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Abstract. Recovering the spatial layout of cluttered indoor scenes is a
challenging problem. Current methods generate layout hypotheses from
vanishing point estimates produced using 2D image features. This method
fails in highly cluttered scenes in which most of the image features come
from clutter instead of the room’s geometric structure. In this paper, we
propose to use human detections as cues to more accurately estimate the
vanishing points. Our method is built on top of the fact that people are
often the focus of indoor scenes, and that the scene and the people within
the scene should have consistent geometric configurations in 3D space.
We contribute a new data set of highly cluttered indoor scenes contain-
ing people, on which we provide baselines and evaluate our method. This
evaluation shows that our approach improves 3D interpretation of scenes.
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1 Introduction

Enabling machines to understand visual scenes has been a focus of computer
vision research. Recently there has been significant work focused on solving for
the spatial layouts of indoor scenes [8,10,12,13,15,16]. Given an image of a room,
as shown in Fig. 1a, the goal is to automatically identify the extent of the floor,
walls, and ceiling as labeled by blue lines. These methods adopt a common
procedure for estimating indoor scene layout: 1) detect long straight lines and
estimate the vanishing points (VP) corresponding to three orthogonal surface
directions, 2) generate candidate layouts, and 3) select the best layout.

Step 1) is very sensitive to clutter in the scene. This step typically relies on
associating line segment features (such as the boundaries between walls) to the
three VPs [14]. However in cluttered scenes these structural boundaries are often
occluded, and the observed lines are instead generated by the clutter of people,
chairs, tables, and other objects. So clutter can lead to a poor set of vanishing
points, which leads to a poor set of candidate hypotheses, from which even the
best layout choice is still wrong. The success of estimating scene geometry hinges
on the accurate estimation of the three VPs. There have been previous attempts
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Fig. 1. In cluttered rooms (a), room features (blue lines) and objects (red boxes) like
dining tables and chairs are severely occluded and difficult to detect. In these cases,
people are often easier to detect. We use human detections (green boxes) to estimate
the three orthogonal vanishing points of the scene, and then solve for the room layout.
Our vanishing point estimation approach (detail in Sec 4) is illustrated in (b) and (c).

to incorporate such clutter into the scene geometry understanding process, such
as [8,10,12,16], however they have incorporated clutter reasoning only at the
last step of candidate selection. In order to obtain the best possible geometric
understanding, we must identify such non-geometric clutter earlier.

The relationship between scene geometry and objects in the scene is a rich
source of contextual information which previous work has attempted to exploit.
Bao et al. [1] uses the 3D locations of detected objects to help estimate the
geometric properties of the scene by assuming objects are supported by a com-
mon plane. Lee et al. [12] explicitly models the relationship between the objects
presented in the scene and the scene layout. Unfortunately, in highly cluttered
indoor scenes, robust object detection is difficult due to severe occlusions and
large intraclass variation (see Fig.3). For instance, the dining table in the middle
of Fig. 1a (red boxes) is heavily occluded by the people in the front, while the
chairs behind the dining table are occluded by the dining table and the people
sitting on them. Furthermore, the two chairs in the front have different shapes.
Detecting generic objects is extremely challenging in highly cluttered scenes.

In this paper we follow the intuition that in these types of indoor scenes people
can be more robustly detected, as shown in Fig. 1a (green boxes). When people
are present in indoor photographs they are typically the focus of the image, and
so are less occluded than tables and chairs. [8] also explores a similar concept,
but their method is benefitted from the functional regions obtained from accu-
mulating observations of human actions over time. Inspired by the previous work
with objects, we adopt the common supporting plane assumption for humans
in indoor scenes, and exploit human detection and 3D geometric information to
better estimate vanishing points. We show that from those estimated vanishing
points we can generate a more robust understanding of scene geometry in highly
cluttered environments.

2 Related Work

Scene understanding has attracted interest in the computer vision community
of late. Compared to outdoor scenes, indoor environments have richer structure,
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allowing the use of stronger priors. Under the Manhattan world assumption, every
surface belonging to the scene structure is aligned to one of the three orthogonal
directions, which can be represented by three vanishing points (VP) on the im-
age. Lee et al. [13] uses the detected wall boundaries on the image to estimate
VPs and solve the scene structure accordingly. However, those boundaries are not
likely to be observed in practice. Methods have been proposed to estimate layout
by modeling the clutter [10,12,16]. Hedau et al. [10] identifies the cluttered regions
by training a classifier with manually labeled images. Wang et al. [16] models the
clutter with a latent variable, and applies priors on the appearance to learn the
layout model. Lee et al. [12] assumes strong geometric features on the cluttered
objects, and learns the spatial relationship between objects and layouts. All these
methods assume a set of candidate layouts, which is typically generated from de-
tected vanishing points using straight line features (which are more likely to come
from the cluttered foreground). Therefore, the generated layout candidates will
be inaccurate and limits the performance of final result.

