bus architecture
synthesis for a network processor and a JPEG SoC.

Index Terms—Bus architecture synthesis, hardware/software
codesign, systems-on-chip (SoCs).

I. INTRODUCTION

MANY embedded systems must meet stringent cost,
timing, and energy consumption constraints [7]. In

addition, embedded architectures are very thrifty in employing
hardware resources: they include general purpose processors
running at low/medium frequencies (like ARM, 801C188EB,
Philips 80C552, etc.), have a reduced amount of memory (the
memory capacity can be as low as 128 k of RAM and 256 k of
flash memory), and incorporate customized coprocessors and
I/O peripherals (including radio-frequency and analog circuits).
Typical examples include embedded systems for telecommu-
nication and multimedia, like cell phones, digital cameras,
and personal communicators. Systems-on-chip (SoCs) are
single-chip implementations of embedded systems. Compared
to printed circuit board designs, SoCs offer higher performance
and reliability at cheaper costs [7]. It is foreseen that advances
in device manufacturing technology, including present deep
submicron technologies and future nanotechnologies, will con-
tinuously reduce the minimum feature size, and thus increase
the functional complexity of SoCs.

Manuscript received August 11, 2003; revised February 25, 2004 and June
25, 2004. This work was supported in part by IBM under a Faculty Partnership
Award and in part by a DAC Graduate Scholarship Award.

The authors are with the Department of Electrical and Computer Engineering,
State University of New York at Stony Brook, Stony Brook, NY 11794-2350
USA (e-mail: nattawut@ece.sunysb.edu; adoboli@ece.sunysb.edu).

Digital Object Identifier 10.1109/TVLSI.2004.842910

Fig. 1. Impact of layout on data communication speed and system design.

For SoCs realized in deep submicrometer technologies
(DSM), physical-level attributes, such as interconnect para-
sitics, substrate coupling, and substrate noise, significantly
influence system performance, e.g., data communication speed,
system latency, power consumption, and signal integrity [4],
[29]. Fig. 1 illustrates the impact of layout parasitics on data
communication speed and system design. Fig. 1(a) presents a
task graph with five tasks. Each task is labeled by its execution
time on Power PC processor core. Without considering layout
information, the codesign step decides to allocate a single
266-MHz system bus for all core communications. This would
meet the timing constraints, while keeping the system archi-
tecture simple. However, considering the physical distances
between cores, shown in Fig. 1(b), it is difficult to implement a
bus with the requested speed. The same latency can be obtained
with three buses of lower speed, like those in Fig. 1(b), because
the system concurrency improves. The bus speeds of 133, 133,
and 33 MHz were found based on the physical locations of cores
and the RLC parasitic of the routed buses [29]. This example
argues that the communication subsystem of an SoC needs
to be designed while contemplating layout-related criteria. In
general, it is difficult to postulate a unique bus architecture
as being optimal for various applications and performance
requirements. Instead, bus architectures need to be customized
depending on the application specifics and design needs. New
synthesis algorithms are needed, such as for bus architecture
design, as well as novel modeling methods, like predicting
interconnect length at the system level.

System design, including task and communication par-
titioning and scheduling, must be integrated with relevant
knowledge about core placement, bus topology design, and bus
routing to guarantee that allocated data communication speeds
are realistic. Fig. 1(a) depicts a partitioning solution in which
tasks 1 and 2 are mapped to the same core, tasks 4 and 5 are on
another core, and task 3 is bound to a third core. To minimize

1063-8210/$20.00 © 2005 IEEE

526 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

system latency, the speed of data communications and
has to be higher than that of communications and

(assuming that the same amount of data is sent between cores).
This speed requirement enforces that the core running task 3
will have to be placed close to the other two cores, whereas
the core executing tasks 1 and 2 might be placed further away
from the core for tasks 4 and 5. This set of communication
speed constraints is feasible, and Fig. 1(b) presents a possible
floorplan. However, it is infeasible to impose the additional
requirement that the speed of is much higher than the speed
of because the corresponding floorplan is hard to build. In
conclusion, speed constraints for the communication subsystem
need to be tackled while contemplating layout-related aspects,
e.g., possible core floorplans and achievable bus speeds. This
task is obviously challenging and requires new design ap-
proaches, in which the top-down codesign process is aware of
certain low-level aspects, like core placement and bus routing.

This paper describes a hardware/software codesign method
for developing SoC implementations subject to latency
minimization. The novelty is in proposing a systematic,
layout-conscious approach for tackling the SoC communica-
tion subsystem, including an original bus architecture synthesis
algorithm. System-level design attempts to minimize latency
and maximize the feasibility of constraints imposed to the
bus architecture. Applications are task graphs [14] with data
dependencies and reduced number of control dependencies.
The set of available hardware resources and the SoC area are
known. The codesign method includes three subsequent parts:

1) combined partitioning and static nonpreemptive
scheduling;

2) bus architecture synthesis;
3) rescheduling for the best bus architecture.

The first step is an exploration process based on simulated
annealing algorithm (SA) [25]. The cost function expresses
the minimization of system latency and maximization of the
feasibility of bus architecture constraints, like required speed,
number of links, and amount of resulting connectivity between
cores. We propose performance models (PMs), a graph-based
description, that symbolically captures the relationships among
performance, graph characteristics, and design decisions. PM
are general, flexible, and can be easily extended to new design
activities without requiring cumbersome validation. The second
step synthesizes and routes the bus architecture for an SoC. IP
cores are placed using a hierarchical cluster growth algorithm.
Using the proposed primary bus structure (PBS) bitwise gener-
ation algorithm, bus architecture synthesis first identifies a set
of possible building blocks, then assembles them together, such
that bus length, bus topology, communication conflicts, and
unnecessary core connectivity are minimized. We propose a
special table structure (named bus architecture synthesis table)
and select-eliminate method to prune poor solutions, such as
buses with complex and redundant connectivity. The algorithm
was successfully used to automatically synthesize bus archi-
tectures for realistic SoC, including a network processor and a
JPEG SoC.

This paper is organized as follows. Section II presents re-
lated work. Section III discusses system modeling. Section IV
introduces the proposed codesign approach. Bus architecture
synthesis is presented next. Experimental results are given in
Section VI. Finally, conclusions are offered.

II. RELATED WORK

Over the last ten years or so, a variety of hardware/soft-
ware codesign methodologies were proposed for designing
embedded systems optimized for cost, speed, and power con-
sumption [3], [13], [15]. A typical codesign flow includes the
following activities: selection of architectures and architec-
tural resources (processors, memories, buses, I/O modules),
functionality partitioning, task mapping to resources and sched-
uling, and communication synthesis. Depending on the targeted
applications, codesign approaches can be classified into three
groups: for data-dominated systems [3], [6], [18], for control
intensive systems [2], and for applications with substantial data
processing and reduced amount of control [14], [27]. Balarin
et al. [2] present POLIS, an approach for control dominated
real-time embedded applications. For data-dominated systems,
Prakash and Parker [24] formulate the codesign problem as a
mixed-integer linear programming (MILP) problem. A linear
equation solver finds the optimal implementation. The disad-
vantage of MILP-based codesign is its limitation to small size
applications. The alternative is to employ heuristic algorithms,
such as greedy priority-driven clustering [6], list scheduling
methods [3], [10], [14], iterative improvement heuristics,
like simulated annealing and tabu search [13], and genetic
algorithms [5], [9], [27]. Heuristic methods can be used for
large task graphs [14]. The disadvantage is that the solution
optimality is difficult to characterize. For example, greedy
priority-driven algorithms offer good average results, but they
might give poor solutions for situations not captured by the pri-
ority function [10]. Henkel [19] suggests a hardware/software
partitioning method for low-power systems. After scheduling,
instruction clusters with a high utilization rate (thus, with less
wasted energy) are moved to hardware. Dave et al. [6], and
Dick and Jha [9] propose cosynthesis methods for the design
of heterogeneous systems under a large variety of optimization
goals including cost, latency, and average, quiescent, and peak
power consumption. The methods perform task allocation,
scheduling, and performance estimation while contemplating
interprocessor concurrency, preemptive and nonpreemptive
scheduling, and memory constraints. Givargis and Vahid
[17] describe Platune environment for tuning parameterized
uniprocessor SoC architectures to optimize timing and power
consumption. Parameters, like processor speed, cache organi-
zation, and certain periphery attributes, are decided using the
Pareto optimality criterion.

