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Abstract An alternative term for these diagrams is “Euler-Venn 
diagrams” but they are often inaccurately called “Venn 
diagrams”. Venn diagrams often look similar, but must 
contain all possible intersections of contours. In contrast, 
Euler diagrams contain any desired combination of 
intersections between the contours. Visualizations of Venn 
diagrams are often created by taking advantage of the 
symmetries present in a Venn structure [12]. 

We present an aesthetics based method for drawing 
Euler diagrams. Aesthetic layout metrics have been found 
to be useful in graph drawing algorithms, which use 
metrics motivated by aesthetic principles that aid user 
understanding of diagrams. We have taken a similar 
approach to Euler diagram drawing, and have defined a set 
of suitable metrics to be used within a hill climbing 
multicriteria optimiser to produce “good” drawings. There 
are added difficulties when drawing Euler diagrams as they 
are made up of contours whose structural properties of 
intersection and containment must be preserved under any 
layout improvements. In this paper we describe our Java 
implementation of a pair of hill climbing variants to find 
good drawings, a set of metrics that measure aesthetics for 
good diagram layout, and issues concerning the choice of 
weightings for a useful combination of the metrics. 

 
 
 

 
Keywords: Euler diagrams, graph drawing, layout metrics. 

 

1: Introduction 

Euler diagrams are used in the representation of a range 
of visual software engineering notations, including 
constraint diagrams and statechart-like diagrams. They are 
also a common method for explaining the basics of set 
theory. 

Euler diagrams consist of a set of contours, drawn as 
simple closed curves. If contours meet, then they meet 
transversely (that is, they may cross but do not touch). At 
any crossing point, only two contours meet. The contours 
split the plane into zones, as shown in Figure 1. Each zone 
can be uniquely identified by the contours which contain it. 
This restriction means that some diagrams become invalid 
because they have “disconnected zones”. 

An atomic Euler diagram has the property that the 
contours form a connected subset of the plane. Here we 
introduce some layout metrics for smoothing atomic Euler 
diagrams, although the principles of the aesthetics and 
metrics work equally for non-atomic (nested) diagrams, see 
Figure 2. 
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To our knowledge, the automated layout of Euler 

diagrams to aid understanding has not been investigated 
before. This paper begins the work needed to introduce 
aesthetics into the process of Euler diagram creation. To 
generate our visualizations we have implemented an 
aesthetics based Euler diagram drawing method which 
takes an initial Euler diagram and turns it into a more 
comprehensible representation with the same structure. The 
resulting diagram is more rounded, smoother and has better 
spacing, but contains the same contours as before. The 
areas into which the diagram is divided also remain the 
same so that if two contours do not meet in the initial 
diagram, then they will not cross in the final diagram. 

 



In order to visualize Euler diagrams from an initial, 
poor layout we define a group of metrics that form our 
aesthetic criteria. These are given individual weights and 
combined, to produce a total score giving the goodness of a 
diagram layout. A hill climbing multicriteria optimizing 
system is then used to change the diagram layout in such a 
way as to reduce the total score of criteria, and so increase 
the comprehensibility of the diagram. 

One motivation for this work comes from the wish to 
construct concrete representations of constraint diagrams 
[6] given an abstract description. These diagrams are used 
to represent logical statements, particularly as applied in 
object-oriented program design.  

The work described here forms part of the “Reasoning 
with Diagrams” project, funded by the UK research council, 
the EPSRC. This project includes in its aims the creation of 
a software tool for the presentation and manipulation of 
constraint diagrams, alongside other notations, including 
UML notations [9]. The application of a reasoning rule will 
transform one diagram into another, and that transformation 
is defined only for the “abstract diagram” (which 
encapsulates the diagram’s structural properties but forgets 
other geometric and topological properties). In order to see 
the results of an application of a reasoning rule, an 
algorithm is needed to take an abstract description of a 
diagram and produce a visual representation of it. Work on 
reasoning rules with diagrams can be found in [8]. 

Euler diagrams can also be used to represent statechart-
like notations [7]. A further application of Euler diagrams is 
in teaching where they are widely used to represent the 
relationships between sets. For example the sets A and B, 
and their intersection A∩B could be represented by the 
diagram given in Figure 1. The work described here could 
be used in the development of educational software for such 
set theoretic concepts. 

