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ABSTRACT With the rapid growth of the express industry, intelligent warehouses that employ autonomous

robots for carrying parcels have been widely used to handle the vast express volume. For such warehouses,

the warehouse layout design plays a key role in improving transportation efficiency. However, this work

is still done by human experts, which is expensive and leads to suboptimal results. In this paper, we aim

to automate the warehouse layout designing process. We propose a two-layer evolutionary algorithm to

efficiently explore the warehouse layout space, where an auxiliary objective fitness approximation model is

introduced to predict the outcome of the designed warehouse layout and a two-layer population structure

is proposed to incorporate the approximation model into the ordinary evolution framework. Empirical

experiments show that our method can efficiently design effective warehouse layouts that outperform both

heuristic-designed and vanilla evolution-designed warehouse layouts.

INDEX TERMS Evolutionary algorithm, intelligent warehouse, robots.

I. INTRODUCTION

The global express delivery industry has been a trillion mar-

ket, serving people’s daily life around the world. In 2017,

the industry revenue is 248 billion USD [1] and in China,

particularly, the annual gross express volume has surpassed

30 billion USD since 2016 [2]. During the recent two years,

a new type of shipping warehouses, with intelligent robots

sorting thousands of parcels per hour, emerged [3]. As shown

in Figure 1a and 1b, autonomous robots carry parcels across

the warehouse and unload the parcels into the target holes

which connect to the vehicles heading to the target desti-

nations. The layout of the warehouse, i.e. the matching of

the holes and the target destinations, is usually designed by

human experts. It can be challenging and also likely to be

suboptimal, especially when the number of holes is large as

shown in Figure 1b.Moreover, the demand of suchwarehouse

layout design is not one-off, since the distribution of the

parcel destinations is not fixed and the warehouse layout

design should be adaptive to achieve the best performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

In this paper, we present an evolution-based method for

automatically designing warehouse layouts. To tackle the

efficiency issue arising from the time-consuming evaluation

of each designed warehouse layout, we consider training a

neural network to predict outcomes of layouts without actu-

ally running agents in it, which is known as fitness approx-

imation in the context of evolution [4]. We further propose

a novel two-layer population structure to incorporate the

prediction model into the evolution framework for improv-

ing efficiency, which can be categorized as multiple-deme

parallel genetic algorithms [5]. Particularly, the higher layer

consists of layouts that are actually evaluated and occupies

a small fraction of the whole population while the lower

layer contains layouts whose fitnesses are predicted by the

learned model. Compared to existing methods for combining

fitness approximation with evolution [6], [7], the proposed

two-layer evolutionary algorithm explicitly manages evalu-

ated individuals and predicted individuals separately in two

sub-populations and trains the approximation model online

using the samples evaluated by the original fitness function.

As such, the proposed method incorporates fitness function

approximation into the multiple-deme parallel genetic algo-

rithm naturally. Moreover, within an evaluation of a designed
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FIGURE 1. (a) Real-world robotic warehouse for parcel sorting
(screenshot from [3]). (b) Robotic warehouse environment. The triangles
stand for the sources where parcels emerge. The circles stand for the
robots carrying the parcels. The squares stand for the holes for the agents
to put into the parcels. The squares are colored according to which
destination the parcels coming into will go to. The agents repeatedly take
a parcel with a color (destination) from a source to a hole with the same
color. The objective is to maximize the total number of parcels processed
by the agents in a fixed period.

warehouse layout, we can observe not only the final outcome

but also additional agent trajectories that comprise hidden

information about the causes of the outcome. To take advan-

tage of such additional information to improve the quality

of the prediction model, we construct an auxiliary objective,

i.e. to predict the heatmap of the environment where each

individual value is the total number of visits of a point.

Our experiments for designing warehouse layouts demon-

strate improved efficiency and better performance compared

to both manual design and vanilla evolution-based methods

without fitness approximation. Such a two-layer evolution-

based environment optimization framework is promising to

be applied to various environment design tasks.