Bus design is critical for SoC. Early work on bus and com-
munication synthesis [8], [16], [23], [34] focuses on multipro-
cessor embedded systems on a printed circuit board. Research
addresses interface design [8], [23], communication packeting
[14], and mapping and scheduling [34]. This work does not
tackle the hardware and layout details of the SoC communica-
tion subsystems. Sgroi et al. [28] suggest communication-cen-
tric system design motivated by the increasing importance of
communication attributes. Communication is layered similar to
the OSI reference model. Adapters increase the reusability of
components by matching different protocols. Lahiri et al. [21]
focus on communication protocol selection for a communica-
tion architecture template including shared and dedicated buses.
Recently, Drinic et al. [12] present a method for SoC bus net-
work design to maximize overall processing throughput. The
communication architecture includes shared buses connected

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 527

through bridges. The design flow includes two steps: one pro-
duces the communication topology and the other finds the core
floorplanning. Hu et al. [20] introduce point-to-point communi-
cation synthesis to optimize energy consumption and area. Their
work concentrates on bus width synthesis to meet timing con-
straints on the communication links, and floorplanning to min-
imize energy consumption and SoC area. Existing approaches
use limited layout knowledge to guide system design. In many
approaches, bus topology is assumed given [16], [20], [21]. This
is reasonable for small SoC for which the designer manually de-
signs the buses. However, it is not effective for SoCs with a large
number of cores.

Compared to similar work, this paper proposes a new hard-
ware/software codesign approach that integrates system design
with bus architecture synthesis and routing. The suggested bus
architecture synthesis method does not require knowing the bus
topology, is more sensitive to layout parasitic, and prunes early
poor solutions. The codesign algorithm performs combined task
partitioning and scheduling using the well-known SA for ex-
ploration, but employing a new method for expressing system
performance and requirements. The combined method offers
shorter system latency, is more flexible toward new design re-
quirements, and scales reasonably well with the application size.

III. SYSTEM REPRESENTATION FOR CODESIGN

A. Embedded System Modeling

The quadruple HDCG, Resources, Floorplan, PM de-
scribes an embedded system: HDCG represents the system
functionality, Resources is the set of IP cores of the implemen-
tation, Floorplan is the set of all possible floorplans for the IP
cores in set Resources, and PM denotes performance attributes
of the implementation, like latency.

1) Hierarchical Data and Control Dependency Graph
(HDCG):

Definition: A hierarchical data and control dependency
graph is the triplet HDCG , where
is the set of cluster nodes, is the set of communication
cluster nodes, and is the set of arcs. HDCGs are acyclic
polar graphs having one start node and one end node.

Fig. 2 shows an HDCG example.
Cluster nodes (CN) represent tasks, functions, loops, and

if-then-else constructs in the system specification. At the fine
grain level, each cluster node is described as the acyclic
polar graph

CN

where is the set of operation nodes forming cluster node
and is the set of arcs connecting the operation nodes.

Fig. 2(b) shows the fine grain structure of CN . Operation
nodes (ONs) denote an atomic data processing, such as addi-
tion, multiplication, division, comparison, etc. Operation nodes
are mapped to small/medium size IP cores, like multipliers
and arithmetic and logic units. Each arc is a pair
(ON ON), ON ON . Arcs express data dependen-
cies between ONs: node ON can start only after node ON
was performed. During cosynthesis, ONs are used for exploring
hardware resource sharing across tasks.

Each CN and ON has a triplet representing
symbolic variables for the node’s start time, execution time, and

Fig. 2. Hierarchical data and control dependency graph.

end time. These variables are used to describe the performance
models of the embedded system.

Communication cluster nodes (CCNs) represent data com-
munications between CNs mapped to different processing units.
CCNs are shown as black bubbles in Fig. 2(a). At the fine grain
level, each CCN has a linear structure, as shown in Fig. 2(c).
CCN is an alternating sequence of nodes corresponding to
transmissions of data packets of a fixed size and nodes for
synchronization. The number of data packet nodes depends on
the data quantity specific to a CCN, as well as the fixed size of
the data packet. Synchronization nodes express the time over-
head for synchronizing two cores through handshaking. The
optional synchronization nodes allow packets from different
communication links to be interleaved on the same bus. This
facilitates the suspension of an ongoing communication in favor
of a higher priority data transmission. If successive packets
pertain to the same communication link, then the optional
synchronization nodes have zero time length.

Arcs describe the data and control dependencies of an HDCG.
An arc is the triplet cond , where

and cond is a boolean variable or . For data
dependencies, cond . Data dependencies impose that the
target node starts its execution only after the source node

was completed. Similar to conditional process graphs [20],
control dependencies are arcs annotated with a boolean vari-
able. For control dependencies, node is executed only if the
boolean variable is true. In Fig. 2(a), boolean variables are de-
picted in italics. Node CN computes variable cond1. If variable
cond1 is true, then the communication cluster node following
CN is performed. CN is executed for a false value, indicated
as—cond1 in the figure.

Definition: System latency is the end time of the HDCG end
node. For HDCG with conditional dependencies, system latency
is the worst case latency for all possible values of the boolean
variables. Node execution is nonpreemptive.

Due to the acyclic nature of an HDCG, each CN, ON, and
CCN is executed at most once for a traversal of the graph. For an
HDCG with control variables, finding system latency requires
the analysis of 2 cases. This is still feasible for HDCG with
reduced number of control dependencies.

HDCGs offer a dual perspective on the system functionality:
a task-level description (for partitioning and scheduling) and an
operation-level representation (for exploring hardware sharing
across tasks). HDCGs are similar to control data flow graphs
[15] and conditional process graphs [14]. Even though system
functionality could be expressed using operation nodes only,

528 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

Fig. 3. Core graph and PBS examples.

cluster nodes prevent the unnecessary growth of the design
space, and hence, a very lengthy codesign process. If cluster
nodes are executed on a general purpose processor as software,
then there is no need to explore hardware sharing at the opera-
tion level. Besides, for each CN, the execution in software can
be accurately estimated using data profiling and performance
models for CPU, cache, memory, and communication units
[17]. The effect of various compiler optimizations can be
tackled more effectively for CNs than for a system expressed
using ONs.

2) Resources:
Definition: Resources is the set of IP cores available for

the SoC implementation. is the subset of set Resources to
which node can be mapped, where . Function

defines the actual
hardware resource on which a CN or ON is executed.

As presented in Section IV, the proposed codesign method
assumes that the number and type of available hardware re-
sources is known. This set includes GPP cores, FU cores, multi-
plier cores, and so on. Hence, sets Resources and are given.
Through exploration, codesign identifies the function Mappedto
that optimizes the design constraints.

The considered bus model assumes a single transaction phase
protocol and no data buffering. The single transaction phase in-
corporates all activities related to the address and data phases.

Definition: A core graph (CG) is the graph (V,E), where
represents core in the architecture, and is the com-

munication link between cores and . The weight is the
communication load between core and core . It expresses the
amount of data exchanged between the two cores. The core size

is described along with node .
This concept has been illustrated in Fig. 3(a). The core graph

representation of a system architecture is used for bus architec-
ture synthesis. For simplicity of modeling, CGs do not distin-
guish between unidirectional and bidirectional dataflow. Com-
munication direction depends on whether an operation is a read
or a write, and is not specified directly in a CG. However, the
core graph can be modified in order to address the direction of
data. Fig. 3(b) presents the core graph for bidirectional commu-
nications. In case there is more than one communication channel
between two cores, then the communication load is split across
the channels.

3) Floorplan:
Definition: Floorplan trees (FTs) are binary tree structures

having following two properties: 1) leaf nodes correspond to
IP cores and 2) each internal node links the two nodes that ex-
change the maximum amount of data with each other. By def-
inition, an internal node exchanges with leaf node ,

Fig. 4. Floorplan tree.

, a data quantity equal to the sum of all data commu-
nications between node and all IP cores in the subtree orig-
inating at node .
The amount of data communicated between two internal nodes

and is equal to the sum of all communications between
node and all leaf nodes of the subtree originating at node

.

Fig. 4(a) presents a set of six IP cores, and Fig. 4(b) shows the
corresponding FT representation. Arc labels express the amount
of data exchanged between cores. Cores 1 and 4, cores 3 and 5,
and cores 2 and 6 are heavily communicating. Hence, internal
nodes 1, 2, and 3 represent their clustering. The quantity of data
communicated between nodes 1 and 2 is 90 (50 for the com-
munication between cores 1 and 3 and 40 for the communica-
tion between cores 1 and 5). The bottom-up process continues
by considering nodes 1, 2, and 3, until the root node is reached
(node 5 in the figure).

