
 Open access Proceedings Article DOI:10.1109/COMPSACW.2010.70

LAYSI: A Layered Approach for SLA-Violation Propagation in Self-Manageable Cloud
Infrastructures — Source link

Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Schahram Dustdar ...+3 more authors

Institutions: Vienna University of Technology

Published on: 19 Jul 2010 - Computer Software and Applications Conference

Topics: Service-level agreement, Cloud computing and Autonomic computing

Related papers:

Low level Metrics to High level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and SLA
parameters in cloud environments

 Towards autonomic detection of SLA violations in Cloud infrastructures

 SLA validation in layered cloud infrastructures

 QoS-Aware Clouds

 Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach

Share this paper:

View more about this paper here: https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-
3pijgj7m4g

https://typeset.io/
https://www.doi.org/10.1109/COMPSACW.2010.70
https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g
https://typeset.io/authors/ivona-brandic-1fo4jhr9t3
https://typeset.io/authors/vincent-c-emeakaroha-lqfwcp7vl4
https://typeset.io/authors/michael-maurer-3w7u6rw1bz
https://typeset.io/authors/schahram-dustdar-jahxn0g6t4
https://typeset.io/institutions/vienna-university-of-technology-2d4hwglj
https://typeset.io/conferences/computer-software-and-applications-conference-3afr4lgm
https://typeset.io/topics/service-level-agreement-3nqrgl4d
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/autonomic-computing-18ku7ev4
https://typeset.io/papers/low-level-metrics-to-high-level-slas-lom2his-framework-349fa5flvs
https://typeset.io/papers/towards-autonomic-detection-of-sla-violations-in-cloud-2wllyc92vz
https://typeset.io/papers/sla-validation-in-layered-cloud-infrastructures-dwrw7z37j3
https://typeset.io/papers/qos-aware-clouds-29o4sllr4j
https://typeset.io/papers/online-qos-modeling-in-the-cloud-a-hybrid-and-adaptive-multi-2rgmcopmbb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g
https://twitter.com/intent/tweet?text=LAYSI:%20A%20Layered%20Approach%20for%20SLA-Violation%20Propagation%20in%20Self-Manageable%20Cloud%20Infrastructures&url=https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g
https://typeset.io/papers/laysi-a-layered-approach-for-sla-violation-propagation-in-3pijgj7m4g

LAYSI: A Layered Approach for SLA-Violation Propagation in Self-manageable

Cloud Infrastructures

Ivona Brandic, Vincent C. Emeakaroha,

Michael Maurer, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

Vienna, Austria

{ivona,vincent,maurer,dustdar}@infosys.tuwien.ac.at

Sandor Acs, Attila Kertesz, Gabor Kecskemeti

MTA SZTAKI, P.O. Box 63

1518 Budapest, Hungary

{acs,attila.kertesz,kecskemeti}@sztaki.hu

Abstract—Cloud computing represents a promising comput-
ing paradigm where computing resources have to be allocated
to software for their execution. Self-manageable Cloud in-
frastructures are required to achieve that level of flexibility
on one hand, and to comply to users’ requirements speci-

fied by means of Service Level Agreements (SLAs) on the
other. Such infrastructures should automatically respond to
changing component, workload, and environmental conditions
minimizing user interactions with the system and preventing
violations of agreed SLAs. However, identification of sources
responsible for the possible SLA violation and the decision
about the reactive actions necessary to prevent SLA violation is
far from trivial. First, in this paper we present a novel approach
for mapping low-level resource metrics to SLA parameters
necessary for the identification of failure sources. Second,
we devise a layered Cloud architecture for the bottom-up
propagation of failures to the layer, which can react to sensed
SLA violation threats. Moreover, we present a communication
model for the propagation of SLA violation threats to the
appropriate layer of the Cloud infrastructure, which includes
negotiators, brokers, and automatic service deployer.

Keywords-Cloud Computing; SLA management; autonomic
computing;

I. INTRODUCTION

Cloud computing can be defined as the convergence and

evolution of several concepts from virtualization, distributed

application design, Grid and enterprise IT management to

enable a more flexible approach for deploying and scal-

ing applications [3], [19], [18]. Service provisioning in

the Cloud is based on Service Level Agreements (SLAs)

representing a contract signed between the customer and the

service provider including the non-functional requirements

of the service specified as Quality of Service (QoS). SLA

considers obligations, service pricing, and penalties in case

of agreement violations.

