
Layout Metrics for Euler Diagrams

Jean Flower1, Peter Rodgers2, Paul Mutton2
1University of Brighton, UK

2University of Kent, UK

J.A.Flower@brighton.ac.uk, P.J.Rodgers@kent.ac.uk, pjm2@kent.ac.uk

Abstract An alternative term for these diagrams is “Euler-Venn
diagrams” but they are often inaccurately called “Venn
diagrams”. Venn diagrams often look similar, but must
contain all possible intersections of contours. In contrast,
Euler diagrams contain any desired combination of
intersections between the contours. Visualizations of Venn
diagrams are often created by taking advantage of the
symmetries present in a Venn structure [12].

We present an aesthetics based method for drawing
Euler diagrams. Aesthetic layout metrics have been found
to be useful in graph drawing algorithms, which use
metrics motivated by aesthetic principles that aid user
understanding of diagrams. We have taken a similar
approach to Euler diagram drawing, and have defined a set
of suitable metrics to be used within a hill climbing
multicriteria optimiser to produce “good” drawings. There
are added difficulties when drawing Euler diagrams as they
are made up of contours whose structural properties of
intersection and containment must be preserved under any
layout improvements. In this paper we describe our Java
implementation of a pair of hill climbing variants to find
good drawings, a set of metrics that measure aesthetics for
good diagram layout, and issues concerning the choice of
weightings for a useful combination of the metrics.

Keywords: Euler diagrams, graph drawing, layout metrics.

1: Introduction

Euler diagrams are used in the representation of a range
of visual software engineering notations, including
constraint diagrams and statechart-like diagrams. They are
also a common method for explaining the basics of set
theory.

Euler diagrams consist of a set of contours, drawn as
simple closed curves. If contours meet, then they meet
transversely (that is, they may cross but do not touch). At
any crossing point, only two contours meet. The contours
split the plane into zones, as shown in Figure 1. Each zone
can be uniquely identified by the contours which contain it.
This restriction means that some diagrams become invalid
because they have “disconnected zones”.

An atomic Euler diagram has the property that the
contours form a connected subset of the plane. Here we
introduce some layout metrics for smoothing atomic Euler
diagrams, although the principles of the aesthetics and
metrics work equally for non-atomic (nested) diagrams, see
Figure 2.

Figure 1

Figure 2

one component
and
another component
in a nested diagram

three
zones

two contours

To our knowledge, the automated layout of Euler

diagrams to aid understanding has not been investigated
before. This paper begins the work needed to introduce
aesthetics into the process of Euler diagram creation. To
generate our visualizations we have implemented an
aesthetics based Euler diagram drawing method which
takes an initial Euler diagram and turns it into a more
comprehensible representation with the same structure. The
resulting diagram is more rounded, smoother and has better
spacing, but contains the same contours as before. The
areas into which the diagram is divided also remain the
same so that if two contours do not meet in the initial
diagram, then they will not cross in the final diagram.

In order to visualize Euler diagrams from an initial,
poor layout we define a group of metrics that form our
aesthetic criteria. These are given individual weights and
combined, to produce a total score giving the goodness of a
diagram layout. A hill climbing multicriteria optimizing
system is then used to change the diagram layout in such a
way as to reduce the total score of criteria, and so increase
the comprehensibility of the diagram.

One motivation for this work comes from the wish to
construct concrete representations of constraint diagrams
[6] given an abstract description. These diagrams are used
to represent logical statements, particularly as applied in
object-oriented program design.

The work described here forms part of the “Reasoning
with Diagrams” project, funded by the UK research council,
the EPSRC. This project includes in its aims the creation of
a software tool for the presentation and manipulation of
constraint diagrams, alongside other notations, including
UML notations [9]. The application of a reasoning rule will
transform one diagram into another, and that transformation
is defined only for the “abstract diagram” (which
encapsulates the diagram’s structural properties but forgets
other geometric and topological properties). In order to see
the results of an application of a reasoning rule, an
algorithm is needed to take an abstract description of a
diagram and produce a visual representation of it. Work on
reasoning rules with diagrams can be found in [8].