The presence of objects can provide geometric constraints on the scene. Bao
et al. [1] uses the result of object detection to jointly infer the presence of objects
and their support plane. However, object detection is less robust in the face of
occlusion and view-point changes, and the results decline with increased clutter.
Many human detection techniques have been proposed recently [2,3,7]. So we
take the advantage of the fact that people can be detected more robustly than
objects in indoor scenes because their discriminative visual features (such as
head-and-should silhouette) are less occluded than other objects. Inspired by
[1], we parameterize the scene by the ground plane and camera parameters.
Instead of using only the camera pitch angle, however, we also model the yaw
and roll angle to recover three orthogonal VPs. Note that Fouhey et al. [8] also
uses people as a cue for layout estimation. The strength of their method relies
on estimating the functional regions (e.g. walkable, sittable, reachable) within
the image by accumulating observations of human actions over time. However,
their method is still based on the VPs and layouts generated by [10].

3 Estimating a Room Layout

We follow [10] and represent an indoor space by a 3D box. In each scene, the
camera can observe at most five interior faces of the box model: floor, ceiling,
left, center, and right walls. Given the Manhattan world assumption, each pair of
the faces are either parallel or perpendicular in 3D. The projection of each face
on the image is a polygon, as shown in Fig. 1a. The goal of layout estimation is
to identify the boundaries between two faces in the image, (the polygon edges),
and recover the 3D box structure of the indoor space.

Our approach follows the general procedure of [8,10,12,13,15,16] to generate
the layout of the room. First, we estimate the three orthogonal vanishing points
of the scene to obtain the orientation of the 3D box. Different from [10], which
estimate the vanishing points solely from image line segments, our method ex-
ploits the 3D geometric relationship between people and the room box to jointly
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estimate the vanishing points, camera height, and 3D locations of the people
(detailed in Sec. 4). Once the VPs are estimated, we follow [10] to generate lay-
out hypotheses by translating and scaling the faces of the box, and finally find
the candidate layout which is most compatible with the image observation.

4 Vanishing Point Estimation from Human Detection

and 3D Geometric Information

We propose a novel framework for estimating three orthogonal vanishing points
using human detections and their 3D geometric relationships with the scene.
The intuition behind our method is that people in the scene should have a
consistent geometric configuration with the scene layout. Specifically, given that
all of the people are the same height, they should share a common supporting
ground plane. This intuition is expressed as an energy maximization framework,
described in Sec. 4.1. Each component of our model is addressed in Sec. 4.2, and
finally the optimization procedure is described in Sec. 4.3.

4.1 The Model

Given an image I, our goal is to jointly estimate the set of 3D human locations
H and the scene geometry S. We parameterize the scene geometry by S =
{f, ω, ψ, φ, h}, where f is the camera focal length, ω, ψ, φ are the roll, yaw, pitch
angle (in the order of rotation performed) of the camera, and h is the camera
height. The coordinates of three orthogonal vanishing points can be uniquely
determined by {f, ω, ψ, φ}, and vice versa [9].

Suppose we obtain N candidate human detections, then we can denote H =
{B,P, T }. B = {bi|i = 1, . . . , N} represents human detection bounding boxes,
with bi = {x, y, width, height}. Each person can take one of K poses, so P =
{pi|i = 1, . . . , N} represents people’s poses, with pi ∈ {1, . . . ,K}. Finally, each
detection hypothesis may or may not be correct, so T = {ti|i = 1, . . . , N}models
the correctness of each detection hypothesis with a binary flag.

Given H and S, the 3D locations of the people can be uniquely determined
by back-projecting the bottom of the bounding boxes onto the 3D ground plane,
as shown in Fig. 1b. We formulate the estimation of H and S as an energy
maximization framework, with energy:

E(S,H, I) = αΨ(S,H) + βΨ(I,H) + γΨ(I, S). (1)

Ψ(S,H) is the compatibility between the scene hypothesis and the human loca-
tions, which is the difference between the observed 3D human heights and the
expected heights of different human poses. Ψ(I,H) is the compatibility between
the observed image and human locations as measured by the human detector
score. Ψ(I, S) is the compatibility between the observed image and the scene
hypothesis, measured by how well the image line segments fit the hypothesized
vanishing points. α, β, and γ are the model weight parameters.
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4.2 Model Components

Below we explain each component of the model. Note that the human positions
are assumed to be independent in the scene.