II. RELATED WORK

There are many real-world scenarios that can be regarded

as environment design problems, ranging from game-level

design with the desired level of difficulty [8], shopping

space design for impulsing customer purchase and long

stay [9] to traffic signal control for improving transporta-

tion efficiency [10]. In a recent work, [11] formulates these

environment design problems using a reinforcement learning

framework. In this paper, we focus on a new environment

design scenario, i.e. warehouse layout design, emerging from

the rapidly growing express industry.

Traditional warehouse design problems can be categorized

to three levels, strategic level, tactical level, and operational

level [12]. At the strategic level, long-term decisions are

considered, including the size of a warehouse [13] and the

selection of component systems [14]. At the tactical level,

medium-term decisions are made, such as the layout of a

conventional warehouse [15], [16]. At the operational level,

detailed control policies are studied, e.g. batching [17] and

storage policies [18]. The problem discussed in this paper is

about warehouse layout design, which is at the tactical level

traditionally. However, in the era of big data, the layout of

warehouse could be adaptive to the changes of the exter-

nal environment. Specifically, the layout of the warehouse

could be redesigned at intervals according to the changing

destination distribution of the parcels. Thus, this problem is

better to be categorized as an operational level problem.

For solving this problem, we adopt evolutionary algo-

rithms. As getting a guiding signal means evaluating the

designed objective in the target task, which would result

in an unacceptable computational resource requirement for

scenarios where evaluation is expensive. To reduce the num-

ber of expensive evaluations on real data needed before

a satisfying result can be obtained, some works propose

to learn a model to predict the outcome of a designed

objective without actually running on real data [19], [20].

A similar idea has been explored in the field of evo-

lution and is known as fitness approximation [4]. Due

to the inaccuracy of fitness approximation, it is essential

to use the approximation model together with the origi-

nal fitness function [21], [22]. To incorporate the fitness

model into the simulation-based evolutionary algorithms,

individual-based [23] and generation-based [22] methods

are studied. Differently, our approach explicitly manages

two sub-populations whose individuals are evaluated by the

approximationmodel and the original fitness function respec-

tively. Similar approaches are known as multiple-deme par-

allel genetic algorithms [5]. Our work can be classified

as a multiple-deme parallel genetic algorithm with a two-

layer sub-population topology to balance exploitation and

exploration.

III. PROBLEM DEFINITION

In this section, we formulate the environment design problem

and introduce a particular robotic warehouse environment.

We fix the agent policy in the robotic warehouse environment

and focus on the remaining task, assigning destinations to

the holes, which can be viewed as an environment design

problem.

A. ENVIRONMENT DESIGN

In many scenarios, there are n agents taking actions in a

designable environment, such as cars running in a trans-

portation system, consumers shopping in a mall, and so

on. Denote the ith agent’s policy as πi and the environ-

ment is parametrized as Mθ = 〈S,A,Tθ ,Rθ , λ〉, where

S,A,Tθ ,Rθ , λ denote state space, action space, transition

function, reward function and reward discount respectively.

After the agents play in the environment in an episode, a joint

trajectory H = 〈s1, a1, s2, a2, ...〉 is produced and a cumula-

tive rewardGi is given to the i
th agent, where st and at denote

state and joint action respectively. Moreover, the objective of

the environment designer is given as O(H ), whose function

form can be defined specifically, and the designer intends to

design an optimal environment to maximize the expectation

of its objective

θ∗ = argmax
θ

E[O(H )|Mθ ; π1...n]. (1)

Note that the randomness of H is derived from the possible

randomness of πi when selecting actions.
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B. ROBOTIC WAREHOUSE ENVIRONMENT