Euler diagrams can also be used to represent statechart-
like notations [7]. A further application of Euler diagrams is
in teaching where they are widely used to represent the
relationships between sets. For example the sets A and B,
and their intersection A∩B could be represented by the
diagram given in Figure 1. The work described here could
be used in the development of educational software for such
set theoretic concepts.

This paper builds on existing work in [4,5] which
presented an algorithm for the creation of "correct" Euler
diagrams from diagram descriptions. An abstract diagram
description is used to create a dual graph. A plane
embedding is found for the graph, and from that drawn dual
graph, the contours are created using a step called
circularisation. During this process, checks are made and a
class of abstract diagrams are identified as undrawable. The
algorithm is complete in that all undrawable examples are
identified and shown to be undrawable, and all drawable
examples are given concrete representations. However this
work did not address issues of the comprehensibility of
diagrams.

Aesthetics based diagram display methods have been
previously applied to laying out graph diagrams. As with
the work described here the results of the aesthetics for a
particular layout are weighted and the total is applied within
a multicriteria optimising system. The multicriteria systems
used in graph drawing tend to make a much wider search of
the problem space than the hill climbing method used here.
In particular, simulated annealing [2] and genetic
algorithms [11] have been used. Given the differences
between graph diagrams and the Euler diagrams described
in this paper, many of the aesthetics for graphs, such as
edge crossings and subgraph symmetry, are not applicable

to our work, however there are some aesthetics that are
general across many diagrams, such as diagram total area
and diagram aspect ratio that we have adapted for our use.
See [1,10] for further discussions of aesthetic criteria for
graphs.

Section 2 of this paper describes the iterative process
used for manipulating diagrams for smoothing, and in
Section 3 we introduce the various metrics used to guide the
iteration. In Section 4 we reflect upon the results obtained
from the implemented algorithm and consider suitable
relative weightings to make optimum use of the metrics to
achieve quick and aesthetic results.

2: The Optimising Process

Our Euler diagram drawing method works by
attempting to minimize the total score for a group of
aesthetic metrics. The total score is calculated as a weighted
sum of the metrics, hence the task of diagram drawing
forms a multicriteria optimising problem.

There are many techniques for solving such
multicriteria optimising problems. We took a view that
methods such as genetic algorithms and simulated
annealing, which are designed to avoid local minima by
providing a wide search of the problem space, were not
appropriate to this application. This was firstly because,
from our experience, this problem space appears to have a
lower incidence of local minima than is found in many
applications where wide search is applied and a cooling
schedule deals with many of these, and secondly because
these methods operate relatively slowly. As a result we
decided to search using hill climbing, which only allows
improvements to the solution, and so finds a solution in
relatively quick time.

Contours are represented by polygons. These polygons
are stored as lists of points. A diagram will be changed in
two ways: altering the shape of contours by moving
individual points; or altering the arrangement of contours
by moving all the points that make up a polygon.

Although a complete contour could be moved by all its
points moving individually, complete contours are moved
in each iteration for two reasons. Firstly, achieving a shift
of a contour by moving individual points is slower than
moving the whole contour as a single iterative step.
Secondly, if only single point steps are allowed, the whole
contour may never actually be moved, despite the change of
position improving the total score, because the movement
of a single point of the contour in that direction may reduce
the score and so, with a hill climbing strategy, the
individual movement will never be made.

The diagram drawing process involves iterating
through a hill climber a set number of times. We
implemented two variants of hill climbers, called:
“RandomHillClimber” and “FastHillClimber”. A single
iteration of either hill climber involves going through all the
contours in the diagram and testing each point of a contour
for a possible improvement, as well as testing whole
contour shifts for possible improvements. To find an
improvement a move of either a point or contour is made
and the total score for the diagram before the move is

compared to the total score for the diagram after the move.
If the score is better or the same, then the move is retained,
otherwise if the score is worse, then the point or contour
moves back to its original position.