Flexible and reliable management of SLA agreements

is of paramount importance for both, Cloud providers and

consumers. On one hand, preventions of SLA violations

ahead of time can avoid unnecessary penalties a provider

has to pay in case of violations. Sometimes, simple actions

like migrating VMs to available nodes can prevent SLA

violations. On the other hand, based on flexible and timely

reactions to possible SLA violations, interactions with the

users can be minimized increasing the chance for Cloud

computing to take roots as a flexible and reliable form of

on demand computing.

However, current Cloud infrastructures lack appropriate

mechanisms for the self-management of SLAs. Large body

of work concentrates on monitoring of resource metrics of

Cloud resources, which however cannot be easily mapped to

SLA parameters [1], [2]. There is also considerable body of

work done in the area of SLA management in general, which

however is not related to Cloud infrastructures [15]. Thus,

very little work has been done on identifications of SLA

violations ahead of time, before they happen. Furthermore,

there is a lack of appropriate mechanisms to identify which

components of the Cloud infrastructure have to react in order

to avert SLA violations.

In this paper we present LAYSI - A Layered Approach

for Prevention of SLA-Violations in Self-manageable Cloud

Infrastructures, which is embedded into the FoSII project

(Foundations of Self-governing ICT Infrastructures) [8], an

ongoing research project developing self-adaptable Cloud

services. The LAYSI framework represents one of the build-

ing blocks of the FoSII infrastructure facilitating future SLA

violation detection and propagation of the reactive actions

to the appropriate layer of the Cloud infrastructure. We

discuss a layered Cloud architecture utilizing hierarchically

and loosely coupled components like negotiator, broker or

automatic service deployer. For the decision making we use

knowledge databases proposing reactive actions by utilizing

case based reasoning - a process of solving problems based

on past experience. Based on the novel communication

model we present how possible SLA violations can be iden-

tified and propagated to the layer of the Cloud infrastructure,

which can execute appropriate reactive actions in order to

advert SLA violations.

The main contributions of this paper are: (i) discussion

on the solution for mapping low-level resource metrics to

SLA parameters; (ii) description of the integrated SLA-

aware Cloud architecture suitable for the propagation of

the SLA violation threats; (iii) concept for the realization

2010 34th Annual IEEE Computer Software and Applications Conference Workshops

978-0-7695-4105-1/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSACW.2010.70

391

2010 34th Annual IEEE Computer Software and Applications Conference Workshops

978-0-7695-4105-1/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSACW.2010.70

365

of the knowledge database using case based reasoning; (iv)

architecture for the autonomic management and propagation

of SLA violation threats.

The rest of this paper is organized as follows: Section

II presents the related work. In Section III we present

the architecture for the autonomic management of Cloud

services and the approach for mapping low-level resource

metrics to SLA parameters. In Section IV we discuss the

LAYSI architecture. In particular we discuss the concept of

knowledge databases and the SLA manager responsible for

the autonomic management of SLA violation threats. Section

V presents our conclusions and describes the future work.

II. RELATEDWORK

We classify related work into (i) monitoring of

Cloud/Grid/Web services [1], [2]; (ii) SLA management

including QoS management [9], [6], [14]; (iii) and self-

management of Cloud/Grid/SOA services [15]. Since there

is very little work on monitoring, SLA management, and

self-mamagement in Cloud systems we look particularly into

related areas, i.e., Grid and SOA based systems.

GridRM is an open-source project trying to provide a

unified way of accessing different monitored data sources.

Every domain needs a Java-based gateway to collect and

normalize events from the local monitoring system. How-

ever, it does not provide mapping of monitored values to

SLA parameters [1].

Frutos et al. [9] discuss the main approach of the EU

project BREIN [6]: to develop a framework, which extends

the characteristics of computational Grids by driving their

usage into new target areas in the business domain. BREIN

deals with the provision of the basic infrastructure these

new business models need: enterprise system interoperabil-

ity, flexible relationships, dynamicity in business processes,

security mechanisms, and enhanced SLA and contract man-

agement. However, BREIN applies SLA management to

Grids, whereas we target SLA management in Clouds.