An FT models core floorplanning at the system level. It helps
to qualitatively approximate the bus delays in an SoC imple-
mentation. Section III-B explains that the speed of the link be-
tween two cores decreases as the level of their first common
internal node increases. For example, it is likely that the link
for cores 1 and 4 will be faster than that for cores 1 and 2. The
qualitative approximation is needed, because it is too cumber-
some to integrate floorplanning and bus routing with the already
complex codesign process. Instead, FTs abstract away the hori-
zontal and vertical cutlines in the slicing trees [26] for floorplan-
ning, and replace precise bus speed evaluation with finding a
lower bound of the bus speed. This avoids codesign solutions in
which links for loosely connected cores are required to operate
at high speeds, because after floorplanning those cores will com-
municate through long buses. Obviously, the actual bus speed
after detailed floorplanning and routing might be higher than
the lower bound predicted by FTs. However, this gap is not a
problem, because FTs were introduced to aid finding constraint
satisfying designs.

4) Performance Model (PM): Performance models describe
symbolically the semantics of performance attributes, such as
latency, with respect to the invariant HDCG characteristics, like
CN, CCN, ON, and dependencies, as well as the design deci-
sions contemplated during codesign, such as partitioning and
scheduling.

Definition: Performance model (PM) is a graph that contains
following elements.

1) The starting node 0 for setting the modeled performance
attributes to their initial value.

2) The constant part consists of linked symbolic variables
and operational nodes, like addition nodes, multiplication
nodes, nodes, and nodes.

3) The variable part includes additional directed arcs be-
tween the operational nodes.

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 529

Fig. 5. Performance model for latency.

The numeric values of performance attributes result by evalu-
ating the operational nodes for the operands described by sym-
bolic variables and arcs.

Fig. 5 shows an HDCG, and its corresponding PM for latency.
The figure assumes that ON , ON , and ON are executed in this
order on the shared processor. The constant part of the PM in-
cludes all nodes and solid edges in Fig. 5(b). and addition
nodes express constraints between start and end times of each
cluster node. For example, the outputs of nodes define the
start time of the corresponding cluster nodes. The start time of
a CN has to be larger than the maximum of the end times of
all predecessors. Addition nodes express that the end time
of node is the sum of its start time and its execution time

. The variable part presents the relationship between latency
and the design decisions taken during codesign, like task parti-
tioning and scheduling. In Fig. 5(b), the variable part includes
dashed arcs between the addition nodes for the end times of ON
and the nodes for the start times. Other ON scheduling or-
ders are easily captured in the PM by changing the orientation
of certain arcs.

PM is a general description, which can express different per-
formance attributes and denote various codesign activities. PMs
are very flexible, as they allow easy definition of new perfor-
mance attributes, or description of additional relationships be-
tween performance attributes and codesign activities. For ex-
ample, the attribute of communication speed flexibility, defined
in Section III-B, was added without affecting the already ex-
isting rules for latency. There is no validation effort for new at-
tributes. Finally, rules can be identified to prune infeasible or
dominated solution points. For example, the rules for commu-
nication speed flexibility (CSF) calculation avoid generating de-
signs, which are difficult to realize. This helps faster closure by
improving the feasibility of system design. Maestro et al. [22]
suggest timing graphs for symbolically expressing the system
execution time. PMs differ from timing graphs by not being lim-
ited to timing attributes or coarse-grained descriptions. Timing
graphs are employed to avoid overlapped execution of tasks with
similar operations. This is not the case for PMs, which are used
for characterizing finer grained functionality too. The remaining
part of this section presents the rules for building the PMs used
in the proposed codesign methodology.

B. Modeling of Codesign Activities

1) Modeling of Data and Control Dependencies: Fig. 6
shows the general rule for expressing data dependencies in a
PM. Node is executed only after all its predecessor nodes 1,
2, are performed. A node was introduced to express
that the start time of node is greater or equal than the

Fig. 6. Modeling of data dependencies.

Fig. 7. Modeling of scheduling.

end times of all its predecessors. The addition node for node
symbolically relates the node’s end times to its start

time and its execution times . Similar constructs are
introduced for all data dependencies. The rightmost addition
node of the resulting PM denotes the system latency. In [11],
we presented the modeling of control dependencies.

2) Modeling of Cluster Node Partitioning and Operation
Binding: From the model point of view, cluster node par-
titioning and operation binding finds the definition of the
function Mappedto that optimizes the design performance.
Obviously, for each node . The numerical
values of the resource-dependent attributes of a node become
well defined after partitioning and binding. In our case, the
execution time of node changes for each new resource
type, and its numerical value is updated in PMs.

3) Modeling of Scheduling: For a given HDCG and a node
partitioning/binding to hardware resources, scheduling decides
the node execution order on the shared resources. Static nonpre-
emptive scheduling was used in our approach. Depending on the
scheduling decisions, different execution sequences and timing
attributes (such as start time and end time) result for the nodes.
In the presence of data dependencies only, a certain execution
order is modeled by introducing in the PM model a dashed arc
from the addition node for the end time of the node to be ex-
ecuted first to the max node for the start time of the node to
be executed second. For example, in Fig. 7, Node 2 is executed
before Node 1 on the same resource. Accordingly, the PM is
updated by introducing a dashed arc that forces Node 1 to start
only after Node 2 ends. This arc pertains to the variable part. Dif-
ferent scheduling decisions can be easily captured by changing
the orientation of dashed arcs. Scheduling in the presence of
control dependencies is described in [11].

4) Modeling of Communication Speed Flexibility: The ex-
ecution time of CCNs cannot be accurately estimated at the
system level. This is because the bus speed depends on the bus
length, and thus, on the placement of IP cores, the bus architec-
ture, and bus routing. This information is not available during
task partitioning and scheduling.

Definition: For each data link, the communication speed flex-
ibility indicates the amount of delay that can be tolerated on that
link without violating the required system latency.

To address the unknown communication speed, the codesign
methodology first identifies feasible CSF requirements for each

530 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

Fig. 8. PM modeling of communication speed flexibility.

data link by using a system-level modeling of the bus archi-
tecture. CSF requirements are feasible if the bus speed can be
achieved in the presence of RLC parasitic. Then, the found CSF
values become constraints for the bus architecture synthesis step
discussed in Section V.

Lemma: Let and be the CG edges for the data
communications between cores and and cores and , re-
spectively. In the corresponding FT, let be the level of the
first common parent of cores and , and the level of the first
common parent of cores and . If , then the speed of the
bus for communication the speed of the bus for com-
munication .

Proof: Considering the construction rules for the binary
FT, it results that cores and are placed closer to each other
than cores and . Thus, the bus speed will be higher for link

than for link .
In the final SoC layout, it is very likely that cores that are

close to each other will use faster buses than cores placed far
apart. This observation is summarized by the above lemma. To
find feasible delay constraints, a naive solution would assign
random values to CSFs, and then check if these values meet
the constraints imposed by FT. In reality, this solution does not
work, as most of the CSF values will violate the constraints.
Instead, PMs for CSF were built to explicitly incorporate all
FT constraints. Fig. 8 shows the corresponding algorithm. The
algorithm traverses bottom-up the floorplan tree, and for each
internal FT node it generates a pair of linked max and addition
nodes. The output of the max node is input to the addition node.
The output of the addition node represents the CSF constraint
for the communication link between cores and , such that
the internal node is the first parent of both cores in the FT. The
CSF constraints for all cores connected through a lower level
link are inputs to the newly created max node. This models all
requirements expressed by the above lemma.

Fig. 8 shows an example for the PM expressing the constraints
between CSF values. CSF values for nodes CSF(1,4), CSF(3,5),
and CSF(2,6) (which are all on the first level of the FT) are in-
puts to the PM. According to the floorplanning, the speed for
communications (1,5) and (1,3) will be slower than the slowest
of the communications (1,4) and (3,5). The max nodes and the
addition nodes in the PM formulate these constraints. Values

Fig. 9. Communication speed flexibility.

Fig. 10. Hardware–software codesign methodology.

and express the time amount by which the two communica-
tions are slower. Similarly, communication (5,6) will be slower
than communications (2,6) and (3,5). Finally, communication
(1,2) will be slower than communications (1,5) and (1,3).

For each CCN , a max node and two addition nodes are in-
troduced into the PM for latency. The max node describes the
starting time of data communication. The first addition node has
the max node output and variable as inputs. The output
of the first addition node is input to the second addition node,
which has variable as second input. The first addition
node models the minimum communication time, which depends
on the amount of communicated data, as well as the maximum
speed of a given fabrication technology. This value is a lower
bound for the CCN execution time. The second addition node
expresses the extra bus delay due to floorplanning constraints.
Its output is the end time of communication. Variable de-
pends on the CSF value of the communication link used for CCN

and the amount of data. Fig. 9 shows an example. CNs 1 and
3 are mapped to different cores, and CCN 2 is their data com-
munication. Fig. 9(b) presents the PM for latency, including the
two components of the communication time.