In this paper, we consider a robotic warehouse environment

abstracted from a real-world express system as shown in Fig-

ure 1a, where there is a warehouse for sorting parcels from

a mixed input stream to separate output streams according to

their respective destinations. The sorting process is done by

the robots carrying parcels from the input positions (sources)

to the appropriate output positions (holes) in the plane ware-

house as Figure 1b illustrates. Note that Figure 1b simpli-

fies the real scenario in Figure 1a into a discrete form. The

acceleration and deceleration of the agents are ignored in the

discrete form. In order to maximize the efficiency of sorting,

we should set the robots’ cooperative pathfinding algorithm

and assign the destinations to the holes. In this task, the agents

share a common reward G and the environment also takes

G as its design objective, i.e. O(H ) = G. We set πφ as a

joint policy model for the agents. As such, the problem is

formulated as

θ∗, φ∗ = argmax
θ,φ

E[G|Mθ , πφ]. (2)

For solving Eq. (2), we should firstly set a sound cooperative

pathfinding algorithm πφ∗ for the robots. After, we focus on

optimizing the environment parameter θ , i.e. optimizing the

layout of the warehouse (the assignment of the destinations

to the holes) via

θ∗ = argmax
θ

E[G|Mθ ; πφ∗ ]. (3)

Note that the demand for such environment layout design

is not one-off. Since the external variables (such as the

destination distribution of the parcels) may be changing,

the best layout of the warehouse is changing accordingly.

Thus, the layout of the warehouse should be redesigned at

intervals, which gives a reason to find an efficient layout

design approach.

C. DETAILED ENVIRONMENT DESCRIPTION

The warehouse is abstracted as a grid containing h×w cells.

Among them, ns cells are sources and nh cells are holes,

whose locations l
1..ns
s , l

1..nh
h are given. There are nr robots

available to carrying parcels from sources to holes. Each cell

is only for one robot to stand.

In each time-step, each robot is able to take a move

to an adjacent cell. When an empty robot moves into a

source, it loads a new parcel whose destination follows a

distribution over nd destinations (cities) with the proportions

p1, p2, . . . , pnd . On the other hand, when a loaded robot

moves into a holewith the destination that is as the same as the

loading parcel’s, it unloads the parcel into that hole. That is

to say, the rates of input and output flows are not restricted in

our setting. Parcels are always sufficient when a robot moves

into a source.

Our objective is to sort as many parcels as possible in

a given time period T . We could achieve this objective by

designing the layout of the warehouse, i.e. assigning the

proper destinations to the holes. Specifically, we should deter-

mine the parameter θ = 〈θ1, θ2, . . . , θnh〉 of the environment

Mθ , where θi ∈ {1..nd } for i = 1..nh. Intuitively, the assign-

ment of the destinations to the holes will affect the robots’

paths and hence the efficiency of the whole warehouse.

The notations defined in this section are listed in Table 1.

TABLE 1. Notations and descriptions.

D. PROBLEM COMPLEXITY

For the problem defined above, the scale of the layout

assignment space is n
nh
d , where nh denotes the number of

the holes and nd denotes the number of the parcel desti-

nations. Since the robot pathfinding algorithm works like

a black box to evaluate each layout assignment, it is hard

to determine a global optimum without exploring the solu-

tion space completely. Thus, this optimization problem is an

exponential time problem. Even for a small setting, such as

nh = 20, nd = 5, the number of the assignments is as large as

about 100 trillion, which is hard to be explored completely.

E. ROBOT PATHFINDING ALGORITHMS

In our problem, the robot pathfinding algorithm is fixed.

As the robots are quite dense in the real-worldwarehouse, jam

prevention is the key point. We considered two cooperative

pathfinding algorithms with jam prevention design. The first

one adopts WHCA* [24] as a planner, which searches the

shortest path from an origin to a destination for each robot

in turn and ensures non-collision. The second algorithm is

a greedy one, which guides the robots by a lookup table

in each position and reduces conflicts by setting one-way

roads in the map as illustrated in Figure 2a. We studied these

two algorithms and the results showed that the greedy one

has a significant advantage on time complexity and a minor

disadvantage on performance. Due to the large simulation

demand for testing environment parameter, we selected the

time-saving greedy algorithm as the agent policy in our

experiments. However, the proposedwarehouse layout design

solution can work with other robot pathfinding algorithms

as well.