Scene-Human Compatibility Ψ(S,H): This potential measures the likelihood
of the human location H = {B,P, T } given the scene hypothesis S. Assuming
that the locations of different people are independent, we have,

Ψ(S,H) =
1

N

N
∑

i=1

Ψ(S,Hi) (2)

We model each human by a pose-dependent cuboid in 3D space. Given S, we first
back-project the bottom of the ith person’s bounding box onto the ground plane
to get the 3D location where the ith cuboid is supported by the ground plane.
Assuming the cuboids and the ground plane have the same normal, we can get
the top of the ith cuboid by back-projecting the top of ith detection bounding
box, as illustrated in Fig. 1c. The 3D height of the ith person detection gi is the
corresponding cuboid height. We apply a prior on the 3D height N (µk, σk) for
the human pose class k. The potential Ψ(S,Hi) is formulated as

Ψ(S,Hi) =

{

lnN (gi − µpi
, σpi

) if ti = 1
ln(1−N (gi − µpi

, σpi
)) if ti = 0

(3)

Image-Human Compatibility Ψ(I,H): The compatibility between person
locations H and image I is defined by the detection confidence as,

Ψ(I,H) =
1

N

N
∑

i=1

Ψ(I,Hi) (4)

where Ψ(I,Hi) is a function of the detection score si of bi. In practice, we take
Ψ(I,Hi) = ln g(si), where g(·) is the sigmoid function.

Image-Scene Compatibility Ψ(I, S): This potential measures the compatibil-
ity between the observed image line segments and the vanishing points computed
from the scene hypothesis S. Following [10], we first detect long straight lines
{ln|n = 1, . . . , L} in I. Then we take {f, ω, ψ, φ} from the scene hypothesis S

and compute the three orthogonal vanishing points v1, v2, v3. As in [10], the lines
vote for each vanishing point using an exponential voting scheme. Line ln votes
for vanishing point vm with a score of

V (vm, ln) = |ln| · exp−(
αmn

σV

) (5)

, where αmn is the angle between ln and the line connecting vm and the midpoint
of ln, σV controls the peakedness of the voting score, and |ln| is the length of ln.
The potential Ψ(I, S) aggregates these votes:

Ψ(I, S) =

3
∑

m=1

L
∑

n=1

V (vm, ln) (6)
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4.3 Solving the Optimization Problem

Given the image I and the human detection B,P , we want to solve the scene
information S = {f, ω, ψ, φ, h} and the presence of the person T . This can be
obtained by maximizing the energy in Eq. 1:

{Ŝ, T̂} = max
S,T

E(S,H, I) = max
S,T

αΨ(S,H) + βΨ(I,H) + γΨ(I, S) (7)

Since we explicitly model the camera and scene parameters, we can sample a
discrete set of parameters values and search for the best combination. We fix a
set of uniformly distributed samples for each φ and ψ, and normally distributed
samples for each f , ω, and h.

FL: 601.24
Roll: 2.10
Yaw: -44.37
Pitch: 0.26

(a) dancing

FL: 607.48
Roll: 0.42
Yaw: 36.85
Pitch: 7.44

(b) having dinner

FL: 418.67
Roll: -2.05
Yaw: -40.11
Pitch: 17.06

(c) talking

FL: 591.26
Roll: 0.14
Yaw: -42.47
Pitch: 6.20

(d) washing dishes

FL: 820.16
Roll: 0.31
Yaw: 26.55
Pitch: 2.48

(e) watching TV

Fig. 2. Our collected Indoor-Human-Activity dataset is composed of five activity
classes: dancing (a), having dinner (b), talking (c), washing dishes (d), and watch-
ing TV (e). The top row shows example images with annotated line segments which
are used to compute the ground truth of three orthogonal vanishing points. The bottom
row shows the camera focal length and angles computed from the vanishing points.

5 Experiments and Results

We aim to evaluate our algorithm on highly-cluttered indoor images which in-
clude people. None of the existing datasets were appropriate for this task, so we
contribute a new dataset called the Indoor-Human-Activity dataset. The dataset
contains 911 images of five human activity classes: dancing (187), having dinner
(183), talking (193), washing dishes (183), and watching TV (165). Different ac-
tivity classes contain different levels of clutter, as seen in Fig. 2. For each image,
we have annotated the line segments associated to the three principle directions,
from which we have computed the ground-truth vanishing points. In addition,
we provide annotations of scene layout and human detections, as well as four
object classes (sofa, chair, table, and dining table) for future use.