Koller et al. [14] discuss autonomous QoS management

using a proxy-like approach. The implementation is based

on WS-Agreement. Thereby, SLAs can be exploited to

define certain QoS parameters that a service has to maintain

during its interaction with a specific customer. However,

their approach is limited to Web services and does not

consider requirements of Cloud Computing infrastructures

like scalability.

Based on the defined workflow adaptations as MAPE1

decision making [15], Lee et al. discuss the application of

autonomic computing to the adaptive management of Grid

workflows.

III. FOSII INFRASTRUCTURE

In this section we present an overview of the FoSII

infrastructure and its relation to the LAYSI framework. In

1Monitoring, Analysis, Planning, Execution

Figure 1. FoSII infrastructure

particular we describe the mapping of low level metrics

to high level SLAs. Thereafter, we discuss the SLA-based

layered Cloud infrastructure.

A. FoSII overview

The FoSII infrastructure is used to manage self-adaptable

Cloud services following the MAPE lifecycle. Each FoSII

service implements three interfaces: (i) negotiation interface

necessary for the establishment of SLA agreements, (ii)

job-management interface necessary to start the job, upload

data, and similar job management actions, and (iii) self-

management interface necessary to devise actions in order

to prevent SLA violations.

The self-management interface shown in Figure 1 is

implemented by each Cloud service and specifies operations

for sensing changes of the desired state and for reacting

to those changes. The host monitor sensors continuously

monitor the infrastructure resource metrics (input sensor

values arrow a in Figure 1) and provide the autonomic

manager with the current resource status. The run-time

monitor sensors sense future SLA violation threats (input

sensor values arrow b in Figure 1) based on resource usage

experiences and predefined threat thresholds. The mapping

between the sensed host values and the values of the SLA

parameters is described next.

B. Mapping of Low level Metrics to High-level SLAs

In order to explain our mapping approach we consider

the Service Level Objectives (SLOs) as shown in Table I

including incoming bandwidth, outgoing bandwidth, storage,

and availability.

As shown in Figure 1 we distinguish between host mon-

itor and runtime monitor. Resources are monitored by the

host monitor using arbitrary monitoring tools (e.g. Ganglia

[17]). Resource metrics include, e.g., down-time, up-time,

available storage. Based on the predefined mappings stored

in a database, monitored metrics are periodically mapped to

392366

SLA Parameter Value

Incoming Bandwidth (IB) > 10 Mbit/s

Outgoing Bandwidth (OB) > 12 Mbit/s

Storage (St) > 1024 GB

Availability (Av) ≥ 99%

Table I
SAMPLE SLA PARAMETER OBJECTIVES

the SLA parameters. An example SLA parameter is service

availability Av, (as shown in Table I), which is calculated
using the resource metrics downtime and uptime and the
mapping rule looks like the following:

Av = (1 − downtime/uptime) ∗ 100
The mapping rules are defined by the provider using

appropriate Domain Specific Languages (DSLs). These rules

are used to compose, aggregate, or convert the low-level

metrics to form the high-level SLA parameter including

mappings at different complexity levels, e.g., 1 : n or n : m.
The concept of detecting future SLA violation threats is

designed by defining a more restrictive threshold than the

SLA violation threshold known as threat threshold. Thus,

calculated SLA values are compared with the predefined

threat threshold in order to react before SLA violations

happen. The generation of threat thresholds is far from trivial

and is part of our ongoing work including sophisticated

methods for the system state management as described in

Section IV-A.

As described in [7] we implemented a highly scalable

framework for mapping Low Level Resource Metrics to

High Level SLA Parameters (LoM2HiS framework) facilitat-

ing the exchange of large numbers of messages. We designed

and implemented a communication model based on the Java

Messaging Service (JMS) API, which is a Java Message

Oriented Middleware (MOM) API for sending messages

between two or more clients. We use Apache ActiveMQ

as a JMS provider that can manage the sessions and queues.

Once possible SLA violation threats are detected, reactive

actions are taken in order to prevent real SLA violations.