IV. SOLUTION

In this section, we first introduce an evolution frame-

work for automatically designing warehouse layout and then

present the auxiliary objective fitness approximation and the

two-layer population structure for improving the efficiency.
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FIGURE 2. (a) An illustration of one-way roads: i) the odd-row cells
allow moving right and forbid moving left, while the even-row cells
allow moving left and forbid moving right; ii) the odd-column cells allow
moving down and forbid moving up, while the even-column cells allow
moving up and forbid moving down. The left-down cell is in Row 1 and
Column 1. (b) A layout sample as an individual in the evolutionary
algorithm. (c) An example of the heatmap.

A. EVOLUTION WITH ROBOT POLICY SIMULATION

Under the evolution framework, we maintain a population

containing n warehouse layout individuals, i.e. assignments

of the destinations to the holes (Figure 2b), and evolve

the population for ng generations. Within each generation,

we perform crossover, mutation, and selection in the order:

• In the crossover phase, we randomly select c pairs

of samples. For each pair of samples, we splice their

holes from two matrices to two lines respectively. Then,

we randomly select a common breakpoint for both

lines and cross the two lines just like chromosomal

crossover. Finally, we generate two square matrices by

reshaping the two lines.

• In the mutation phase, we randomly select m1 sam-

ples generated in the crossover phase. For each sample,

we randomly select m2 holes and randomly permute

their destinations.

• In the selection phase, we evaluate the generated

samples in the crossover and mutation phases by robot

policy simulations, then merge the original and the gen-

erated samples. The best n ones are selected for the next

generation.

B. TWO-LAYER EVOLUTIONARY ALGORITHM WITH

FITNESS APPROXIMATION

In this section, we propose a novel evolutionary algorithm

that trains an auxiliary objective fitness function to evaluate

a large population for providing promising individuals to a

small population evaluated by simulations.

1) AUXILIARY OBJECTIVE FITNESS APPROXIMATION

In practice, the simulation of robots performing in the envi-

ronment is time-consuming. A promising way to reducing

the simulation time is to use an approximation function to

compute fitness:

fG(θ ) = Ĝ ≈ E[G|Mθ ; πφ∗ ], (4)

where fG is the fitness approximation function, θ is a sample

of environment parameter and Ĝ is the predicted fitness of θ ,

whose learning target is the expectation of the reward G.

Moreover, since a simulation generates a trajectory H in

addition to the reward G, we consider utilizing H to help

training fitness function fG. AlthoughG is the exact objective

for fitness function to learn, we may extract additional infor-

mation I (H ) from H that helps training the fitness function,

under the assumption that G and I are correlated. We set

an auxiliary training objective and use a neural network to

capture this:

f (θ ) = 〈fI (fX (θ )), fG(fX (θ ))〉 = 〈Î , Ĝ〉 (5)

≈ 〈E[I (H )|Mθ , πφ∗ ],E[G|Mθ , πφ∗ ]〉,

where f is a neural network consisting of three sub-networks:

fX is the bottom network that captures the common features

and outputs X ; fI and fG are the two separate networks on the

top of X that predict Î and Ĝ respectively.

In the robotic warehouse layout design problem, θ rep-

resents the assignment of the destinations to the holes and

H represents the movements of the robots. Furthermore,

we define I as the heatmap of the movements as Figure 2c

shows. Intuitively, the distribution of busy areas should be

correlated with the efficiency of sorting and the reward. The

process of learning the fitness function in the warehouse

layout problem is illustrated in Figure 3.

FIGURE 3. An illustration of the process of evaluating an assignment
sample θ . First, the latent representation X is learned via shared deep

layers. Then based on X , separated layers are built to predict heatmap Î

and reward Ĝ respectively. Two loss functions are calculated based on the
difference between the prediction and the simulated results.