This paper builds on existing work in [4,5] which 
presented an algorithm for the creation of "correct" Euler 
diagrams from diagram descriptions. An abstract diagram 
description is used to create a dual graph. A plane 
embedding is found for the graph, and from that drawn dual 
graph, the contours are created using a step called 
circularisation. During this process, checks are made and a 
class of abstract diagrams are identified as undrawable. The 
algorithm is complete in that all undrawable examples are 
identified and shown to be undrawable, and all drawable 
examples are given concrete representations. However this 
work did not address issues of the comprehensibility of 
diagrams. 

Aesthetics based diagram display methods have been 
previously applied to laying out graph diagrams. As with 
the work described here the results of the aesthetics for a 
particular layout are weighted and the total is applied within 
a multicriteria optimising system. The multicriteria systems 
used in graph drawing tend to make a much wider search of 
the problem space than the hill climbing method used here. 
In particular, simulated annealing [2] and genetic 
algorithms [11] have been used. Given the differences 
between graph diagrams and the Euler diagrams described 
in this paper, many of the aesthetics for graphs, such as 
edge crossings and subgraph symmetry, are not applicable 

to our work, however there are some aesthetics that are 
general across many diagrams, such as diagram total area 
and diagram aspect ratio that we have adapted for our use. 
See [1,10] for further discussions of aesthetic criteria for 
graphs. 

Section 2 of this paper describes the iterative process 
used for manipulating diagrams for smoothing, and in 
Section 3 we introduce the various metrics used to guide the 
iteration. In Section 4 we reflect upon the results obtained 
from the implemented algorithm and consider suitable 
relative weightings to make optimum use of the metrics to 
achieve quick and aesthetic results. 

2: The Optimising Process 

Our Euler diagram drawing method works by 
attempting to minimize the total score for a group of 
aesthetic metrics. The total score is calculated as a weighted 
sum of the metrics, hence the task of diagram drawing 
forms a multicriteria optimising problem. 

There are many techniques for solving such 
multicriteria optimising problems. We took a view that 
methods such as genetic algorithms and simulated 
annealing, which are designed to avoid local minima by 
providing a wide search of the problem space, were not 
appropriate to this application. This was firstly because, 
from our experience, this problem space appears to have a 
lower incidence of local minima than is found in many 
applications where wide search is applied and a cooling 
schedule deals with many of these, and secondly because 
these methods operate relatively slowly. As a result we 
decided to search using hill climbing, which only allows 
improvements to the solution, and so finds a solution in 
relatively quick time. 

Contours are represented by polygons. These polygons 
are stored as lists of points. A diagram will be changed in 
two ways: altering the shape of contours by moving 
individual points; or altering the arrangement of contours 
by moving all the points that make up a polygon. 

Although a complete contour could be moved by all its 
points moving individually, complete contours are moved 
in each iteration for two reasons. Firstly, achieving a shift 
of a contour by moving individual points is slower than 
moving the whole contour as a single iterative step. 
Secondly, if only single point steps are allowed, the whole 
contour may never actually be moved, despite the change of 
position improving the total score, because the movement 
of a single point of the contour in that direction may reduce 
the score and so, with a hill climbing strategy, the 
individual movement will never be made. 

The diagram drawing process involves iterating 
through a hill climber a set number of times. We 
implemented two variants of hill climbers, called: 
“RandomHillClimber” and “FastHillClimber”. A single 
iteration of either hill climber involves going through all the 
contours in the diagram and testing each point of a contour 
for a possible improvement, as well as testing whole 
contour shifts for possible improvements. To find an 
improvement a move of either a point or contour is made 
and the total score for the diagram before the move is 

 



compared to the total score for the diagram after the move. 
If the score is better or the same, then the move is retained, 
otherwise if the score is worse, then the point or contour 
moves back to its original position. 

The retention of the diagram structure is a key 
requirement when moving points or contours. The diagram 
structure represents the “meaning” of the diagram - the 
information is exactly which zones are present and which 
are absent. At each iterative step, the new diagram is taken 
and the set of abstract zones is calculated. An abstract zone 
is a set of contour labels listing the contours which contain 
the zone. If a zone is in contour A and contour B and no 
others then its abstract zone is the set {A,B}. A move is 
only allowed if the new set of abstract zones matches the 
initial set. 

 

Figure 3 
 
Figure 3 illustrates a diagram manipulation which 

would be forbidden by the structure checker. A new 
abstract zone has appeared in the resulting diagram. 