The retention of the diagram structure is a key
requirement when moving points or contours. The diagram
structure represents the “meaning” of the diagram - the
information is exactly which zones are present and which
are absent. At each iterative step, the new diagram is taken
and the set of abstract zones is calculated. An abstract zone
is a set of contour labels listing the contours which contain
the zone. If a zone is in contour A and contour B and no
others then its abstract zone is the set {A,B}. A move is
only allowed if the new set of abstract zones matches the
initial set.

Figure 3

Figure 3 illustrates a diagram manipulation which

would be forbidden by the structure checker. A new
abstract zone has appeared in the resulting diagram.

Figure 4

The RandomHillClimber moves a point or contour to a

random location within a square area of the starting point,
as shown in Figure 4. We use a square area because it is
easy to implement, but has a small amount of distortion in
deciding the direction because diagonals are slightly
favoured. This distortion could be avoided by finding a
random location in a circular area about the original
location.

Figure 5

The FastHillClimber moves each point and contour in

one of four directions: up, down, left and right, all at the
same distance (see Figure 5). For a move, each of the four
directions is tried until a step is found to improve the

diagram, in which case the move is retained and the
remaining directions are not tested.

From initial investigations it was seen that the
FastHillClimber generally reached a good diagram in fewer
iterations than the RandomHillClimber. This is probably
because, although FastHillClimber goes through many
more tests on a single iteration, the systematic testing of a
variety of directions ensures that the uphill movement for a
point or contour is usually found. However for the
RandomHillClimber, a point may have to wait many
iterations before the random movement direction is an
improvement.

Both hill climbers also have an option to include a
cooling schedule. The cooling works by reducing the
movement as the iterations progress. For the first iteration
the movement is a value specified by the user. For later
iterations the movement reduces linearly, until it is nearly
zero for the last iteration. The intended effect of this is to
move points and contours quite far at the start to quickly
produce rough versions of good diagrams. As the number
of iterations increase the diagram is fine tuned with the
reduced movement allowing layout to be refined within a
small range.

The cooling option proved successful when it was
tested, as without it the movement distance is constant, and
so has to be set to a fairly small number to allow the
diagram to be refined. With a small movement distance,
moving a contour a long way or changing its shape greatly
takes many steps. Fewer steps are needed if a large intial
movement is chosen and cooling applied. The cooling
schedule may also help avoid local minima, as initial large
jumps of contours past troughs are possible, which cannot
be passed by the necessarily small movements of the
uncooled option.

3: Metrics

Metrics were used to assess the quality of a diagram.
Each metric gives a result which is a positive number,
where zero represents the best score, and larger numbers
reflect lower quality.

A set of metrics have been implemented to reflect
different aesthetic requirements. These metrics are used in
conjunction by creating a total score built as a weighted
sum of the metric scores. The iterative process described in
Section 2 uses this combined metric to assess whether or
not a change in the diagram is an improvement.

In this section we describe the range of metrics used in
the smoothing algorithm, and describe the effects of each
metric. The metrics are motivated by a sense of diagram
aesthetics. The first two metrics are driven by consideration
of the aesthetics of a single contour. A single contour is
ideally presented as a “round” and “smooth” curve. Since
contours are drawn as polygons, an ideally “round” contour
corresponds to a regular polygon. Two metrics can be used
to give a quality judgement against this aesthetic.

The ContourRoundnessAngles metric measures the
variance of the angles within the contours. Let ()cn be the

number of points on contour c, ()cα be the mean angle in c
and ()ciα be the i th angle in c, then the metric is given by

()








contour

Roundness using edges Roundness using angle and

edge approaches combined

()()
()

()

∑ ∑ 











 −

=ccontour

cn

i

i

cn
cc

1

2αα

The metric is invariant under diagram scaling, and
takes into account the number of points a contour has. The
metric returns zero for a regular polygon. Figure 6
illustrates the effect of this metric in one example. The
initial diagram is produced using an algorithm for the
creation of "correct" Euler diagrams from diagram
descriptions [4,5]. As with all the diagrams in this section,
the FastHillClimber with cooling for 30 iterations has been
used.