In the following we discuss the layered Cloud architecture

followed by the discussion of the novel concept for the SLA

violation threat propagation.

C. SLA-based Layered Cloud Infrastructures

In the following we present a unified service architecture

that builds on three main areas [11]: agreement negotiation,

brokering, and service deployment using virtualization. We

suppose that service providers and service consumers meet

on demand and usually do not know about the negotiation

protocols, document languages or required infrastructure of

the potential partners. The architectures’ components are

loosely coupled using SLAs between the components. Thus,

in case of failures components can be exchanged easily

by renegotiating with another instance, e.g. another broker.

Figure 2. LAYSI infrastructure

Figure 2 shows our proposed general architecture. In the

following we discuss the actors of the proposed architecture:

• User: A person, who wants to use a service, an agent

or software application acting on behalf of a user.

• Meta Negotiator: A component that manages SLAs. It

mediates between the user and the meta-broker, selects

services, and resources considering prescribed proto-

cols, negotiation strategies, and security restrictions as

described in [5].

• Meta Broker: Its role is to select a broker that is

capable of deploying a service with the specified user

requirements as described in [12].

• Broker: It interacts with virtual or physical resources,

and in case the required service needs to be deployed it

interacts directly with the Automatic Service Deployer

(ADS) [13].

• Automatic Service Deployer: It installs the required

service on the selected resource on demand as described

in [10].

• Service: The service that users want to deploy and/or

execute is described using the concept of virtual appli-

ances.

• Resource: Physical machines, network, or storage

elements on which virtual machines can be de-

ployed/installed.

The SLA negotiation is done as following: The User starts

a negotiation for executing a service with certain QoS re-

quirements. Then, the Meta negotiator asks the Meta broker,

if it could execute the service with the specified requirements

including required negotiation or security protocols. The

Meta broker matches the requirements to the properties of

the available Brokers and replies with an acceptance or a

different offer for renegotiation. The aforementioned steps

may continue for renegotiations until both sides agree on

the terms (to be written to an SLA document) following

the specific negotiation strategy or auction. Thereafter, the

User calls the service with the Service Description (SD) and

393367

the agreed SLA. SDs describe a master image by means of a

self-contained software stack (OS, middleware, applications,

data, and configuration) that fully captures the functionality

of the component type. Moreover, the SD contains infor-

mation and rules necessary to automatically create service

instances from a single parametrized master.

Meta-negotiator passes the SD and the possibly trans-

formed SLA (using a protocol the selected broker under-

stands) to the Meta broker. The meta broker calls the

selected Broker with the SLA and a possibly translated SD

(to the language of the Broker). The Broker executes the

service with respect to the terms of the SLA. The ASD

monitors the states of the virtual resources and deploys

services, as already stated in Figure 1. As shown in Figure

2 SLA generation is done top-down as already described.

Management of the SLA threat violation is done bottom-up

on behalf of the SLA manager, which is implemented by

each component of the SLA layered architecture.

Table II shows the implementation choices for the layered

Cloud architecture and the possible reactive actions each

layer can perform. We use Meta Negotiator [4], Meta Broker

[12], GTBroker [13] and Automatic Service Deployer [10]

components, which have already been used and evaluated to

build an SLA-based resource virtualization environment for

on-demand service provision [11].

IV. LAYSI: A LAYERED APPROACH FOR

SLA-VIOLATION PROPAGATION

In the following we present an architecture for the propa-

gation of the sensed critical SLAs, which might be violated

in the future. In particular we focus on two components:

the knowlege database providing reactive action for possi-

ble detected SLA violation threats considering SLA threat

thresholds and the current system status (Section IV-A), and

the SLA manager propagating the sensed SLA violation

threats to the appropriate layer of the infrastructure for

preventive actions (Section IV-B).

A. Knowlegde DBs

For the decision making we use knowledge databases

proposing the reactive actions by utilizing case based reason-

ing. Case Based Reasoning (CBR) is the process of solving

problems based on past experience. It tries to solve a case

(a formatted instance of a problem) by looking for similar

cases from the past and reusing the solutions of these cases

to solve the current one. In general, a typical CBR cycle

consists of the following phases assuming that a new case

has just been received: (i) retrieve the most similar case

or cases to the new one, (ii) reuse the information and

knowledge in the similar case(s) to solve the problem, (iii)

revise the proposed solution, (iv) retain the parts of this

experience likely to be useful for future problem solving.