 

 
Figure 4 

 
The RandomHillClimber moves a point or contour to a 

random location within a square area of the starting point, 
as shown in Figure 4. We use a square area because it is 
easy to implement, but has a small amount of distortion in 
deciding the direction because diagonals are slightly 
favoured. This distortion could be avoided by finding a 
random location in a circular area about the original 
location. 

 
Figure 5 

 
The FastHillClimber moves each point and contour in 

one of four directions: up, down, left and right, all at the 
same distance (see Figure 5). For a move, each of the four 
directions is tried until a step is found to improve the 

diagram, in which case the move is retained and the 
remaining directions are not tested. 

From initial investigations it was seen that the 
FastHillClimber generally reached a good diagram in fewer 
iterations than the RandomHillClimber. This is probably 
because, although FastHillClimber goes through many 
more tests on a single iteration, the systematic testing of a 
variety of directions ensures that the uphill movement for a 
point or contour is usually found. However for the 
RandomHillClimber, a point may have to wait many 
iterations before the random movement direction is an 
improvement. 

Both hill climbers also have an option to include a 
cooling schedule. The cooling works by reducing the 
movement as the iterations progress. For the first iteration 
the movement is a value specified by the user. For later 
iterations the movement reduces linearly, until it is nearly 
zero for the last iteration. The intended effect of this is to 
move points and contours quite far at the start to quickly 
produce rough versions of good diagrams. As the number 
of iterations increase the diagram is fine tuned with the 
reduced movement allowing layout to be refined within a 
small range. 

The cooling option proved successful when it was 
tested, as without it the movement distance is constant, and 
so has to be set to a fairly small number to allow the 
diagram to be refined. With a small movement distance, 
moving a contour a long way or changing its shape greatly 
takes many steps. Fewer steps are needed if a large intial 
movement is chosen and cooling applied. The cooling 
schedule may also help avoid local minima, as initial large 
jumps of contours past troughs are possible, which cannot 
be passed by the necessarily small movements of the 
uncooled option. 

3: Metrics 

Metrics were used to assess the quality of a diagram. 
Each metric gives a result which is a positive number, 
where zero represents the best score, and larger numbers 
reflect lower quality. 

A set of metrics have been implemented to reflect 
different aesthetic requirements. These metrics are used in 
conjunction by creating a total score built as a weighted 
sum of the metric scores. The iterative process described in 
Section 2 uses this combined metric to assess whether or 
not a change in the diagram is an improvement. 

In this section we describe the range of metrics used in 
the smoothing algorithm, and describe the effects of each 
metric. The metrics are motivated by a sense of diagram 
aesthetics. The first two metrics are driven by consideration 
of the aesthetics of a single contour. A single contour is 
ideally presented as a “round” and “smooth” curve. Since 
contours are drawn as polygons, an ideally “round” contour 
corresponds to a regular polygon. Two metrics can be used 
to give a quality judgement against this aesthetic.  

The ContourRoundnessAngles metric measures the 
variance of the angles within the contours. Let ( )cn  be the 

 



number of points on contour c, ( )cα  be the mean angle in c 
and ( )ciα  be the i th angle in c, then the metric is given by 
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The metric is invariant under diagram scaling, and 
takes into account the number of points a contour has. The 
metric returns zero for a regular polygon. Figure 6 
illustrates the effect of this metric in one example. The 
initial diagram is produced using an algorithm for the 
creation of "correct" Euler diagrams from diagram 
descriptions [4,5]. As with all the diagrams in this section, 
the FastHillClimber with cooling for 30 iterations has been 
used. 

 
Figure 7 

  
Even if a diagram is drawn with “nice” contours, there 

are other aesthetic qualities we require for good readability. 
Contours should be of comparable size, otherwise readers 
may draw misleading conclusions from the different 
contour sizes. Zones should remain clearly visible. All the 
diagrams have so far been for the same example, but in the 
smoothest presentation one zone is disproportionally small. 
The aesthetics concerned with areas are addressed by the 
following metrics. 