We first evaluate several state-of-the-art object and human detectors on our
dataset. Object detectors are trained using DPM [6] on the furniture dataset
proposed in [5]. For the human detector, we the off-the-shelf DPM detector [6]
and the poselet detector [2,3]. Fig. 3 shows precision-recall curves. The human
detectors perform better overall than object detectors in every activity class.
Among the human detectors, the poselet detector performs best. Therefore we
use the poselet detector to provide candidate human bounding boxes.
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Fig. 3. Precision-recall curves for the DPM object and human detectors [6], and the
poselet human detector [2]. People are detected better than objects in our dataset.

Table 1. VP estimation error by Hedau [10], our model without people, with poselet
detection and with ground-truth bounding boxes (F: focal length, R: roll, Y: yaw, P:
pitch). Our method outperforms the baselines in almost all parameters.

Dancing Having Dinner Talking Washing Dishes Watching TV

F R Y P F R Y P F R Y P F R Y P F R Y P

Hedau [10] 346 1.63 9.72 5.84 336 1.96 9.36 6.47 219 1.84 8.60 4.27 179 1.10 4.61 3.66 331 1.57 8.89 4.80

W/O HMN 242 1.48 8.36 4.58 206 1.38 9.43 4.94 160 1.39 9.07 4.43 145 0.99 4.06 3.20 209 1.30 11.30 5.06

PSLT 221 1.39 8.31 4.44 187 1.23 8.46 3.92 130 1.21 7.87 3.10 147 0.96 3.58 2.87 197 1.28 10.39 3.80

GTBB 226 1.35 8.09 4.13 180 1.17 8.25 3.90 120 1.17 7.34 2.83 131 0.93 3.79 2.80 185 1.30 9.52 3.75

In our implementation, we model humans with two pose classes (K = 2):
standing and sitting. The prior on 3D heights was set to (µstand, σstand) =
(1.68, 0.2) and (µsit, σsit) = (1.32, 0.1) meters. A SVM classifier is used to clas-
sify a person’s pose [4]. The classifier is trained using 50 images from each activity
class, and the rest are used for evaluating the vanishing points and layout esti-
mation. We consider the predicted human bounding boxes with more than 50%
overlap with ground-truth bounding boxes to be our training data. As pose fea-
tures, we use the weighted poselet activation vector and the ratio between full
body and torso heights. A 5-fold cross validation achieved 83% accuracy.

We first evaluate the accuracy of vanishing point estimation (Sec 5.1). In Sec
5.2, we demonstrate that better estimated vanishing points can generate better
candidate layout hypotheses, and then we analyze the layout estimation error
by different input vanishing points.

5.1 Vanishing Point Estimation

Our goal is to estimate the vanishing points, however comparing vanishing point
positions directly is not a good measure of accuracy. This is because the absolute
error in vanishing point position increases in sensitivity to inaccurate camera
parameters with increased distance from the camera center. A better-normalized
comparison is between the camera parameter errors, which we use to evaluate our
approach. Given three orthogonal vanishing points, we can uniquely determine
the roll, yaw, pitch angles, and the focal length of the camera. Note that we can
not evaluate the estimated camera height because the ground-truth can not be
obtained from a single image.

We compare the VP estimation results of Hedau et al. [10] and three versions
of our method: 1) without using human detections (W/O HMN), using only
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Table 2. Pixel error of estimated layouts. Our estimated VPs shows comparable results
to Hedau’s [10].

Best Candidate Estimation
Hedau [10] Ours GT VP Hedau [10] Ours GT VP

Dancing 5.51 % 4.75 % 3.65 % 19.74 % 20.24 % 18.36 %
Having Dinner 5.19 % 5.06 % 3.53 % 24.00 % 23.92 % 21.87 %
Talking 5.12 % 4.83 % 3.61 % 23.84 % 20.58 % 19.89 %
Washing Dishes 3.58 % 3.80 % 3.51 % 26.30 % 27.63 % 25.48 %
Watching TV 4.94 % 5.87 % 3.60 % 19.14 % 22.74 % 18.28 %

Table 3. Intersection/union of observable 3D space between estimated and ground-
truth layouts. Our estimated VPs outperforms Hedau’s [10] in all activity classes due
to better 3D reasoning.