As shown in Figure 3, a complete case consists of (a)

the ID of the application being concerned (line 2, Figure 3);

(b) the initial case measured by the monitoring component

1. (

2. (App, 1),

3. (

4. ((Incoming Bandwidth, 12.0),

5. (Outgoing Bandwidth, 20.0),

6. (Storage, 1200),

7. (Availability, 99.5),

8. (Running on PMs, 1)),

9. (Physical Machines, 20)

10.),

11. "Increase Incoming Bandwidth share by 5%",

12. (

13. ((Incoming Bandwidth, 12.6),

14. (Outgoing Bandwidth, 20.1),

15. (Storage, 1198),

16. (Availability, 99.5),

17. (Running on PMs, 1)),

18. (Physical Machines, 20)

19.),

20. 0.002

21.)

Figure 3. CBR example

and mapped to the SLAs consisting of the SLA parameter

values of the application and global Cloud information like

number of running virtual machines (lines 4-10, Figure 3);

(c) the executed action (line 11, Figure 3); (d) the resulting

case measured some time interval later (lines 12-18, Figure

3) as in (b); and (e) the resulting utility (line 20, Figure 3).

We distinguish between two working modes of the knowl-

edge DB: active and passive. In the active mode system

states and SLA values are periodically stored into the

DB. Thus, based on the observed violations and correlated

systems states, cases are obtained as input for the knowledge

DB. Furthermore, based on the utility functions, we evalu-

ate the quality of the reactive actions and generate threat

thresholds. In the passive mode notification are sent by the

SLA manager (or LoM2HiS framework in case the layer=1)

as described in Section III-B.

However, the output of the DB does not tell anything

about how to react to the proposed actions as for example

the suggested action Increase Incoming Bandwidth share by

5% depicted in Figure 3. An obvious reaction would be

to increase the bandwidth share by the particular resource.

However, if this is not possible due to resource restriction,

current load, and services with competing priorities, the

suggested action has to be propagated to the next layer.

Then, in the next layer ASD could migrate the virtual

appliance as specified in Table II (reactive actions of ASD:

suspend, shut-down, and migrate VAs). This propagation can

be continued until a specific layer is able to react to the

particular suggested action.

In the following we discuss how the SLA manager can

propagate the desired changes to the particular layer of the

infrastructure, which can take appropriate actions.

B. SLA Manager

The SLA manager implements the component’s self-

management interfaces and invokes the self-management

394368

Layer Sample Implementation Actions

Meta Negotiator Meta Negotiator in Brandic et al. [4] start new meta-negotiation

Meta Broker Meta-Broker in Kertesz et al. [12] allocate new broker

Broker GTBroker in Kertesz et. al. [13] start, stop, and suspend ASD instances

Automatic Service Deployment (ASD) ASD in Kecskemeti et al. [10] suspend, shut-down, and migrate virtual appliances (VAs)

Table II
IMPLEMENTATION CHOICES AND THE POSSIBLE REACTIVE ACTIONS OF THE PARTICULAR LAYER

Figure 4. SLA Manager

interface of the upper layer in case the announced SLA vio-

lation threat cannot be solved by the layer’s SLA manager.

The SLA manager considers two main parts: the Notification

Broker implemented using the WS-Notification mechanism

and the Autonomic Manager managing the access to the

knowledge DB, accessing the job management interfaces of

the component, and making the decision whether the SLA

violation threats can be handled by the layer or not.
Autonomic Manager: The Autonomic Manager re-

ceives notifications from the lower layer or from the

LoM2HiS framework in case the layer=1. Thereafter, the

knowledge DB is accessed in order to receive states, which

should be achieved. The decision maker consists of two

parts: the layer independent part managing the DB access

and notifications, i.e., the generic part and the layer de-

pendent part, which implements access to the components’

interfaces e.g., in order to take reactive actions. The user

can customize the autonomic manager, e.g., taking into

account the job management interface of the component by

modifying the component’s dependent part using Domain

Specific Languages (DSLs) (step 1, Figure 4). Customization

could include for example utilization of the reactive actions

of a component as shown in Table II. The notification

mechanism for the propagation of SLA violation threats is

explained next.
Notification Broker: The SLA manager employs the

WS-Notification mechanism [21], which provides a set of

standard interfaces to use the notification design pattern

with services. WS-Notification is defined by three specifi-

cations: (i) WS-Topics; (ii) WS-BaseNotification; and (iii)