Figure 7

Even if a diagram is drawn with “nice” contours, there

are other aesthetic qualities we require for good readability.
Contours should be of comparable size, otherwise readers
may draw misleading conclusions from the different
contour sizes. Zones should remain clearly visible. All the
diagrams have so far been for the same example, but in the
smoothest presentation one zone is disproportionally small.
The aesthetics concerned with areas are addressed by the
following metrics.

Initial diagram Roundness using angles

The ContourArea metric measures the variance of
contour areas, and factors by the diagram area to ensure the
metric is dimensionless. Let area

)(carea
 be the mean area within

a contour of the diagram, the area within contour
c, and ()dn be the number of contours in the diagram d,
then the metric is

Figure 6

Although the use of one metric has smoothed the

contours to a certain extent, we can see that using
ContourRoundnessAngles alone is not sufficient to produce
iteration towards a regular polygon. Polygons which have
(near-)equal angles may still fail the roundness aesthetic,
due to the presence of imbalanced edge lengths. A second
metric, ContourRoundnessEdgeLength is derived from the
variance of the edge lengths of contours. Here, d is the
diagram, ()cl is the mean edge length in contour c, ()el is
the length of edge e in contour c, and is the number of
edges (or vertices) in c.

()cn

()

() ()
22

)(












− ∑∑
ccontourccontour

carea
dn

areacarea

The ZoneArea metric calculation considers each zone
area as a proportion of the combined area. In this formula,

 is the area of zone z.)(zarea

() ()∑∑ ×













zzonezzone

zarea
zarea

1

() ()()

() ()
22


































 − ∑∑ ∑
dinec cine

el
cn

clel
The effect of this metric in iteration is to discourage the

appearance of disproportionally small zones. ContourArea
and ZoneArea are invariant under scaling.

Figure 8 shows output created using roundness metrics
in both cases, with ContourArea metric on the left and both
area metrics on the right.

This metric gives zero for regular polygons. Again, the
metric remains unchanged after scaling because of the
division by the square of the sum of edge-lengths.

 Fig. 7 uses the same example as figure 6 and illustrates
the effects of applying the edge length metric alone and the
effects of applying a combination of ContourRoundness-
Angles and ContourRoundnessEdgeLength.

After applying roundness
and contour area metrics

Also including the zone area
metric

Figure 8

The aesthetics we have addressed so far require

diagrams to have round contours, with the areas of
contours, zones and the entire diagram controlled.

The last set of aesthetics to add are concerned with the
closeness of contour arcs. The gap between two parts of
contours which do not cross should be wide enough that it
remains clearly visible. We also want to ensure that where
contours cross, the angle at the crossing point is sufficiently
great to clearly distinguish the contours. These final
aesthetics are addressed by the following two metrics.

The ContourClosenessPts metric measures point-to-
point between distinct contours, summing the reciprocal of
the distances. The effect of this is to encourage points to
move apart. Where contours cross, it is inevitable that
points on different contours become close, and for this
reason, points close to contour crossings are excluded from
the summation (this is what’s meant by “some v1 on c1…”
in the formula below). We also divide by the number of
points on each contour to ensure that the same effect is
achieved, independent of the number of points on a contour.
Here 21 vv − is the distance between vertices v1 and v2.

() ()
2

2on2
,1on1s
21

2on2
,1on1s
21

2 21
2121

1 ∑∑
≠≠

−×
××−

cv
cvome

cccontours

cv
cvome

cccontours

vv
cncnvv

This metric works well for parts of curves where there
are many points. If, however, a contour has a long edge
(despite the ContourRoundnessEdgeLength metric), then
we also need to move points away from that edge.

Some vector algebra is used to determine which points
are “relevant” to which edge. To assess whether a point is
close to an edge, it is necessary to calculate the
perpendicular distance from the point to the edge. To
determine whether or not the perpendicular distance should
contribute to the metric calculation, project the point onto
the line along the edge, so that point is relevant to an edge if
its projection lies on the edge itself.