Since obtaining simulation samples is time-consuming,

we train the fitness model online. Specifically, the fitness

model is trained with the samples simulated along the process

of the evolutionary algorithm. There is no pre-training in our

approach.

2) TWO-LAYER POPULATION

The fitness model provides a less accurate but more speedy

evaluation than the simulation. This property indicates that

the simulation is better to find the local optimum exactly and

the fitnessmodel is better to explore the global space speedily.

For the standard simulation-based evolution, mutation rate

is usually set small enough to ensure convergence within

an acceptable time, thus the search space is relatively local.

Therefore, we consider incorporating the fitness model into

the standard simulation-based evolution as an additional part

of exploring the global space.

Specifically, we maintain two sub-populations. The first

one is of the same size as the population set in the standard

VOLUME 7, 2019 166313
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Algorithm 1 Two-Layer Evolutionary Algorithm With Fit-

ness Approximation (A Literal Expalnation of Figure 4)

Require: noble population N , civilian population C ,

untrained fitness model f , empty simulation sample set

S

1: for each generation do

2: generate N1 from N by crossover and mutation;

3: generate C1 from C by crossover and mutation;

4: rank C ∪ C1 by f to generate top population C2,

middle population C3 and bottom population C4;

5: evaluate N1 and C2 by simulation and add the results

to S;

6: rank N ∪N1 ∪C2 by the simulation score to generate

top population N2 and bottom population N3;

7: generate random population R and discard C4;

8: pass N2 to the next generation as N ;

9: pass N3 ∪ C3 ∪ R to the next generation as C ;

10: update f using S.

11: end for

simulation-based evolution. Also, the individuals in the first

sub-population are evaluated by simulations. The second

sub-population is multiple times larger than the first one

and the samples in it are evaluated by the fitness model.

We view the second sub-population as a candidate population

whose top individuals have a chance of joining the first sub-

population. On the other hand, the bottom individuals in

the first sub-population may be moved to the second sub-

population. We name the first-layer sub-population noble and

the second civilian. Noble population and civilian population

evolve separately while keeping a channel for migration.

In detail, the two-layer population evolves as Figure 4 and

Algorithm 1 show. In general, N and C maintain individuals

evaluated by the simulation and the fitness model respec-

tively. In each generation, migration takes place. Specifically,

C2 from the civilian layer go up to the noble layer and N3

from the noble layer go down to the civilian layer. In addi-

tion, the civilian layer discards the worst population C4 and

absorbs a randomly generated population R.

There are 9 parameters related to the proposed two-layer

evolutionary algorithm. They are noble population number

|N |, civilian population number |C|, crossover rate cN , cC ,

mutation rate mN ,mC , |C2| for the number of civilian

FIGURE 4. The process of the two-layer population evolutionary
algorithm in a single generation. The yellow and grey squares stand for
the populations who have been (or will be) evaluated by simulation and
the fitness model respectively.

individuals migrate to the noble layer, |R| for the number

of the randomly generated individuals, and nu for the num-

ber of model updates in each generation. Other variables

can be determined by these parameters. In each generation,

|N1| + |C2| simulations, nu model updates and |C1| model

predictions are performed. Since the time cost of training

the network and use it to predict is negligible compared

to the simulations (see Table 4), the time complexity of

the two-layer evolutionary algorithm for ng generations is

O(ng(|N1| + |C2|)).

V. EXPERIMENT

We set up a virtual intelligent warehouse environment based

on real-world settings and test our proposed approach com-

paring to the baselines.1

A. EXPERIMENT SETTINGS

Environment: We test our proposed approach in 20 × 20

maps. The positions of the sources and holes are set as

real-world scenarios. The detailed parameters are given

in Table 2. The destination distributions are set according

to long-tail functions to reflect reality. In our experiments,

the reward is defined as the sum of parcel loading times and

unloading times (roughly two times as the number of parcels

processed).