IV. CODESIGN METHODOLOGY

Fig. 10 presents the proposed hardware/software codesign
methodology. Inputs are the HDCG of an application, the max-
imum system latency, the overall silicon area of the SoC, and the
set of available cores, including the number and types of general
purpose processors, functional units, etc. The goal is to partition
the HDCG nodes to cores, to decide the scheduling of nodes, to
synthesize the bus architecture, and to map and schedule data

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 531

communications on buses. The overall system latency must be
minimized. As a byproduct of bus architecture synthesis, the
core floorplanning is found, such that the total area constraint
is met.

The codesign methodology includes three consecutive steps.
The first step partitions cluster nodes to processor cores, binds
operation nodes to functional unit cores, schedules cluster
nodes, communication cluster nodes, and operation nodes, and
finds the speed requirements for communication cluster nodes.
The second step decides the IP core floorplanning, synthesizes
the bus architecture, routes the buses, and characterizes the
speed achievable on each bus. Finally, the third step resched-
ules cluster nodes, communication cluster nodes, and operation
nodes while keeping the partitioning and the bus architecture
unchanged.

Step 1) Partitioning and Scheduling

First, PMs are generated for an HDCG using the rules pre-
sented in Section III. Next, a simulated annealing (SA) [25]
based exploration loop conducts simultaneous partitioning
and scheduling. For each CN (ON) , attributes
(the hardware resource that executes the node), (the exe-
cution time on that resource), and (the start time) are the
unknowns for codesign. Cluster node partitioning to processors
and operation binding to FUs are modeled by the unknowns

and . The scheduling of cluster nodes, com-
munication cluster nodes, and operation nodes is described by
the unknowns . Possible numerical values for the unknowns

and are searched during exploration.
SA iteratively selects a new point from the neighborhood of

the current solution. The neighborhood was defined as the set
of points that differ from 1) the current solution by the execu-
tion order of one pair of nodes that share a hardware resource or
2) the resource binding of one node. PMs, FTs, and CGs are
updated for each newly selected solution. For each codesign
solution, the system latency and CSF are calculated by evalu-
ating their PMs with all node attributes and instanti-
ated to their numerical values. Starting solutions were obtained
by uniformly distributing nodes to resources, and then sched-
uling nodes using list-scheduling with critical path as the pri-
ority function [15]. Partitioning, binding, and scheduling steps
were executed with different probabilities. The reason is that
multiple valid schedules are possible for each partitioning and
binding decision. A small probability was used to select a
partitioning step that moves a cluster node from a processor
core to another processor core or to hardware. The probability

binds an operation node to another FU core. The
reason for being greater than is that multiple hardware de-
signs are possible for each partitioning of clusters to FU cores.
Finally, the probability decides a scheduling action.
This emulates a hierarchical exploration process, in which for
each new partition or binding there are
analyzed schedules.

The cost function for SA is

Cost Latency buses

unnecessary connectivity

The cost function to be minimized models the system latency
and the feasibility of the bus architecture constraints. To max-
imize feasibility, CSF requirements for each link need to be
maximized. Large CSF values relax the constraints for bus
architecture synthesis, as slower buses would be acceptable.
Section III-B-IV explains that CSF values are maximized if
their corresponding values are also maximized. To en-
courage equal distribution of the tolerable slack time to all
links, the product of values was used in the cost function
instead of their sum. Using the sum could result in having some
very relaxed values, but very tight values for others. Such
a bus architecture would be still difficult to implement. The
last two terms in the cost function further express the quality
of a bus architecture, as the number of buses and the amount
of unnecessary core connections. The number of buses was
estimated depending on the likelihood of different communi-
cation links to share the same bus. Links are likely to share a
bus if they involve the same cores, have the same bus speed
requirements, there is little overlapping between communica-
tions, and there is little unnecessary core connectivity. A more
detailed modeling of these attributes is used for bus architecture
synthesis discussed in Section V. , , , and are weights.

Step 2) Bus Architecture Synthesis

CG description is updated based on the information on task
partitioning and scheduling. First, the floorplan for the SoC
cores is found using the hierarchical cluster growth placement
algorithm [26]. Core placement is needed to accurately esti-
mate bus lengths and find the correct rates at which data can
be communicated on buses. The introductory section explained
that DSM effects are important for characterizing the speed
possible on a link. Core placement is communication driven, so
that two heavily communicating cores are placed close to each
other, the aspect ratio of their rectangular bounding box is close
to one, and the total area of the box is minimized. Also from
CG, the set of possible primary bus structures (PBSs) is created
using the bitwise PBS generating algorithm (presented in
Section V-B). PBSs are the building blocks for creating bus ar-
chitectures. Then, a bus architecture synthesis table is produced
to characterize the satisfaction of connectivity requirements by
individual PBS structures. The actual bus architecture synthesis
algorithm (called select-eliminate method) uses SA. Using BA
synthesis tables, the method builds bus architectures, which are
PBS sets that meet all the connectivity requirements in a CG.
Topological attributes are evaluated for each bus architecture,
e.g., number of PBSs in an architecture, bus utilization, com-
munication conflicts, and maximum data loses. The total bus
length is estimated using the actual core placement [30]. The
best found bus architecture is characterized for speed in the
presence of RLC parasitic.

Step 3) Rescheduling

Using SA and PM, the third step binds CCN to buses and
reschedules CN, CCN, and ON for the best found bus archi-
tecture and the CN (ON) partitioning identified at Step 1). This
step may use the fine grain structure of CCN nodes shown in
Fig. 2(c).

532 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

V. BUS ARCHITECTURE SYNTHESIS

A. Modeling for Bus Architecture Synthesis

Definition: Primary bus structure is defined as a potential
cluster of connected cores. A PBS is valid if all its node con-
nectivity exist in the original CG. Otherwise, it is invalid.

PBSs are the building blocks for bus architecture synthesis.
Fig. 3(c) and (d) shows eight PBSs for the CG in Fig. 3(a). PBSs
in Fig. 3(c) are valid. PBSs are characterized by the following
physical and topological properties.

1) PBS utilization percentage: Utilization is defined as the
communication spread in a structure. For example, a PBS
corresponds to two links in the CG, i.e., and . This
PBS can also contain , the connection between core
2 and core 3. There might, however, be no communica-
tion between these cores. Therefore the PBS under-uses
its structure. We consider the unused element as a re-
dundant link of the PBS. The PBS utilization percentage

was defined as , where
is the number of links in a PBS, and is the number of

associated cores in a PBS. The maximum PBS utilization
occurs when all associated cores communicate between
each other, and the PBS corresponds to a clique in the CG.

2) Communication conflict: A PBS is implemented as a
shared bus in the system architecture. Performance of
a bus architecture can be evaluated by its contention.
For a static time scheduling of tasks, it is important to
evaluate if there is a communication conflict in a PBS.
Communication conflict of a PBS is the amount
of time overlaps between communications mapped to the
same link.

3) PBS bus length: PBS bus length is a vital attribute for eval-
uating the bus speed in the presence deep submicron ef-
fects. Longer buses require more silicon area and addi-
tional circuitry like bus drivers [4], [29]. Also, the larger
cross-coupling and parasitic capacitances of longer buses
increase interconnect latency [29]. Larger power dissipa-
tion for interconnect and drivers is caused by longer buses.
It is, however, difficult to accurately estimate the PBS bus
length without contemplating the SoC layout. As we ex-
plained in [30], hierarchical cluster growth placement is
used for placing IP cores and estimating PBS bus lengths.

Identifying the set of valid PBS has an exponential com-
plexity, if a brute-force algorithm is applied. The upper bound
of the total number of PBS is , where and rep-
resent the number of links in a CG and the maximum possible
number of PBSs, respectively. We suggest a more efficient, bit-
wise algorithm to generate the set of valid PBSs. The algorithm
is presented in Fig. 11. First, using the bitwise decoder algo-
rithm, each link label is translated into binary and stored as a
set of basis elements (a basis element is a link in the CG). Then,
in a loop, the bitwise PBS generating algorithm performs a bit-
wise OR operation on the basis elements to generate new PBS
structures. A produced PBS is valid, if and only if all its basis
elements are connected. Otherwise, the PBS includes redundant
links. If the PBS is valid, the PBS storage is checked to avoid
duplications of the same PBS.