This second contour closeness metric also incorporates
the number of points on a contour and the sum of the
distances involved, to ensure that it is not biased towards
contours with many points, and it is invariant under scaling.

The two contour closeness metrics combine to
effectively push contours away from each other and

encourage crossings whose angles are closer to 90°. Figure
9 shows the effects of these contour closeness metrics.

Roundness and closeness

metrics without area metrics
Combination of roundness,

area and closeness

Figure 9

The metrics described so far are:
(i) ContourRoundnessAngles
(ii) ContourRoundnessEdgeLength
(iii) ContourArea
(iv) ZoneArea
(v) ContourClosenessPts
(vi) ContourClosenessEdgePt

Other metrics were implemented:

• The DiagramAspectRatio metric can be used to force a
diagram to fit into a given space as a subdiagram.

• The DiagramArea metric simply measures the area of
the bounding box of the diagram. The effect of this is to
encourage diagrams to become smaller.

• ZoneRoundness metrics are similar to metrics about
contour roundness but applied to zones.

• The ZoneConvexness metric employed a simpler
approach to convexity. Traverse around zone
boundaries and determine whether the angles are
turning “left” or “right”. The metric gives a low score
where the orientations are consistent.

The metrics each have the desired effect when applied

in isolation. If a sequence of diagrams is considered which
range from “bad” to “good” then the metrics give
monotonic results - better diagrams result in lower
penalties. Such monotonic behaviour can be derived from a
range of different algebraic expressions. For example, in the
ContourRoundnessAngles metric, using the absolute value
instead of the square would give the same ranking of
preference between a range of diagrams.

() ()()
()

() ()
()cn

cc
cn

cc ii αααα −−
 vs

2

We chose to use the first expression because it gives a
stronger response for values which stray far from the mean
value.

The metrics are applied as a weighted combination. We
have achieved one kind of independence between the
metrics: if a diagram is scaled, the only metric which is
affected is the DiagramArea metric.

For almost all other diagram manipulations, however,
the metrics are dependant. When combined in a weighted
sum, the metric effects interact. In some examples, the
metrics combine to encourage similar changes (positive
reinforcement). For example, ContourClosenessPts and
ContourClosenessEdgePt collaborate well together. In other
examples the metrics encourage contradictory behaviour
(negative reinforcement), for example, where one contour is
contained within another, the ContourArea and ZoneArea
metrics conflict with each other. Balancing these effects is a
question of finding a suitable set of weightings to apply and
this problem is discussed in the next section.

4: Results

In this section we present the results of running our
system on various diagrams. We also include discussions
about weighting the criteria, and some observations about
how the process proceeds.

As well as using the iterative procedure, we do a final
post processing step on the well drawn diagrams to make
them more aesthetically pleasing. We add a feature to our
display that replaces each straight line segment between
two points in a contour with a Bezier curve. The Bezier
control points are arranged such that the curve entering a
point on the contour is continuous with the curve exiting
the same point. When moving points in hill climbing, it is
important to check that a curved diagram has the same
structure as the original polygon diagram, as it is possible
for the curving process to introduce or remove contour
intersections. We do this by discovering the maximum area
that the Bezier curves can occupy and ensure that when the
polygons are extended with these areas they have the same
structure, otherwise the drawing cannot be displayed with
these curves. An alternative approach to smoothing
contours is to use spline drawing algorithms, but this has
added complexity when checking diagram structure.

The systematic discovery of a good set of weights for a
multicriteria optimisation system is notoriously difficult. In
this system, weights serve two functions. The first is to
normalize the criteria, as the numerical output can vary
greatly. The second is to weight the criteria to indicate their
importance in the final diagram so, for example, if contour
roundness is more important than zone area equality, a
larger number can be assigned to the appropriate weight.

Weight allocation is further complicated as there are
interactions between metrics, both positive and negative.
Where positive reinforcement occurs (i.e. improvement in
one also implies an improvement in the other), such as
between the two contour closeness metrics, then the two
measures should be seen as combined in some way. In the
case of ContourClosenessEdgePt and ContourClosenessPts,
which have very coordinated interaction, we regard the
overall closeness score as a sum of the two separate
metrics. Where negative interaction is present, as is most
common between metrics, there is a notion of trade off, as
score improvement in one metric is likely to reduce the
score awarded by the other metric.