TABLE 2. Environment parameter settings.

Robots: As introduced, we adopt a greedy algorithm as

the cooperative pathfinding algorithm for the robots. Firstly,

we set one-way roads in the map as Figure 2a shows

to avoid opposite-directional conflicts, while right-angled

conflicts are avoided by setting priority. On the one-way

roads, the robots decide moves by a look-up table con-

taining h× w× (ns + nh) records, each of which indicates

the first step towards a particular source or hole from a

particular cell.

Baselines: We test 5 baselines to compare with our pro-

posed two-layer evolutionary algorithm (TLEA). Random:

The holes are assigned with random destinations uniformly.

Heuristic: Destinations select holes in turns according to

their proportions. For example, if 10% parcels are going to

destination A, then A select 10% of the holes. This process

starts from the destination with the most proportion. Each

destination greedily selects each hole that minimizes the sum

of the average distance from the sources to the selected holes.

Simu: The evolutionary algorithm with simulations as intro-

duced in the Solution section. SimuInd: An implementation

of the individual-based evolution control algorithm [23]. This

approach maintains a single large population for evolution

1Our experiment is repeatable and the source code is provided on the
GitHub: shorturl.at/gmBI9.
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FIGURE 5. Environments designed by Random, Heuristic, Simu and TLEA.

whose individuals are evaluated by the fitness model. In each

generation, the best individuals evaluated by the fitnessmodel

are evaluated by the simulation once again. The fitness model

is trained online with the samples produced by the simula-

tions. SimuGen: An implementation of the generation-based

evolution control algorithm [22]. This approach also main-

tains a single large population as SimuInd. The difference is

that SimuGen uses the simulations intensively in a generation

and uses the fitness model in the next several generations.

Hyper-Parameters: To ensure fairness, for Simu, SimuInd,

SimuGen, and TLEA, the number of generations is set as

60 and the number of simulations in each generation is set

as 200. The model update and prediction times are also

fixed as 5000 and 10000 respectively for SimuInd, Simu-

Gen and TLEA. The population of Simu is 100; in each

generation, 200 individuals are generated by crossover; 50

of them are mutated. For SimuInd and SimuGen, the pop-

ulations are 5000; 10000 are generated by crossovers

in each generation; 2500 of them are mutated. For the

TLEA, |N |, |C|, cN , cC ,mN ,mC , |C2|, |R|, nu are set to be

100, 5000, 1, 1, 0.25, 0.25, 50, 2500, 5000 respectively.

Fitness Model: Our network is composed of three

sub-networks fX , fI , fG. The output of fX is used for the input

of fI and fG. fX has two fully connected layers whose output

is a vector that can be reshaped to match the size of the map.

Then, a 2D transposed convolution layer follows.fI has one

transposed convolution layer to generate the heat map. And

fG contains three fully connected layers to predict the reward.

All the layers except the output layers have a ReLU activation

function. The loss functions for the two outputs are set to be

MSE. The first two fully connected layers have 128, 400 units

respectively. The first 2D transposed convolution layer has

16 filters. And the second one has one filter. The three fully

connected layers for reward prediction have 256, 128 and

1 unit respectively.

Hardware: We use two computers with an Intel core

i7-4790k and an Intel core i7-6900k respectively. The one

with 4790k also has an extra Nvidia Titan X GPU.

FIGURE 6. (a) Learning curves averaged over 10 runs. The Y-axis is the
reward received by the best individual in each population. (b) Impact of
the civilian population for a particular run. Initially, the purity of each
individual in the noble population is set to be 1 and each civilian is set to
be 0. During the evolution, each child’s purity is the mean of its parents’
purity.

B. RESULTS

We perform the baselines and TLEA. The results are shown

in Table 3. We find Heuristic is fairly high compared to

Random but is inferior to evolutionary algorithms. Moreover,

TLEA outperforms all the baselines.