WS-BrokeredNotification. The WS-Topics present a set of

items of interest for subscription. Topics are very ver-

satile and highly customizable. They even allow us to

create topic trees, where a topic can have a set of child

topics. WS-BaseNotification defines the standard interfaces

used by the notification producer and consumer. The WS-

BrokeredNotification delivers notification from the producer

to the consumer through an intermediate entity (broker). The

SLA manager is also equipped with a queueing network. The

queues are used to temporarily store the notifications for pro-

cessing. With the queueing networks, there is the possibility

of selectively processing higher priority notifications against

the lower priority ones.

Decision makers can subscribe different topics as shown

in Figure 4, step 2 and 3. Once the SLA violation threat is

detected the autonomic manager tries to find a reactive action

by accessing the DB utilizing case based reasoning (step

5, Figure 4). The decision components decides whether the

SLA violation threats can be deferred. If the SLA violation

threats cannot be deferred at that certain layer, the SLA

violation threats are propagated by publishing a message to

the specific topic, e.g., to topic service availability as shown

in step 6, Figure 4. Thereafter, all listeners (i.e., components

of the layer n + 1) are notified, step 7, Figure 4. The topics
are organized in a hierarchical way considering the learning

function of the CBR database. Based on the observed sensed

violations, reactive actions, and the utility of the reactive

action we define dependencies of the reactive actions which

can be reflected in the topic hierarchy. The development

of the advanced techniques for the automatic definition and

utilizations of the topics hierarchies is subject of our ongoing

work.

The LoM2HiS framework publishes monitored SLA pa-

rameters as a specific message of a WS-Topic. Thereafter,

preventive actions of the SLA violation threats should be

notified and handled at the ASD layer. In case the SLA

violation threats can not be handled at layer n, the SLA
manager publishes the problem to layer n + 1. In the worst
case, this propagation continues to the top level, i.e., the

Meta Negotiator, which informs the user about the problem

for a possible renegotiation or aborting the service execution.

395369

V. CONCLUSION AND FUTURE WORK

In this paper we presented how possible and costly SLA

violations can be prevented by utilizing a layered SLA

based Cloud infrastructure. Based on the novel approach for

mapping low-level resource metrics to SLA parameters we

can identify possible SLA violations. We devised a layered

Cloud architecture for the bottom-up propagation of failures

to the layer, which can react to sensed SLA violation threats.

Moreover, we presented a communication model for the

propagation of SLA violation threats to the appropriate layer

of the Cloud infrastructure, which includes meta-negotiators,

brokers, and automatic service deployer.

In the future we will integrate learning functions into the

CBR databases in order to identify whether the propagation

had a positive impact on the prevention of SLA violations.

We plan to integrate trade-off analysis to examine how costly

the interventions for the possible future SLA violations are

instead of just reacting to occurred violations.

ACKNOWLEDGMENT

The work described in this paper was partially supported

by the Vienna Science and Technology Fund (WWTF) under

grant agreement ICT08-018 Foundations of Self-governing

ICT Infrastructures (FoSII), and by the European Commu-

nity’s Seventh Framework Programme FP7/2007-2013 under

grant agreement 215483 (S-Cube).

REFERENCES

[1] M. Baker and G. Smith. GridRM: A resource monitoring
architecture for the grid. Lecture Notes in Computer Science,
Vol. 2536, pp. 268-273, 2002

[2] W. Fu and Q. Huang. GridEye: A service-oriented grid moni-
toring system with improved forecasting algorithm. GCCW’06,
pp. 5-12, 2006.