Our technique for normalizing the criteria was to
survey the output of metrics from many runs of several

diagrams. Although averages could be calculated and used
for some diagrams, they were not universally applicable,
and so intelligent adjustment of weights was still required.

For weighting by importance, our approach was to start
with what we regarded as the single most important metric
and apply a fixed weighting. A second metric can then be
added and its weighting can easily be adjusted until a
desired balance between the two criteria is achieved. Each
additional metric is added one by one and its weighting is
altered in a similar manner. Weightings in the final set may
then be altered slightly to change the overall importance of
each metric. Figure 10 shows the interface to the
experimental software that was produced to investigate the
settings for the criteria, as well as experiment with hill
climbers and cooling schedules. The settings for the
diagrams in this section are shown. A tick to the left of the
metric indicates that it was applied; metrics with no tick
were not used. The numbers to the right show the weighting
for each metric. Cooling was applied and the
FastHillClimber was run for 80 iterations.

Figure 10

The variation in numbers mainly reflects the need to
normalize the output of the metrics. However there is also a
strong weighting for ContourRoundness and Contour-
RoundnessEdgeLength, so that in a typical diagram before
drawing, each of these measures might be 10 times greater
than, for example, ZoneArea. This reflects our view that
roundness is the primary positive aesthetic in the diagrams.
The other criteria are broadly speaking given around equal
weighting. It should be noted that all these comparisons
vary by diagram as well as during the drawing process.

Iteration 0 10 30 50 70 80
ContourRoundness

Angle 111.10 18.70 12.40 5.70 2.90 2.20
ContourRoundness

EdgeLength 85.50 14.70 11.20 7.80 3.50 3.00
ContourCloseness

EdgePt 3.50 3.00 2.80 2.80 3.00 2.80
Contour

ClosenessPts 4.60 5.00 5.10 5.60 5.50 5.40
ZoneArea 17.40 12.20 8.90 11.20 11.20 11.20

ContourArea 9.60 6.70 6.70 5.90 5.50 4.90
Total Score 231.90 60.40 47.10 39.00 31.60 29.60

Initial diagram After 10 iterations

After 30 iterations After 50 iterations

After 70 iterations After 80 iterations (finish)

Finished diagram with Bezier curves

Figure 12

To give an idea of how the drawing progresses and

how the criteria metrics alter, Figure 11 shows some
selected stages during the drawing of a diagram. The scores
for the relevant stages are given in Figure 12. Here the
values for each metric are shown after they have been
weighted by the multipliers shown in Figure 10. In these
diagrams the closeness metrics, even when added together,
give a relatively low result. This is due to the natural
separation of the contours in this particular diagram. For
Figure 12 it can be seen that the total score falls rapidly in
the first 10 iterations, from 213.9 to 60.4, as easy
improvements are discovered, and the effect of large moves
are applied. This is reflected in the top two diagrams in
Figure 11, where a great difference in the pictures can be
observed. The later progress is much more gradual, where
only a slight improvement in the roundness measures, a
difference of 2.0, between iterations 70 and 80 is observed.
The relevant diagrams in Figure 11 show two diagrams that
are very similar, however they are much more refined than
previous diagrams. We conjecture that the small difference
in the two diagrams for 70 and 80 iterations is both because
of the reduction in movement due to cooling and because
the diagrams are close to an optimum layout.

The relative values of the individual metrics at the end
of the optimisation process are markedly different from
their starting values. In particular, ZoneArea is much higher
than the rest. It started with a value of 17.4 and finished
with a value of 11.2, and so is making a large contribution
to the final total score. This is particularly interesting
considering other metrics started out much higher, for
instance, ContourRoundnessAngle has fallen from 111.1 to
2.2. It is difficult to understand why some metrics may
reduce less than others, but the interactions between metrics
could be one factor, so that there may be strong negative
factors between ZoneArea and the other metrics, so when it
reduces in value all of the other five metrics may increase
in value.