  
Initial diagram Roundness using angles 

The ContourArea metric measures the variance of 
contour areas, and factors by the diagram area to ensure the 
metric is dimensionless. Let area

)(carea
 be the mean area within 

a contour of the diagram,  the area within contour 
c, and ( )dn  be the number of contours in the diagram d, 
then the metric is 

 
Figure 6 

 
Although the use of one metric has smoothed the 

contours to a certain extent, we can see that using 
ContourRoundnessAngles alone is not sufficient to produce 
iteration towards a regular polygon. Polygons which have 
(near-)equal angles may still fail the roundness aesthetic, 
due to the presence of imbalanced edge lengths. A second 
metric, ContourRoundnessEdgeLength is derived from the 
variance of the edge lengths of contours. Here, d is the 
diagram, ( )cl  is the mean edge length in contour c, ( )el  is 
the length of edge e in contour c, and  is the number of 
edges (or vertices) in c. 
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The ZoneArea metric calculation considers each zone 
area as a proportion of the combined area. In this formula, 

 is the area of zone z. )(zarea
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The effect of this metric in iteration is to discourage the 

appearance of disproportionally small zones. ContourArea 
and ZoneArea are invariant under scaling. 

Figure 8 shows output created using roundness metrics 
in both cases, with ContourArea metric on the left and both 
area metrics on the right. 

This metric gives zero for regular polygons. Again, the 
metric remains unchanged after scaling because of the 
division by the square of the sum of edge-lengths. 

 Fig. 7 uses the same example as figure 6 and illustrates 
the effects of applying the edge length metric alone and the 
effects of applying a combination of ContourRoundness-
Angles and ContourRoundnessEdgeLength. 

 

 

 



  
After applying roundness 
and contour area metrics 

Also including the zone area 
metric 

 
Figure 8 

 
The aesthetics we have addressed so far require 

diagrams to have round contours, with the areas of 
contours, zones and the entire diagram controlled.  

The last set of aesthetics to add are concerned with the 
closeness of contour arcs. The gap between two parts of 
contours which do not cross should be wide enough that it 
remains clearly visible. We also want to ensure that where 
contours cross, the angle at the crossing point is sufficiently 
great to clearly distinguish the contours. These final 
aesthetics are addressed by the following two metrics. 

The ContourClosenessPts metric measures point-to-
point between distinct contours, summing the reciprocal of 
the distances. The effect of this is to encourage points to 
move apart. Where contours cross, it is inevitable that 
points on different contours become close, and for this 
reason, points close to contour crossings are excluded from 
the summation (this is what’s meant by “some v1 on c1…” 
in the formula below). We also divide by the number of 
points on each contour to ensure that the same effect is 
achieved, independent of the number of points on a contour. 
Here 21 vv −  is the distance between vertices v1 and v2. 
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This metric works well for parts of curves where there 
are many points. If, however, a contour has a long edge 
(despite the ContourRoundnessEdgeLength metric), then 
we also need to move points away from that edge. 

Some vector algebra is used to determine which points 
are “relevant” to which edge. To assess whether a point is 
close to an edge, it is necessary to calculate the 
perpendicular distance from the point to the edge. To 
determine whether or not the perpendicular distance should 
contribute to the metric calculation, project the point onto 
the line along the edge, so that point is relevant to an edge if 
its projection lies on the edge itself. 

This second contour closeness metric also incorporates 
the number of points on a contour and the sum of the 
distances involved, to ensure that it is not biased towards 
contours with many points, and it is invariant under scaling. 

The two contour closeness metrics combine to 
effectively push contours away from each other and 

encourage crossings whose angles are closer to 90°. Figure 
9 shows the effects of these contour closeness metrics. 

 

  
Roundness and closeness 

metrics without area metrics 
Combination of roundness, 

area and closeness 
 

Figure 9 
 
The metrics described so far are: 
(i) ContourRoundnessAngles 
(ii) ContourRoundnessEdgeLength 
(iii) ContourArea 
(iv) ZoneArea 
(v) ContourClosenessPts 
(vi) ContourClosenessEdgePt 
 
Other metrics were implemented: 

• The DiagramAspectRatio metric can be used to force a 
diagram to fit into a given space as a subdiagram. 

• The DiagramArea metric simply measures the area of 
the bounding box of the diagram. The effect of this is to 
encourage diagrams to become smaller. 

• ZoneRoundness metrics are similar to metrics about 
contour roundness but applied to zones. 

• The ZoneConvexness metric employed a simpler 
approach to convexity. Traverse around zone 
boundaries and determine whether the angles are 
turning “left” or “right”. The metric gives a low score 
where the orientations are consistent. 
 