[3] R. Buyya, C.S Yeo, S. Venugopal, J.Broberg, and I. Brandic.
Cloud computing and emerging IT platforms: Vision Hype,
and Reality for delivering computing as the 5th utility. Future
Generation Computer Systems Vol. 25(6) pp. 599-616, June
2009.

[4] I. Brandic, D. Music, S. Dustdar. Service Mediation and
Negotiation Bootstrapping as First Achievements Towards Self-
adaptable Grid and Cloud Services. GMAC09 in conjunction
with ICAC09, Barcelona, Spain, June 15-19, 2009.

[5] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya.Towards
a Meta-Negotiation Architecture for SLA-Aware Grid Services.
SENOPT08, in conjunction with International Conference on
High Performance Computing 2008 (HiPC 2008), Bangalore,
India, December 17 - 20, 2008.

[6] Brein Project (Business objective driven reliable and intelligent
Grids for real business), http://www.eu-brein.com 2009

[7] V. C. Emeakaroha, I.Brandic, M. Maurer, S. Dustdar. Low
Level Metrics to High Level SLAs - LoM2HiS framework:
Bridging the gap between monitored metrics and SLA pa-
rameters in Cloud environments. The 2010 High Performance
Computing and Simulation Conference (HPCS 2010) June 28-
July 2, 2010, Caen, France.

[8] Foundations of Self-governing ICT Infrastructures (FoSII),
http://www.infosys.tuwien.ac.at/linksites/FOSII

[9] H.M. Frutos and I. Kotsiopoulos. BREIN: Business Objective
Driven Reliable and Intelligent Grids for Real Business. In-
ternational Journal of Interoperability in Business Information
Systems, 3(1) 2009.

[10] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, T.
Delaitre. Automatic Service Deployment Using Virtualisation.
16th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP 2008), Toulouse,
France, 13-15 February 2008.

[11] A. Kertesz, G. Kecskemeti, I. Brandic. An SLA-based Re-
source Virtualization Approach for On-demand Service Pro-
vision. VTDC 2009, In conjunction with ICAC09, Barcelona,
Spain, June 15-19, 2009.

[12] A. Kertesz and P. Kacsuk. GMBS: A New Middleware Service
for Making Grids Interoperable. Future Generation Computer
Systems, Volume 26, Issue 4, April 2010, Pages 542-553.

[13] A. Kertesz, G. Sipos, P. Kacsuk. Multi-Grid Brokering with
the P-GRADE Portal. In Post-Proceedings of the Austrian Grid
Symposium (AGS’06), pp. 166-178, OCG Verlag, Austria,
2007.

[14] B. Koller, L. Schubert. Towards autonomous SLA manage-
ment using a proxy-like approach. Multiagent Grid Syst. Vol.3,
2007.

[15] K. Lee, R. Sakellariou, N. W. Paton, A. A. A. Fernandes.
Workflow Adaptation as an Autonomic Computing Problem.
WORKS’07 pages 29-34. in conjunction with HPDC 2007,
Monterey, California, USA, 2007.

[16] G. Lin, G. Dasmalchi, J. Zhu. Cloud Computing and IT as
a Service: Opportunities and Challenges. IEEE International
Conference on Web Services (ICWS08), Beijing China, 23-26
Sept. 2008.

[17] M.L Massie, B.N Chun and D.E Culler. Ganglia distributed
monitoring system: design implementation, and experience.
Parallel Computing, Vol. 30 pp. 817-840, 2004.

[18] D. Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S. So-
man, L. Youseff, D. Zagorodnov. The Eucalyptus Open-source
Cloud-computing System. Proceedings of Cloud Computing
and Its Applications 2008, Chicago, Illinois, October 2008.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.
M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres,
M. B.-Y., W. Emmerich, F. Galan. The RESERVOIR Model
and Architecture for Open Federated Cloud Computing., IBM
Journal of Research and Development, 53(4) (2009)

[20] R. Wolski, N.T. Spring and J. Hayes. The network weather
service: A distributed resource performance forecasting service
for metacomputing. In Journal of Future Generation Computing
Systems, Vol. 15, pp. 757-768, 1999.

[21] WS-Notification, http://www.ibm.com/developerworks/
webservices/library/specification/ws-notification

396370