Example: The core graph in Fig. 3(a) has four cores.
Binary numbers are used to represent links , i.e.,
is described as “0011.” The number of bits is equal to

Fig. 11. Bitwise decoder and bitwise PBS generating algorithms.

the number of cores (the first core has the rightmost digit,
while the last core has the leftmost digit). In this case, there
are four basis elements in the PBS set, namely, , ,

, and labeled in order. Therefore the basis set is
'' '' '' '' '' '' '' '' , where

the first coordinate is the label of the basis element. Bitwise
PBS generating algorithm starts with index 0 and empty PBS
storage. All basis elements are added as separate PBSs into the
PBS storage. Considering index 3, this is decoded into “0011.”
Therefore, PBS has two basis elements, namely, 1,''0011'' and
2,''0101'' . This PBS is valid because all the basis elements

are connected. PBS is then validated with the PBS storage. The
storage is updated if there is no such PBS.

Definition: Bus architecture synthesis table describes the re-
lationship between a set of PBSs and the connectivity require-
ments in a CG. The number of rows is similar to the number of
basis link elements in the CG. The number of columns is the
dimension of the PBS set. An entry in the table has value “X”
if the PBS corresponding to the column includes the basis link
element specific to the row.

Examples of BA synthesis tables are shown in Fig. 12. The ta-
bles are for the CG in Fig. 3(a). Connectivity requirements are
expressed as the complete set of basis link elements extracted
from a CG. For example, the PBS incorporates the basis
elements and (see column B123). Using the BA syn-
thesis table, a bus architecture can be constructed by selecting at
least one valid PBS (column) for each basis link element (row).
Section V-B explains the synthesis algorithm. Selecting a PBS
to satisfy connectivity requirements depends on the PBS prop-
erties (utilization percentage, communication conflict, and bus
length). For example, if the total utilization percentage has the
highest priority then the largest clique must be selected first. The
two tables in Fig. 12 correspond to the same CG but have their
columns ordered for different performance requirements.

B. Bus Architecture Synthesis Algorithm

Depending on their structure, bus architectures (BAs) can
be either nonredundant or redundant structures, and flat or

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 533

Fig. 12. Bus architecture synthesis tables.

hierarchical. The core connectivity offered by a nonredundant
bus tightly matches the nature of the communication links in
the CG of the application. Also, there is a single connection
through a bus for any CG link. There are no core connections,
which do not correspond to a link. Nonredundant structures
have the benefits of using minimal resources for offering the
needed core connectivity, and require no additional control
circuitry (like for segmented buses), because a single channel
is used to communicate between any two IP cores. The struc-
ture is simple (thus simplifies the bus routing step) but lacks
the concurrency advantage. In contrast, redundant structures
have superior concurrency, and thus decrease communica-
tion conflicts. However, expensive control logic is required
to intelligently drive the shared bus. In flat (nonhierarchical)
bus architectures there are no bus-to-bus communications, as
buses link only cores. Hierarchical bus architectures include
bus-to-bus communications through bridge circuits [1]. Exam-
ples of nonredundant, nonhierarchical (NRNH) and redundant,
nonhierarchical (RNH) bus architectures are given in Fig. 13.
The NRNH bus architecture in Fig. 13(a) uses the shared
bus to serve communication links , , , and the
point-to-point bus for the link . Fig. 13(b) shows an
RNH bus architecture, in which two buses can be used to imple-
ment the link . For the NRNH structure, given a destination
address, bus selection is statically assigned by the core-bus
interface controller. Its routing area is less compared to the
redundant structure. The NRNH structure leaves concurrency
exploration to task rescheduling at the system level (Step 3 in
the methodology in Fig. 10).

We consider only NRNH bus architectures. This is motivated
by our goal of designing resource constrained SoC with min-
imal architectures (thus minimal bus architecture) and software
support. However, we showed in [31] and [32] that the modeling
for bus architecture synthesis (including CG, PBS, and BA syn-
thesis tables) supports the other bus architecture types. We pro-
pose the select-eliminate (SE) algorithm to generate NRNH bus
architectures based on the satisfaction of the core connectivity
requirements. The SE algorithm is represented in Fig. 14. To il-
lustrate the algorithm, we use the simple BA synthesis table in
Fig. 12(a). For example, to satisfy the connectivity, one of

Fig. 13. Nonredundant nonhierarchical and redundant nonhierarchical bus
architectures.

Fig. 14. Select-eliminate algorithm.

the four PBS has to be chosen. Sup-
pose PBS is chosen; the rest of the candidates must be
eliminated, so that there is no redundancy in the final structure.
The horizontal dashed line represents the eliminated struc-
tures. Once a structure is eliminated, it automatically voids the
whole column. Vertical dashed lines , , , show the
eliminated column. PBS satisfies only the and con-
nectivity. Therefore, another horizontal line is created with
vertical lines and . Connectivity is considered next.
There is a candidate left, namely, PBS . Once PBS is
chosen, we have only one candidate, PBS , left to satisfy

connectivity. The generated NRNH BA is composed of PBS
, PBS , and PBS . Circled structures in Fig. 14 show

the final BA.
The size of a synthesis table grows depending on the number

of cores and the number of intercore communications. If the
number of cores and interconnects between them is small, the
SE algorithm contemplates all possible coverings of the CG
links using the available PBS structures. However, if a system
consists of more than 20 cores intensively tied up together, the
exhaustive SE algorithm becomes infeasible. To allow the SE
algorithm to explore the PBS candidate space efficiently, we em-
ployed simulated annealing algorithm to search different candi-
date PBSs while satisfying connectivity requirements. The al-
gorithm randomly chooses a PBS from each requirement row,
and combines it into a bus architecture. The cost function for
simulated annealing is given by the formula

Total cost

where is the total bus length, is the number of buses,
is the total bus utilization PBS ,
is the communication conflict, and is the maximum loss. ,

534 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

TABLE I
SOLUTION QUALITY FOR PROPOSED CODESIGN ALGORITHMS

, , , are weight factors. Maximum loss reflects the
maximum data loss in a BA, if there is a conflict in a particular
PBS. The first three terms describe the complexity of the bus
structure, and the last two terms express the timing conflicts
between communications sharing the same bus. Term should
be as close as possible to one; hence, its negative value was
used in the cost function. The objective is to minimize this cost
function.

The absence of buffering for data communications would
cause data loss, if several cores are accessing a bus at the same
time. As this is undesirable, the cost function for bus archi-
tecture synthesis will minimize any bus conflict and potential
loss. In addition, Step 3 of the codesign methodology in Fig. 10
(rescheduling for the selected bus architecture) performs any
necessary communication rescheduling, so that all bus conflicts
are solved and no data loss occurs.

VI. EXPERIMENTAL RESULTS

A set of experiments was defined to study the effectiveness
of the proposed hardware/software codesign algorithms.

• Experiment 1 studied the quality of solutions generated
using PMs and SA as compared to existing heuristic al-
gorithms, like list scheduling. It also examined combined
task partitioning and scheduling.

• Experiment 2 observed the capability of the algorithms to
scale for large task graphs. It also studied the impact of
task granularity on synthesis results.

• Experiment 3 presents results for automatically synthe-
sizing bus architectures.

Experiments were run on a SUN Sparc 80 workstation.

Experiment 1: Quality of Solutions

The first experiment studied the latency of implementations
produced by PM and SA for applications with data and reduced
amount of control dependencies. SA cost function did not use
the terms regarding the feasibility of the bus architecture con-
straints. Columns 2 and 3 of Table I present the characteristics
of the used task graphs: the number of tasks and the number
of conditional dependencies of each graph. Examples Parallel,
Tree, and Fork-join describe popular graph structures, such as
parallel threads, tree, or sequence of tree and inverted tree. Task
Laplace calculates the Laplace transform using a tree structure.
Example Graph 1 has a mixed tree and parallel structure [14].
Examples Graph 2 and Graph 3 are the motivational examples
in [10]. SA was run with a conservative set of parameters, like

high initial temperature, slow cooling schedule, and large tem-
perature length. This lengthened the execution time of the algo-
rithm but simplified the tuning of SA parameters for different
applications. This was reasonable considering that achieving a
high convergence speed for SA was a secondary goal in our
experiments.