The metrics each have the desired effect when applied 

in isolation. If a sequence of diagrams is considered which 
range from “bad” to “good” then the metrics give 
monotonic results - better diagrams result in lower 
penalties. Such monotonic behaviour can be derived from a 
range of different algebraic expressions. For example, in the 
ContourRoundnessAngles metric, using the absolute value 
instead of the square would give the same ranking of 
preference between a range of diagrams. 
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We chose to use the first expression because it gives a 
stronger response for values which stray far from the mean 
value. 

The metrics are applied as a weighted combination. We 
have achieved one kind of independence between the 
metrics: if a diagram is scaled, the only metric which is 
affected is the DiagramArea metric.  

 



For almost all other diagram manipulations, however, 
the metrics are dependant. When combined in a weighted 
sum, the metric effects interact. In some examples, the 
metrics combine to encourage similar changes (positive 
reinforcement). For example, ContourClosenessPts and 
ContourClosenessEdgePt collaborate well together. In other 
examples the metrics encourage contradictory behaviour 
(negative reinforcement), for example, where one contour is 
contained within another, the ContourArea and ZoneArea 
metrics conflict with each other. Balancing these effects is a 
question of finding a suitable set of weightings to apply and 
this problem is discussed in the next section. 

4: Results 

In this section we present the results of running our 
system on various diagrams. We also include discussions 
about weighting the criteria, and some observations about 
how the process proceeds. 

As well as using the iterative procedure, we do a final 
post processing step on the well drawn diagrams to make 
them more aesthetically pleasing. We add a feature to our 
display that replaces each straight line segment between 
two points in a contour with a Bezier curve. The Bezier 
control points are arranged such that the curve entering a 
point on the contour is continuous with the curve exiting 
the same point. When moving points in hill climbing, it is 
important to check that a curved diagram has the same 
structure as the original polygon diagram, as it is possible 
for the curving process to introduce or remove contour 
intersections. We do this by discovering the maximum area 
that the Bezier curves can occupy and ensure that when the 
polygons are extended with these areas they have the same 
structure, otherwise the drawing cannot be displayed with 
these curves. An alternative approach to smoothing 
contours is to use spline drawing algorithms, but this has 
added complexity when checking diagram structure. 

The systematic discovery of a good set of weights for a 
multicriteria optimisation system is notoriously difficult. In 
this system, weights serve two functions. The first is to 
normalize the criteria, as the numerical output can vary 
greatly. The second is to weight the criteria to indicate their 
importance in the final diagram so, for example, if contour 
roundness is more important than zone area equality, a 
larger number can be assigned to the appropriate weight.  

Weight allocation is further complicated as there are 
interactions between metrics, both positive and negative. 
Where positive reinforcement occurs (i.e. improvement in 
one also implies an improvement in the other), such as 
between the two contour closeness metrics, then the two 
measures should be seen as combined in some way. In the 
case of ContourClosenessEdgePt and ContourClosenessPts, 
which have very coordinated interaction, we regard the 
overall closeness score as a sum of the two separate 
metrics. Where negative interaction is present, as is most 
common between metrics, there is a notion of trade off, as 
score improvement in one metric is likely to reduce the 
score awarded by the other metric. 

Our technique for normalizing the criteria was to 
survey the output of metrics from many runs of several 

diagrams. Although averages could be calculated and used 
for some diagrams, they were not universally applicable, 
and so intelligent adjustment of weights was still required. 

For weighting by importance, our approach was to start 
with what we regarded as the single most important metric 
and apply a fixed weighting. A second metric can then be 
added and its weighting can easily be adjusted until a 
desired balance between the two criteria is achieved. Each 
additional metric is added one by one and its weighting is 
altered in a similar manner. Weightings in the final set may 
then be altered slightly to change the overall importance of 
each metric. Figure 10 shows the interface to the 
experimental software that was produced to investigate the 
settings for the criteria, as well as experiment with hill 
climbers and cooling schedules. The settings for the 
diagrams in this section are shown. A tick to the left of the 
metric indicates that it was applied; metrics with no tick 
were not used. The numbers to the right show the weighting 
for each metric. Cooling was applied and the 
FastHillClimber was run for 80 iterations. 

 

 
 

Figure 10 

 



The variation in numbers mainly reflects the need to 
normalize the output of the metrics. However there is also a 
strong weighting for ContourRoundness and Contour-
RoundnessEdgeLength, so that in a typical diagram before 
drawing, each of these measures might be 10 times greater 
than, for example, ZoneArea. This reflects our view that 
roundness is the primary positive aesthetic in the diagrams. 
The other criteria are broadly speaking given around equal 
weighting. It should be noted that all these comparisons 
vary by diagram as well as during the drawing process. 