TABLE 3. Performance of Random, Heuristic, Simu, SimuInd, SimuGen
and TLEA. The algorithms are repeatedly performed for 10 runs. The
reward samples pass the Shapiro-Wilk test to be normal. T-tests are
performed for TLEA against Simu, SimuInd and SimuGen. The statistical
results show that the superiority of TLEA is significant.

Figure 5 shows the layouts designed by the baselines and

TLEA with the heatmaps. We can see that the tracks of the

robots running in the maps of TLEA are better balanced,

indicating that there are fewer traffic jams.

Figure 6a shows the learning curves. Since SimuInd and

SimuGen mix the individuals evaluated by the simulation

and the fitness model, their current best individuals may

be the over-estimated ones by the inaccurate fitness model,

which may lead to discarding the real best individuals. TLEA

solves this problem by separating the two populations and

ensure that the real best individual is always kept in the noble

population.

In addition, TLEA and Simu are more stable than SimuInd

and SimuGen, because the temporary best individual may

be evaluated by the fitness model in SimuInd and SimuGen,

whichmay be corrected by the simulation in later generations.

The slight fluctuations of Simu and TLEA are caused by the

variance of the simulations, which results in that the best sam-

ples can be over-estimated (which is much slighter than the

fitness model) and would be averaged by extra simulations in

later generations.

C. DISCUSSIONS

TimeCost:The time costs of the tested algorithms are listed

in Table 4. It shows that the time cost proportion of the fitness
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TABLE 4. Time cost comparison. The average time costs for simulation,
model update and model predicting are 2.62s, 2.42ms and 1.06ms
respectively. The number of generations is 60 for all the algorithms.

model is less than 5%. In our experiment, we just ignore the

time difference between Simu and other algorithms.

Effectiveness of Heatmap: We evaluate randomly gener-

ated samples by the simulations and use them to train the

fitness functions with and without heatmaps as auxiliary

objective.We compareMSE and Pearson Correlation of them

in Table 5, which shows that heatmap provides significant

improvement to the fitness function.

TABLE 5. Comparison of fitness functions with and without heatmap.

Simulation Allocation: Since simulations are scarce

resources when running the evolutionary algorithm, the allo-

cation of simulations between the noble layer and the civilian

layer is important. Moreover, it also determines the migra-

tion rate between the two layers. We test different
|N1|

|N1|+|C2|
,

the ratio of simulations allocated to the noble layer, and find

that 0.75 is a proper setting (see Table 6), which means three

fourths simulations are allocated to ensure the accuracy of the

noble layer and one fourth simulations are allocated to give

chances to the civilian layer.

TABLE 6. Simulation allocation analysis.

Impact of Civilian Population: We are interested in

how much contribution has the civilian population made

to the evolution of the noble population. We calcu-

late a number named purity that measures how much

the evolved noble population inherits from the initial

noble population. As Figure 6b shows, the purity of the

noble population declines rapidly along with the increas-

ing of the reward (fitness). Finally, the civilian pop-

ulation contributes more than 70 percent to the noble

population.

Limitation of the Algorithm: In general, the proposed

TLEA can be used in environment design problems that have

massive environment parameters. Although the algorithm

is able to work with simple hyper-parameters, the optimal

hyper-parameters rely on problem domain knowledge and

need fine-tuning.

VI. CONCLUSION

In this paper, we study the problem of automatic warehouse

layout design. The proposed two-layer evolutionary algo-

rithm takes advantage of a fitness approximation model, aug-

mented with an auxiliary objective of predicting the heatmap.

Our approach enhances the exploration of the evolutionary

algorithm with the help of the fitness model. The exper-

iments demonstrate the superiority of our approach over

the heuristic and the traditional evolution-based methods.

For future work, we would apply the proposed two-layer

evolutionary algorithm to other environment design scenar-

ios, such as shopping mall design, game design, and traffic

light control.
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