The quality of solutions produced using SA and PM was ini-
tially related to that of list scheduling. Results were compared
with solutions obtained by the method suggested in [14] and
[10], one of the few scheduling approaches for graphs with data
and control dependencies. Column 4 indicates the schedule
latencies computed with list scheduling, and Column 6 presents
the schedule latencies found with the proposed exploration
technique. Column 8 shows the relative improvement over
list scheduling. PM and SA offered results that are superior
to list scheduling. Improvements can be as high as 20% (for
Graph 3). This example was indicated as a typical situation
for which list scheduling offers poor results [10]. The reason
is that list scheduling allocates task priorities for situations
that never occur. This is due to the mutual exclusiveness of
certain condition values and the controlled tasks. SA-based
scheduling does not face this disadvantage. For Graph 1, the
proposed method offered a slightly better solution, because it
left a certain hardware resource idle, even though there were
tasks ready for execution on that resource. Then, a higher
priority task was scheduled in the “near” future on that resource
without having to wait for the smaller priority task to end. This
scheduling strategy can not be achieved in nonpreemptive list
scheduling, where tasks are greedily scheduled. As shown in
columns 5 and 7, list scheduling is significantly faster than
SA and PM based scheduling. This suggests that the proposed
method is well suited for synthesis, but less applicable for fast
performance estimation.

The next experiment analyzed the effectiveness of combined
task partitioning and scheduling using SA and PM. Obtained
results were compared to the synthesis scenario in which parti-
tioning was based on SA guided by scheduling using list sched-
uling with critical path as priority function. Columns 9–11 in
Table I indicate the resulting system latency, the SA iteration
of the best solution, and the corresponding execution time for
partitioning guided by list scheduling. Columns 12–14 present
the same elements for combined partitioning and scheduling
using SA and PM. The combined approach is capable of pro-
ducing somewhat better results than SA and list scheduling.
For the cases in which the two approaches generated solutions
with same latency, the combined partitioning and scheduling ap-
proach showed faster convergence, and thus shorter execution

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 535

Fig. 15. HDCG for face detection system and JPEG algorithm.

time. The proposed SA and PM based codesign method has a
reasonably high computational complexity. Execution time was
less than one hour for most of the cases.

Experiment 2: Algorithm Scaling

This set of experiments observed the capability of the code-
sign algorithms to scale for large task graphs. It also considered
the relationship between task granularity and system latency of
the implementation. Two examples were used: Face Detection
System [33] for wireless sensor networks and JPEG algorithm.

Fig. 15(a) shows the task graph for face detection system. To
obtain graphs of different sizes, we specified the system at dif-
ferent levels of granularity. The coarse description included only
17 tasks. Then, tasks 7–16, which include many more operations
than the rest of the tasks, were decomposed into smaller tasks,
as shown in Fig. 15(a). Smaller task granularities corresponded
to situations in which the number of parallel threads (for each
of the tasks 7–16) became higher. As granularity went down, a
higher number of resources was considered for each example.
The assumption was that more simpler hardware blocks can be
considered while keeping the total system cost constant. We also
assumed that each hardware resource has a single thread of con-
trol, thus it cannot execute several tasks simultaneously.

Table II presents the obtained results. The algorithm has a
fairly fast convergence for task graphs below 100 tasks. For
larger graphs, algorithm convergence is much slower, thus ex-
ecution times correspondingly increased. Hence, the proposed

TABLE II
EXPERIMENTAL RESULTS FOR FACE DETECTION SYSTEM

TABLE III
EXPERIMENTAL RESULTS FOR JPEG ALGORITHM

codesign algorithms should not be used for performance esti-
mation, such as when possible architectures are analyzed. In-
stead, the algorithms are meant to be used for generating an im-
plementation for a given architecture case in which execution
time is less important than the quality of the found solutions.
Regarding the importance of task granularity, it was noted that
smaller granularities help in finding solutions with shorter la-
tency. This is because higher concurrency can be achieved than
for graphs expressed at coarser levels. For fine granularities (like
Example 5), the exploration algorithm found solutions close to
those obtained by greedy heuristics, like list scheduling. This is
because the impact of individual partitioning or scheduling de-
cisions became much less than for coarse graphs.

Fig. 15(b) presents the task graph for the JPEG algorithm.
The task graph included 17 tasks. The RTL structure of tasks 3,
8, and 13 was shown in the right part of the figure. These tasks
represent the IDCT module of JPEG. Six experiments were con-
ducted. Each experiment employed a different number of gen-
eral purpose processors (GPPs) for software, and a different
number of modules [adders (A) and multipliers (M)] for hard-
ware. Column 2 in Table III shows the number of hardware re-
sources for each example. Columns 3, 4, and 5 present the laten-
cies offered by codesign using coarse (system) and fine (system

RTL) descriptions, and the corresponding latency improve-
ments. Note that latency improvement can be as high as 27%
(Line 6 in the table), if high concurrency can be secured for the
system. For this case, operation concurrency for different hard-
ware tasks resulted in significant latency reductions. In one case
(Line 4) there was no improvement. The reason is that only one
adder and one multiplier were used for hardware; hence no con-
currency improvement resulted by using descriptions of finer
granularity.

Experiment 3: Bus Architecture Synthesis

The first example presents bus architecture (BA) synthesis re-
sults for a network processor [7]. The processor receives Internet
packets, reroutes them, and sends them out. Fig. 16 shows the
core graph for the network processor. Node 1 corresponds to
core for the Power PC, on-chip SRAM, and SRAM controller.
Node 2 is the DDR-SRAM controller. Node 3 is the PCI-X core,
node 4 is the MCMAL core, and node 5 describes the DMA

536 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

Fig. 16. Core graph for the network processor.

TABLE IV
RESULTS FOR BUS ARCHITECTURE SYNTHESIS FOR THE NETWORK PROCESSOR

core. Nodes 6–9 represent EMAC cores. Nodes 10 and 11 are
the high-level data link controller (HDLC) core. Node 12 is the
inter-IC , node 13 describes the universal asynchronous
receiver/transmitter (UART) core, node 14 the general purpose
input/output (GPIO) core, and node 15 is the external bus con-
troller core. Edges express the connectivity requirements for
cores. Each edge is labeled with the corresponding communi-
cation load. Depending on bandwidth requirements, nodes are
grouped into the high bandwidth partition, low bandwidth par-
tition, and nodes with mixed bandwidth requirements.

Table IV summarizes the bus architecture synthesis results.
Columns 2–5 present the weight factors for bus length, number
of buses in the architecture, communication conflicts, and
bus redundancies. Different design goals were modeled using
the four weight factors. Column 6 shows the resulting bus
length. The number of buses in an architecture is indicated in
Column 7. Column 8 presents the resulting redundancy. The
amount of communication conflicts for a bus architecture is
given in Column 9. Finally, the maximum data loss is shown in
Column 10.

The first three rows in Table IV correspond to the design
scenario in which the bus complexity is minimized, while
timing is less important. The weight factor for number of
segments has high values. Weights for communication conflicts
and redundancies are low. The weight for bus length was varied
from small to large values. Bus complexity minimization fa-
vored shared buses and discouraged the usage of point-to-point
communications. Simple bus architectures resulted, and the
number of buses in an architecture is low, between seven and
nine. For different weights, however, the bus structure involves
different buses. Only three buses were heavily reused in the
different architectures. Therefore, it is difficult to postulate that
a unique bus will efficiently solve the communication needs for
different cases. Complex buses connecting many cores were
rarely reused. It is mostly point-to-point links that were reused.
The total bus length was high, meaning that individual buses
were long. This is reasonable as timing minimization was not a
primary concern. If the bus length is important (is high) then
the method is able to produce architectures with a small total
bus length (see row 3). The average communication conflict was

Fig. 17. Synthesized bus architecture for the network processor.

high, around 0.24. Thus, the low communication concurrency
resulted in poor timing. Redundancies were also high, meaning
that the bus architectures offered core connectivity that was not
required. Thus, to obtain simple bus structures with a small
total length, all weight factors , , and must have large
values.

Rows 4–6 correspond to the second design scenario, in which
communication overlaps must be avoided, while the other fac-
tors are less important. Also, this scenario considers that the
required bus speed is low; thus minimizing bus length is sec-
ondary. Note that there are no time conflicts and no data losses
for the resulting BA. Bus architectures are more complex and in-
clude more point-to-point links. Overall bus lengths are larger,
which indicates that the individual buses will be slower. Fig. 17
shows the synthesized bus topology for the design scenario in
which bus length and complexity are very important

, and communication overlaps
are secondary.

The second example consisted of automatically producing
optimized bus architectures for the SoC of the JPEG image
compression encoder. Fig. 15(b) shows the task graph. After
combined hardware/software partitioning, the identified archi-
tecture included three processor cores (a distinct core for each
parallel sequence), an ASIC for the IDCT tasks, and memory
modules for data communication. Each processor has its own
local memory. Processors and ASIC communicate through

THEPAYASUWAN AND DOBOLI: HARDWARE/SOFTWARE CO-DESIGN OF SoCs OPTIMIZED FOR SPEED 537

Fig. 18. Core graph for JPEG.