Iteration 0 10 30 50 70 80 
ContourRoundness

Angle 111.10 18.70 12.40 5.70 2.90 2.20
ContourRoundness

EdgeLength 85.50 14.70 11.20 7.80 3.50 3.00
ContourCloseness 

EdgePt 3.50 3.00 2.80 2.80 3.00 2.80
Contour 

ClosenessPts 4.60 5.00 5.10 5.60 5.50 5.40
ZoneArea 17.40 12.20 8.90 11.20 11.20 11.20

ContourArea 9.60 6.70 6.70 5.90 5.50 4.90
Total Score 231.90 60.40 47.10 39.00 31.60 29.60

 

  
Initial diagram After 10 iterations 

  
After 30 iterations After 50 iterations 

  
After 70 iterations After 80 iterations (finish) 

 
Finished diagram with Bezier curves 

 
Figure 12 

 
To give an idea of how the drawing progresses and 

how the criteria metrics alter, Figure 11 shows some 
selected stages during the drawing of a diagram. The scores 
for the relevant stages are given in Figure 12. Here the 
values for each metric are shown after they have been 
weighted by the multipliers shown in Figure 10. In these 
diagrams the closeness metrics, even when added together, 
give a relatively low result. This is due to the natural 
separation of the contours in this particular diagram. For 
Figure 12 it can be seen that the total score falls rapidly in 
the first 10 iterations, from 213.9 to 60.4, as easy 
improvements are discovered, and the effect of large moves 
are applied. This is reflected in the top two diagrams in 
Figure 11, where a great difference in the pictures can be 
observed. The later progress is much more gradual, where 
only a slight improvement in the roundness measures, a 
difference of 2.0, between iterations 70 and 80 is observed. 
The relevant diagrams in Figure 11 show two diagrams that 
are very similar, however they are much more refined than 
previous diagrams. We conjecture that the small difference 
in the two diagrams for 70 and 80 iterations is both because 
of the reduction in movement due to cooling and because 
the diagrams are close to an optimum layout. 

The relative values of the individual metrics at the end 
of the optimisation process are markedly different from 
their starting values. In particular, ZoneArea is much higher 
than the rest. It started with a value of 17.4 and finished 
with a value of 11.2, and so is making a large contribution 
to the final total score. This is particularly interesting 
considering other metrics started out much higher, for 
instance, ContourRoundnessAngle has fallen from 111.1 to 
2.2. It is difficult to understand why some metrics may 
reduce less than others, but the interactions between metrics 
could be one factor, so that there may be strong negative 
factors between ZoneArea and the other metrics, so when it 
reduces in value all of the other five metrics may increase 
in value. 

 

 
Figure 11 

 



  
Initial diagram Finish position with 

polygons 

 
Finish position with Bezier curves 

 
Figure 13 

 
Figure 13 shows an Euler diagram, both before and 

after smoothing, and the final drawing with Bezier curves 
applied. Compared to the values in Figure 12, the starting 
metric values are relatively high for the contour closeness 
metrics: ContourClosenessEdgePt gives 11.56 and Contour-
ClosenessPts gives 11.92, so that the combined total is 
23.48, which is greater than the value of ZoneArea at 18.11. 
In this case, their combined total is also greater than the 
ContourArea outcome of 12.60. The initial value of 
ContourRoundnessAngles is 92.88 and ContourRoundness-
EdgeLength is 43.12. The total score is 190.18. So although 
there is a great difference in the relative initial values of the 
metrics for the diagrams in Figures 11 and 12, the result in 
both cases is a rounded, aesthetically pleasing diagram. 

 

  
Initial Diagram Final Position - Polygons 

 
Figure 14: A Venn diagram with 4 contours 

 
Figure 14 shows the before and after diagrams for a 

Venn diagram with four contours. A typical human based 
drawing for this diagram is to take the Venn diagram with 
three contours and add a banana shaped contour to it, 
resulting in three very rounded contours and one misshapen 

one. Our optimisation method has compromised the 
drawing of all four contours, with elements of roundedness, 
as well as slight negative curves in most of the contours. 

5: Conclusions and Further Work 

We have been able to show that by defining a suitable 
set of metrics it is possible to automate the enhancement of 
the layout of Euler diagrams. Our choice of metrics was 
motivated by a set of aesthetics, and the resulting diagrams 
measure well against these aesthetics. 