Figure 11

Initial diagram Finish position with

polygons

Finish position with Bezier curves

Figure 13

Figure 13 shows an Euler diagram, both before and

after smoothing, and the final drawing with Bezier curves
applied. Compared to the values in Figure 12, the starting
metric values are relatively high for the contour closeness
metrics: ContourClosenessEdgePt gives 11.56 and Contour-
ClosenessPts gives 11.92, so that the combined total is
23.48, which is greater than the value of ZoneArea at 18.11.
In this case, their combined total is also greater than the
ContourArea outcome of 12.60. The initial value of
ContourRoundnessAngles is 92.88 and ContourRoundness-
EdgeLength is 43.12. The total score is 190.18. So although
there is a great difference in the relative initial values of the
metrics for the diagrams in Figures 11 and 12, the result in
both cases is a rounded, aesthetically pleasing diagram.

Initial Diagram Final Position - Polygons

Figure 14: A Venn diagram with 4 contours

Figure 14 shows the before and after diagrams for a

Venn diagram with four contours. A typical human based
drawing for this diagram is to take the Venn diagram with
three contours and add a banana shaped contour to it,
resulting in three very rounded contours and one misshapen

one. Our optimisation method has compromised the
drawing of all four contours, with elements of roundedness,
as well as slight negative curves in most of the contours.

5: Conclusions and Further Work

We have been able to show that by defining a suitable
set of metrics it is possible to automate the enhancement of
the layout of Euler diagrams. Our choice of metrics was
motivated by a set of aesthetics, and the resulting diagrams
measure well against these aesthetics.

Future work to extend this approach could include
more metrics, if new aesthetic criteria can be determined.
Existing metrics could be tuned by non-linear scaling
functions, motivated by studies of how the metrics interact
with each other in a large range of examples.

The cooling of iteration was an essential step to help
avoid locally good but globally bad results. Without
cooling, diagrams would converge to a layout which can’t
be improved using the same step size, but could be
improved with a smaller step size. The cooling used was a
linear reduction in step size over the iteration time. There is
potential for investigating different kinds of cooling, with
non-linear alterations in step size.

One method of allocating weights for the criteria could
be adapted from genetic algorithms, which often define a
scale and range for each weight to ensure that they are all
within a certain range [11]. However, this relies on
developing a large population of varied attempted solutions.
It might be possible to generate a test set and method for
randomising diagrams which could be used within such a
automatic weighting system. An alternative approach to
weight allocation is dynamic, using the outcome from each
metric in previous iterations. For example, if one metric is
reducing in very large steps, it might be sensible to decrease
its weighting to give the other metrics some influence over
the diagram changes.

Cooling seems to avoid many local minima during the
improvement of diagrams in the current test set. Further
example diagrams or the introduction of new aesthetics may
require the development of a more sophisticated
multicriteria optimisation method such as simulated
annealing or a genetic algorithm. Simulated annealing
introduces random negative movements and a genetic
algorithm would generate populations of diagrams, merging
and mutating selected members to produce later
generations. Research questions for these methods include
representing members of the population for a genetic
algorithm approach, which are usually represented in a
linear string based form, and investigating the trade off of
wide searches against performance.

From looking at human based drawing of Euler
diagrams its clear that there is a tendency to draw some
contours very well and fit the rest in afterwards. This may
be a limitation of the way they are drawn, or it may be
aesthetic preference. If it is because of the latter, an
automatic Euler diagram drawing mechanism that
mimicked this approach has the potential to produce good
diagram visualizations quickly by taking drawings of
preprepared patterns of common Euler diagrams and

incrementally fitting in new contours based on user defined
rules of drawing.

Variations on well known graph drawing algorithms
may also be used to generate drawing of Euler diagrams.
For instance, with the contours represented as a cyclic
graph, force directed techniques could easily draw rounded
contours. The challenge is to a develop a force model that
effectively deals with interactions between contours and so
produce good zones. An alternative force approach, which
might be combined with other methods, would be to
overlay the diagram with a second graph, the planar dual of
the diagram, and apply a force model upon it. This should
distribute the zones evenly.