Best Candidate Estimation
Hedau [10] Ours GT VP Hedau [10] Ours GT VP

Dancing 43.99 % 50.95 % 83.32 % 17.60 % 24.25 % 46.95 %
Having Dinner 51.15 % 61.19 % 90.51 % 24.75 % 35.82 % 52.08 %
Talking 60.91 % 65.03 % 90.59 % 34.26 % 40.24 % 53.32 %
Washing Dishes 68.94 % 70.08 % 90.62 % 32.78 % 33.90 % 46.76 %
Watching TV 51.01 % 57.88 % 89.70 % 27.84 % 33.08 % 55.83 %

Ψ(I, S), 2) using poselet detection (PSLT), and 3) using ground-truth human
bounding boxes (GTBB) to remove the detection error and provide a lower
bound on the error. Table 1 contains the average errors for each activity class.

First we observe that our partial method obtains comparable or better results
than [10] in most parameters. This is because [10] generates the VP hypotheses
by the intersection of lines in 2D, while we parameterize the VPs by 3D camera
parameters. We can prune out some unlikely hypotheses by putting priors on
the parameter search space. Using poselet human detection, our full method
outperforms the baselines in almost all activity classes. Since the roll angles are
generally very small, the back-projected human height depends mostly on the
pitch angle of the camera. And indeed, our approach improves the pitch angle
most, as can be seen in the Table 1 columns labeled ‘P’. The amount of error
also reflects the level of clutter in different activity classes; images from “washing
dishes” contain less clutter than “having dinner”, and so the error rates show
less improvement when human detections are used. Qualitative examples of VP
estimation are shown in the first five rows of Fig. 4.

5.2 Room Layout Estimation

We compare the estimated layouts obtained by Hedau’s VPs [10], our estimated
VPs, and the ground-truth VPs. In most literature [8,10,12,13,15,16], layout
estimation are evaluated based on the 2D pixel error, i.e. the percentage of pixels
that is labeled different from the ground truth. However, as suggested in [11],
good 2D estimation does not usually indicate good 3D estimation. To provide 3D
evaluation, we propose a new metric for evaluating layouts: intersection-union
of observable 3D space.
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Fig. 4. Qualitative results for vanishing points (first five rows) and layout estimation
(last five rows). Row 1: image with annotated line segments and the ground-truth VPs.
Row 2: detected line segments and the VPs computed by Hedau et al.’s method [10].
Line segments are colored with the associated vanishing points (green: vertical, red:
further horizontal, blue: close horizontal, cyan: not associated). Row 3: input human
detection to our method. Rows 4 & 5: output of our method. The line association has
been improved using our method. Rows 6-8: the generated layouts using ground-truth
VPs, Hedau’s estimated VP, and our estimated VPs (green: ground-truth, yellow: best
candidate, red: estimated layout), along with the corresponding pixel errors. Rows 9 &
10: the observable 3D space of best candidate and estimated layouts (red: ground-truth,
blue: [10], green: ours, cyan: GT VP).
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First, we evaluate the layout estimation by the commonly-used pixel error. In
Table 2, we report both the error of best candidate layout (the oracle result) and
the estimated layout. Layout candidates are generated by sampling 20 rays from
each VP [10]. Observe that by improving vanishing point estimation, the best
candidate layout can achieved lower pixel error. However, for estimated layouts,
we obtain comparable results using Hedau [10] and our VPs, and slightly better
results using ground-truth VPs. 2D metrics can not fully capture the difference
in 3D space. As in the watching TV example in Fig. 4, bad VP estimation gives
the same or even better estimated layout in terms of pixel error.

To show that our method can achieve better 3D estimation, we propose a new
3D metric: intersection/union of observable 3D space between the estimation and
ground-truth. Assuming a fix camera height, the observable 3D space is obtained
by back-projecting the observable 2D layout extent into the 3D space. This is
determined by the camera focal length, angles, and the 2D layout, as shown in
the last two rows of Fig. 4. Similar to pixel error, we report the result for both
the best candidate and estimation in Table 3. Our method outperforms [10] with
respect to 3D reasoning about the scene.

6 Conclusion

Understanding the geometric structure of a room is an important stepping stone
on the way to understanding the semantic content of an indoor image. In this
paper, we have provided a method for improving the computation of geometric
room structure from a single image by using human detections in the scene.
Since humans are often the focus of the scene, they are more frequently detected
than other objects, and so provide robust information which complements previ-
ously used line segments as features. We have contributed a new Indoor-Human-
Activity dataset and provided experiments that show that our method improves
upon previous scene geometry understanding by increasing the accuracy of line
segment associations, vanishing points, and in turn 3D structural plane bound-
aries, camera height and camera focal length. We look forward to applying this
method to future work on indoor activity understanding.
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