Future work to extend this approach could include 
more metrics, if new aesthetic criteria can be determined. 
Existing metrics could be tuned by non-linear scaling 
functions, motivated by studies of how the metrics interact 
with each other in a large range of examples. 

The cooling of iteration was an essential step to help 
avoid locally good but globally bad results. Without 
cooling, diagrams would converge to a layout which can’t 
be improved using the same step size, but could be 
improved with a smaller step size. The cooling used was a 
linear reduction in step size over the iteration time. There is 
potential for investigating different kinds of cooling, with 
non-linear alterations in step size. 

One method of allocating weights for the criteria could 
be adapted from genetic algorithms, which often define a 
scale and range for each weight to ensure that they are all 
within a certain range [11]. However, this relies on 
developing a large population of varied attempted solutions. 
It might be possible to generate a test set and method for 
randomising diagrams which could be used within such a 
automatic weighting system. An alternative approach to 
weight allocation is dynamic, using the outcome from each 
metric in previous iterations. For example, if one metric is 
reducing in very large steps, it might be sensible to decrease 
its weighting to give the other metrics some influence over 
the diagram changes. 

Cooling seems to avoid many local minima during the 
improvement of diagrams in the current test set. Further 
example diagrams or the introduction of new aesthetics may 
require the development of a more sophisticated 
multicriteria optimisation method such as simulated 
annealing or a genetic algorithm. Simulated annealing 
introduces random negative movements and a genetic 
algorithm would generate populations of diagrams, merging 
and mutating selected members to produce later 
generations. Research questions for these methods include 
representing members of the population for a genetic 
algorithm approach, which are usually represented in a 
linear string based form, and investigating the trade off of 
wide searches against performance. 

From looking at human based drawing of Euler 
diagrams its clear that there is a tendency to draw some 
contours very well and fit the rest in afterwards. This may 
be a limitation of the way they are drawn, or it may be 
aesthetic preference. If it is because of the latter, an 
automatic Euler diagram drawing mechanism that 
mimicked this approach has the potential to produce good 
diagram visualizations quickly by taking drawings of 
preprepared patterns of common Euler diagrams and 

 



 

incrementally fitting in new contours based on user defined 
rules of drawing. 

Variations on well known graph drawing algorithms 
may also be used to generate drawing of Euler diagrams. 
For instance, with the contours represented as a cyclic 
graph, force directed techniques could easily draw rounded 
contours. The challenge is to a develop a force model that 
effectively deals with interactions between contours and so 
produce good zones. An alternative force approach, which 
might be combined with other methods, would be to 
overlay the diagram with a second graph, the planar dual of 
the diagram, and apply a force model upon it. This should 
distribute the zones evenly. 

The work described here is in the context of atomic 
Euler diagrams. The same aesthetics would hold in the 
context of nested Euler diagrams, and most metrics would 
work in this extended context. The metrics which refer to 
zones of a diagram would have to be reconsidered - in a 
nested diagram, a zone may have internal as well as other 
bordering contours. 

It would be more efficient to smooth atomic 
components of a nested diagram, then reassemble the 
whole, but then accommodation must be provided in zones 
which will contain a subdiagram. The ZoneArea metric can 
be easily adapted to allow different weightings for different 
zones - guiding some zones to increase in size more than 
others. If a zone is to contain a subdiagram, it would be 
useful to include a ZoneRoundness or ZoneConvexness 
metric. Again, these metrics can be weighted to affect some 
zones more than others. Moreover, the subdiagram must be 
made to fit within the zone, and here a rectangle needs to be 
found in the zone, and a strongly weighted aspect ratio 
metric applied to the subdiagram. 

Future implementations of the smoothing work should 
allow for nested diagram examples, and this will increase 
the number of suitable examples against which we can 
assess the smoothing approach. 

The application of this work in constraint diagrams, 
and in particular the application of reasoning rules, gives 
another extension of this work. This will require a dynamic 
approach, because if a user requests from a tool that a 
reasoning rule is applied to an existing diagram, this 
existing diagram will be already drawn and suitably laid 
out. To maintain the users’ mental map of the diagram the 
application of the rule should endeavour to preserve as 
much of the original layout as possible. If some new 
components are required, they can be added and 
manipulated under the guidance of the diagram metrics, 
while the original contours remain unchanged. This would 
be a relatively simple extension to the hill climbers in our 
current implementation. 
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