Fig. 19. Bus architecture for JPEG SoC.

shared memory. To improve the processor-ASIC communica-
tion speed, interleaved memory blocks were used. This resulted
in the core graph shown in Fig. 18. The considered processing
technology was an 0.18- Taiwan Semiconductor Manufac-
turing Company (TSMC). The microprocessor cores were of
about 5 5 mm , memory cores of about 25% of the area of
processor cores, and ASICs about 30% of processor core area.

Fig. 19 shows bus architecture synthesis results for the top
CG in Fig. 18. The synthesis goal was to generate a fast archi-
tecture. Bus architecture complexity was not a major concern,
because the number of IP cores was reasonably high. Thus, the
goal of BA synthesis was to minimize communication conflicts

and minimize the total bus length while
disregarding the number of buses and redundant structures in a
BA . After bus architecture generation, each
of the buses was routed, and the resulting delays are indicated
in the figure. Note that the best BA is not perfectly regular, even
though the CG is regular. Processor P1, and memory modules
M4 and M5, are linked through a shared bus, similar to processor
P2 and memory blocks M6 and M7. This happens because the
placements of these blocks are similar. However, processor P3
and memories M8 and M9 are linked through a different struc-
ture, which improves the speed of the bus for the specific place-
ment of these blocks. This explains that optimized BAs do not
depend only on architectural level elements (like the amount of
exchanged data between cores) but on layout aspects also.

BA synthesis took less than 5 min on a SUN Blade 100 work-
station. This shows that the pruning method of the BA synthesis
algorithm allowed to quickly explore the very large solution
spaces resulting for SoC with many cores.

VII. CONCLUSION

This paper presents a layout conscious approach for hard-
ware/software codesign of systems on chip optimized for
latency, including an original algorithm for bus architecture
synthesis. Compared to similar work, the method addresses
layout-related issues that affect system optimization, such as
the dependency of task communication speed on interconnect
parasitic.

The codesign flow performs three successive steps. 1) Com-
bined partitioning and scheduling uses simulated annealing
guided by performance models. PMs symbolically model the
relationships between system performance (e.g., latency and
communication speed flexibility), system attributes, and design
decisions. 2) IP cores are placed using a hierarchical cluster
growth algorithm followed by synthesis and routing of the bus
architecture. Bus architecture synthesis finds a set of possible
building blocks and assembles them together, while pruning the
low quality solutions through a novel select-eliminate method.
3) Tasks and communications are rescheduled for the best bus
architecture.

The codesign method improves the effectiveness of SoC
system-level design. The bus synthesis algorithm creates cus-
tomized bus architectures in a short time depending on the
data communication needs of the application and the required
performance. Layout information is important in deciding
the bus architecture topology. Experiments showed that it is
impractical to postulate a unique bus architecture as being the
best, as there is little reuse among bus architectures optimized
for different constraints. Experiments also indicated that PMs
are more effective than existing metrics, like task priorities.
Using PMs, system latency was by 20% shorter than for list
scheduling. PMs are able to avoid the modeling limitations
of priority functions. PMs are general, flexible, and can be
easily extended for new design activities. Their validation is
minimal. Combined partitioning and scheduling offers latency
improvement and faster convergence compared to explorative
partitioning guided by list scheduling.

There are several directions which could extend the presented
work. The co-design method could be extended to address new
performance attributes, like power consumption. In [11], we
discussed PMs for instantaneous and average power consump-
tion of tasks. To include power consumption of interconnect,
the concepts of floorplan tree and communication speed flex-
ibility need to be expanded to express interconnect proximity,
so that cross-coupling can also be tackled. Also, the co-design
method could incorporate new design steps, like finding the time
instances at which individual resources can be shut down. This
will improve the energy consumption of the system. Other activ-
ities, such as functional pipelining or optimization across loops,
can be also tackled using PMs. Finally, experiments showed that
SA is fairly fast for task graphs with up to 40 tasks. A parallel
implementation of SA would allow handling of larger graphs.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the
reviewers for their very valuable comments and suggestions.

538 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005

REFERENCES

[1] IBM CoreConnect bus architecture white paper. [Online]. Available:
//http:www-3.ibm.com/chips/products/coreconnect/index.html

[2] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli,
“Scheduling for embedded real-time systems,” IEEE Design Test
Comput., vol. 15, no. 1, pp. 71–82, Jan.–Mar. 1998.

[3] S. Battacharyya, “Hardware/software co-synthesis for DSP systems,” in
Programmable Digital Signal Processors: Architecture, Programming,
and Application, Y. Hu, Ed. New York: Marcel Dekker, 2002, pp.
333–378.

[4] T. R. Bednar, P. H. Buffet, R. J. Darden, S. W. Gould, and P. S. Zu-
chowski, “Issues and strategies for the physical design of system-on-chip
ASICs,” IBM J. Res. Develop., vol. 46, no. 6, pp. 661–673, Nov. 2002.

[5] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using evolu-
tionary algorithms,” J. Des. Automation Embedded Syst., vol. 3, no. 1,
pp. 23–58, 1998.

[6] B. Dave, G. Lakshminarayana, and N. Jha, “COSYN: Hardware-soft-
ware co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 7, no.
1, pp. 92–104, 1999.

[7] J. Darringer, R. Bergamaschi, S. Battacharyya, D. Brand, A. Herkers-
dorf, J. Morell, I. Nair, P. Sagmeister, and Y. Shin, “Early analysis tools
for system-on-a-chip design,” IBM J. Res. Develop., vol. 46, no. 6, pp.
691–707, 2002.

[8] J. M. Daveau, G. F. Marchioro, T. B. Ismail, and A. A. Jerraya, “Protocol
selection and interface generation for HW-SW codesign,” IEEE Trans.
Very Large Scale (VLSI) Syst., vol. 5, no. 3, pp. 136–144, Mar. 1997.

[9] R. Dick and N. Jha, “MOGAC: A multiobjective genetic algorithm for
the co-synthesis of hardware-software embedded systems,” in Proc. Int.
Conf. Computer-Aided Design, 1997, pp. 522–529.

[10] A. Doboli and P. Eles, “Scheduling under control dependencies for het-
erogeneous architectures,” in Proc. Int. Conf. Computer-Aided Design,
1998, pp. 602–608.

[11] A. Doboli, “Integrated hardware/software co-design and high-level syn-
thesis under time, area and energy consumption constraints,” in Proc.
Design, Automation and Test Eur. Conf., 2001, pp. 612–619.

[12] M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, “Latency-
guided on-chip bus network design,” in Proc. Int. Conf. Computer-Aided
Design, 2000, pp. 420–423.

[13] R. Ernst, “Codesign of embedded systems: Status and trends,” IEEE Des.
Test Comput., vol. 13, no. 2, pp. 45–54, Apr.–Jun. 1998.

[14] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with bus access op-
timization for distributed embedded systems,” IEEE Trans. Very Large
Scale (VLSI) Syst., vol. 8, no. 10, pp. 472–491, Oct. 2000.

[15] D. Gajski and F. Vahid, “Specification and design of embedded hard-
ware/software systems,” IEEE Des. Test Comput., pp. 53–67, Spring
1995.

[16] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” ACM Trans. Design Automation Electron. Syst., vol. 4,
no. 1, pp. 1–11, Jan. 1999.

[17] T. Givargis and F. Vahid, “Platune: A tuning framework for sys-
tems-on-a-chip platforms,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 21, no. 11, pp. 1–11, Nov. 2002.

[18] R. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded
Systems. Norwell, MA: Kluwer, 1995.

[19] J. Henkel, “A low power hardware/software partitioning approach for
core-based embedded systems,” in Proc. Design Automation Conf.,
1999, pp. 122–127.

[20] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point
communication synthesis using floorplanning information,” in Proc.
Int. Conf. VLSI Design, 2002, pp. 573–579.

[21] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient exploration of the
SoC communication architecture design space,” in Proc. Int. Conf. Com-
puter-Aided Design, 2000, pp. 424–430.

[22] J. A. Maestro, D. Mozos, and H. Mecha, “A macroscopic time and cost
estimation model allowing task parallelism and hardware sharing for the
codesign partitioning process,” in Proc. Design, Automation and Test
Eur. Conf., 1998, pp. 218–225.

[23] R. Ortega and G. Boriello, “Communication synthesis for distributed
embedded systems,” in Proc. Int. Conf. Computer-Aided Design, 1998,
pp. 437–444.

[24] S. Prakash and A. Parker, “SOS: Synthesis of application-specific het-
erogeneous multiprocessor systems,” J. Parallel Distrib. Comput., vol.
16, pp. 338–351, 1992.