The work described here is in the context of atomic
Euler diagrams. The same aesthetics would hold in the
context of nested Euler diagrams, and most metrics would
work in this extended context. The metrics which refer to
zones of a diagram would have to be reconsidered - in a
nested diagram, a zone may have internal as well as other
bordering contours.

It would be more efficient to smooth atomic
components of a nested diagram, then reassemble the
whole, but then accommodation must be provided in zones
which will contain a subdiagram. The ZoneArea metric can
be easily adapted to allow different weightings for different
zones - guiding some zones to increase in size more than
others. If a zone is to contain a subdiagram, it would be
useful to include a ZoneRoundness or ZoneConvexness
metric. Again, these metrics can be weighted to affect some
zones more than others. Moreover, the subdiagram must be
made to fit within the zone, and here a rectangle needs to be
found in the zone, and a strongly weighted aspect ratio
metric applied to the subdiagram.

Future implementations of the smoothing work should
allow for nested diagram examples, and this will increase
the number of suitable examples against which we can
assess the smoothing approach.

The application of this work in constraint diagrams,
and in particular the application of reasoning rules, gives
another extension of this work. This will require a dynamic
approach, because if a user requests from a tool that a
reasoning rule is applied to an existing diagram, this
existing diagram will be already drawn and suitably laid
out. To maintain the users’ mental map of the diagram the
application of the rule should endeavour to preserve as
much of the original layout as possible. If some new
components are required, they can be added and
manipulated under the guidance of the diagram metrics,
while the original contours remain unchanged. This would
be a relatively simple extension to the hill climbers in our
current implementation.

Acknowledgements

This work has been partially supported by UK EPSRC
grant GR/R63516.

References

1. G. Battista, P. Eades, R. Tamassia and I. Tollis. Graph
Drawing: Algorithms for the Visualisation of Graphs.
Prentice Hall. 1999.

2. R. Davidson, D. Harel. Drawing Graphs Nicely Using
Simulated Annealing. ACM Trans. Graphics, 15(4):301-331,
1996.

3. P. Eades. A Heuristic for Graph Drawing. Congressus
Numerantium 42. pp. 149-60. 1984.

4. J. Flower, J. Howse, J. Taylor, Nesting in Euler Diagrams.
GT-VMT-02, International Workshop on Graph
Transformation and Visual Modeling Techniques, October,
pp. 99-108. 2002.

5. J. Flower and J. Howse, Generating Euler Diagrams, proc.
Diagrams 2002, Springer Verlag, 61-75.

6. Y. Gil, J. Howse, S. Kent, Constraint Diagrams: a step
beyond UML, Proc. TOOLS USA 1999, IEEE Computer
Society Press, 453-463.

7. D. Harel. On Visual Formalisms. In J. Glasgow, N. H.
Narayan, and B. Chandrasekaran, editors, Diagrammatic
Reasoning, pages 235–271. MIT Press, 1995.

8. J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil, Spider
Diagrams: A Diagrammatic Reasoning System, Journal of
Visual Languages and Computing. Vol. 12, No. 3, Jun 2001,
299-324.

9. Kent Modelling Framework (KMF). Home Page
www.cs.ukc.ac.uk/kmf

10. M. Kaufmann and D. Wagner. Drawing Graphs: Methods
and Models, LNCS 2025. 2001.

11. M.H.W. Hobbs and P.J. Rodgers Representing Space: A
Hybrid Genetic Algorithm for Aesthetic Graph Layout. In
FEA'98 Frontiers in Evolutionary Algorithms, Proceedings of
JCIS'98 The Fourth Joint Conference on Information
Sciences, volume 2, pages 415-418, October 1998.

12. F. Ruskey. A Survey of Venn Diagrams. The Electronic
Journal of Combinatorics. March 2001.

	1: Introduction
	2: The Optimising Process
	3: Metrics
	4: Results
	5: Conclusions and Further Work
	Acknowledgements
	References