[25] C. Reeves et al., Modern Heuristic Techniques for Combinatorial Prob-
lems. New York: Wiley, 1993.

[26] N. Sherwani, Algorithms for VLSI Physical Design Automation. Nor-
well, MA: Kluwer, 1999.

[27] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Sched-
uling hardware/software systems using symbolic techniques,” in Proc.
Int. Workshop Hardware/Software Co-Design, 1999, pp. 173–177.

[28] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli, “Addressing the system-on-a-chip Woes
through communication-based design,” in Proc. Design Automation
Conf., 2001, pp. 667–672.

[29] D. Sylvester and K. Keutzer, “A global wiring paradigm for deep submi-
cron design,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 19, no. 2, pp. 242–252, Feb. 2000.

[30] N. Thepayasuwan, V. Damle, and A. Doboli, “Bus architecture synthesis
for hardware–software co-design of deep submicron systems on chip,”
in Proc. ICCD, 2003, pp. 126–133.

[31] N. Thepayasuwan and A. Doboli, “Layout conscious bus architecture
synthesis for deep submicron systems on chip,” in Proc. Design, Au-
tomation and Test Eur. Conf., 2004, pp. 108–113.

[32] , “OSIRIS: Automated synthesis of flat and hierarchical bus archi-
tectures for deep submicron systems on chip,” in Proc. ISVLSI, 2004,
pp. 264–265.

[33] Y. Weng and A. Doboli, “Smart sensor architecture customized for
image processing applications,” in Proc. 10th IEEE Real-Time and
Embedded Technology and Applications Symp., 2004, pp. 396–403.

[34] T. Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distributed
Embedded Systems. Norwell, MA: Kluwer, 1997.

Nattawut Thepayasuwan (M’01) received the
B.Eng. degree from Khon Kaen University, Khon
Kaen, Thailand, in 1993, and the M.S.E.E. degree
from Rochester Institute of Technology, Rochester,
NY, in 1996. He is currently pursuing the Ph.D.
degree in the Department of Electrical and Computer
Engineering, State University of New York (SUNY)
at Stony Brook.

His research interests are in the area of hardware/
software codesign and system-level synthesis.

Mr. Thepayasuwan is a member of Eta Kappa Nu.

Alex Doboli (S’99–M’01) received the M.S. and
Ph.D. degrees in computer science from Politehnica
University, Timisoara, Romania, in 1990 and 1997,
respectively, and the Ph.D. degree in computer
engineering from the University of Cincinnati,
Cincinnati, OH, in 2000.

He is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
State University of New York (SUNY) at Stony
Brook. His research is in VLSI system design
automation, with a special interest in mixed-signal

CAD and hardware/software codesign.
Dr. Doboli is a member of Sigma Xi.

	toc
	Layout Conscious Approach and Bus Architecture Synthesis for Har
	Nattawut Thepayasuwan, Member, IEEE, and Alex Doboli, Member, IE
	I. I NTRODUCTION

	Fig.€1. Impact of layout on data communication speed and system
	II. R ELATED W ORK
	III. S YSTEM R EPRESENTATION FOR C O DESIGN
	A. Embedded System Modeling
	1) Hierarchical Data and Control Dependency Graph (HDCG):
	Definition: A hierarchical data and control dependency graph is

	Fig.€2. Hierarchical data and control dependency graph.
	Definition: System latency is the end time of the HDCG end node.

	Fig.€3. Core graph and PBS examples.
	2) Resources:
	Definition: Resources is the set of IP cores available for the S
	Definition: A core graph (CG) is the graph (V,E), where $v_{i}\i
	3) Floorplan:
	Definition: Floorplan trees (FTs) are binary tree structures hav

	Fig.€4. Floorplan tree.
	4) Performance Model (PM): Performance models describe symbolica
	Definition: Performance model (PM) is a graph that contains foll

	Fig.€5. Performance model for latency.
	B. Modeling of Codesign Activities
	1) Modeling of Data and Control Dependencies: Fig.€6 shows the g

	Fig.€6. Modeling of data dependencies.
	Fig.€7. Modeling of scheduling.
	2) Modeling of Cluster Node Partitioning and Operation Binding:
	3) Modeling of Scheduling: For a given HDCG and a node partition
	4) Modeling of Communication Speed Flexibility: The execution ti
	Definition: For each data link, the communication speed flexibil

	Fig.€8. PM modeling of communication speed flexibility.
	Lemma: Let (i,j) and (m,n) be the CG edges for the data comm
	Proof: Considering the construction rules for the binary FT, it

	Fig.€9. Communication speed flexibility.
	Fig.€10. Hardware software codesign methodology.
	IV. C O DESIGN M ETHODOLOGY
	Step 1) Partitioning and Scheduling
	Step 2) Bus Architecture Synthesis
	Step 3) Rescheduling

	V. B US A RCHITECTURE S YNTHESIS
	A. Modeling for Bus Architecture Synthesis
	Definition: Primary bus structure is defined as a potential clus
	Example: The core graph in Fig.€3(a) has four cores. Binary numb

	Fig.€11. Bitwise decoder and bitwise PBS generating algorithms.
	Definition: Bus architecture synthesis table describes the relat
	B. Bus Architecture Synthesis Algorithm

	Fig.€12. Bus architecture synthesis tables.
	Fig.€13. Nonredundant nonhierarchical and redundant nonhierarchi
	Fig.€14. Select-eliminate algorithm.
	TABLE I S OLUTION Q UALITY FOR P ROPOSED C O DESIGN A LGORITHMS
	VI. E XPERIMENTAL R ESULTS
	Experiment 1: Quality of Solutions
	Fig.€15. HDCG for face detection system and JPEG algorithm.

	Experiment 2: Algorithm Scaling

	TABLE II E XPERIMENTAL R ESULTS FOR F ACE D ETECTION S YSTEM
	TABLE III E XPERIMENTAL R ESULTS FOR JPEG A LGORITHM
	Experiment 3: Bus Architecture Synthesis

	Fig.€16. Core graph for the network processor.
	TABLE IV R ESULTS FOR B US A RCHITECTURE S YNTHESIS FOR THE N ET
	Fig.€17. Synthesized bus architecture for the network processor.
	Fig.€18. Core graph for JPEG.
	Fig.€19. Bus architecture for JPEG SoC.
	VII. C ONCLUSION

	IBM CoreConnect bus architecture white paper . [Online] . Availa
	F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentell
	S. Battacharyya, Hardware/software co-synthesis for DSP systems,
	T. R. Bednar, P. H. Buffet, R. J. Darden, S. W. Gould, and P. S.
	T. Blickle, J. Teich, and L. Thiele, System-level synthesis usin
	B. Dave, G. Lakshminarayana, and N. Jha, COSYN: Hardware-softwar
	J. Darringer, R. Bergamaschi, S. Battacharyya, D. Brand, A. Herk
	J. M. Daveau, G. F. Marchioro, T. B. Ismail, and A. A. Jerraya,
	R. Dick and N. Jha, MOGAC: A multiobjective genetic algorithm fo
	A. Doboli and P. Eles, Scheduling under control dependencies for
	A. Doboli, Integrated hardware/software co-design and high-level
	M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, Late
	R. Ernst, Codesign of embedded systems: Status and trends, IEEE
	P. Eles, A. Doboli, P. Pop, and Z. Peng, Scheduling with bus acc
	D. Gajski and F. Vahid, Specification and design of embedded har
	M. Gasteier and M. Glesner, Bus-based communication synthesis on
	T. Givargis and F. Vahid, Platune: A tuning framework for system
	R. Gupta, Co-Synthesis of Hardware and Software for Digital Embe
	J. Henkel, A low power hardware/software partitioning approach f
	J. Hu, Y. Deng, and R. Marculescu, System-level point-to-point c
	K. Lahiri, A. Raghunathan, and S. Dey, Efficient exploration of
	J. A. Maestro, D. Mozos, and H. Mecha, A macroscopic time and co
	R. Ortega and G. Boriello, Communication synthesis for distribut
	S. Prakash and A. Parker, SOS: Synthesis of application-specific
	C. Reeves et al., Modern Heuristic Techniques for Combinatorial
	N. Sherwani, Algorithms for VLSI Physical Design Automation . No
	K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, Sch
	M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey,
	D. Sylvester and K. Keutzer, A global wiring paradigm for deep s
	N. Thepayasuwan, V. Damle, and A. Doboli, Bus architecture synth
	N. Thepayasuwan and A. Doboli, Layout conscious bus architecture
	Y. Weng and A. Doboli, Smart sensor architecture customized for
	T. Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distrib

