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lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology.

Similar to the read across procedure in toxicological risk assessment, lazar creates

local QSAR (quantitative structure–activity relationship) models for each compound to

be predicted. Model developers can choose between a large variety of algorithms for

descriptor calculation and selection, chemical similarity indices, and model building.

This paper presents a high level description of the lazar framework and discusses the

performance of example classification and regression models.
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INTRODUCTION

Computer-based (in silico) predictions are gaining acceptance in

toxicological risk assessment, but there is still a lot of reserva-

tion toward in silico methods, especially from toxicologists with

a biological or medical background. Apart from obvious barriers

between the involved disciplines, we attribute this reservation to a

variety of scientific, technical, and social factors:

SCIENTIFIC LIMITATIONS

• Limited capability of some quantitative structure–activity rela-

tionship (QSAR) algorithms (e.g., linear regression) to handle

complex relationships

• Missing, improper, ambiguous, or poorly reproducible defini-

tions of applicability domains

• Improper application of validation procedures, ignorance of

applicability domains1

• Poor validation of applicability domain concepts

• Poor consideration of biological mechanisms

• Irreproducible results, because proprietary algorithms are not

disclosed

TECHNICAL LIMITATIONS

• Hard to use and unintuitive software

• Standalone solutions with poor integration of external

databases, ontologies etc.

SOCIAL LIMITATIONS

• Insufficient translation of statistics/data mining/QSAR con-

cepts into toxicological terminology

• Poor understanding of the significance of validation results1

• Poor and/or too technical documentation of algorithms, which

is hard to understand for non-computer scientists

1We have submitted a separate paper on this subject on this topic, for this reason we

will cover validation only superficially in this manuscript.

We have developed lazar (shortcut for lazy structure–activity

relationships) approximately 5 years ago in order to address some

of these shortcomings and to fulfill the requirements of the Organ-

isation for Economic Co-operation and Development (OECD)

principles for QSAR validation (Organisation for Economic Co-

operation and Development [OECD], 2004b). In the meantime

it has undergone several revisions and rewrites and ended up as

a completely modular framework for predictive toxicology, based

on the OpenTox (Hardy et al., 2010) framework. This paper doc-

uments the main modifications of lazar, implementation details,

new algorithms, and experiments performed since the original

lazar publications (Helma, 2006; Maunz and Helma, 2008). It is

intended as a high level overview for readers without a background

in computer science or data mining. Readers interested in algo-

rithmic details should consult the original literature cited in the

references, and the source code documentation at Github2.

METHODS

OVERVIEW

The main objective of lazar is to provide a generic tool for the pre-

diction of complex toxicological endpoints, like carcinogenicity,

long-term, and reproductive toxicity. As these endpoints involve

a huge number of complex (and probably unknown) biological

mechanisms, lazar does not intend to model all involved biologi-

cal processes (as in molecular modeling or various systems biology

approaches), but follows a data driven approach.

lazar uses data mining algorithms to derive predictions for

untested compounds from experimental training data. Any dataset

with chemical structures and biological activities can be used as

training data. This makes lazar a generic prediction algorithm for

any biological endpoint with sufficient experimental data.

At present, lazar does not consider chemical, biological, or

toxicological expert knowledge, but derives computational mod-

els from statistical criteria. Such an approach has the distinct

2http://github.com/opentox/algorithm
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advantage that incomplete, wrong, or incorrectly formulated back-

ground knowledge cannot affect predictions, because they are

based on objective, traceable, and reproducible statistical criteria3.

Although lazar does not use explicit background knowledge for

predictions, it was created with an intent to support mechanistic-

based risk assessment. For this purpose, rationales for predictions

are presented together with a hypothesis about possible biologi-

cal mechanisms that is based on statistically significant properties

of the underlying data4. As both, predictions and mechanisms,

3Expert knowledge, encoded in software is frequently used in predictive toxicol-

ogy. Such expert systems build QSAR generalizations from individual chemicals to

chemical classes based on prior knowledge, heuristics, expert judgment, and chemi-

cal and biological mechanism considerations. A prominent example is DEREK, sold

by Lhasa Ltd. In systematic assessments of predictive power, such as the Predictive

Toxicology Evaluation, however, expert systems have been performing rather badly,

compared to statistical models (Srinivasan et al., 1997). A reason for their remarkable

spread despite this crucial deficiency may be that their logic closely mimics the line

of argumentation of chemical experts, which may provide an intuitive familiarity

and seeming plausibility.
4This is more or less the reverse procedure as in traditional hypothesis driven exper-

imental science, where a scientist starts with a hypothesis, designs and conducts

experiments and uses statistics to (in)validate hypothesis.

are statistically derived (not causally or mechanistically), the tox-

icological expert is a key part of the process. He should review

and interpret the output in order to identify, e.g., training data

errors, chance correlations, systematic problems, or findings

that contradict with current knowledge and discard results if

necessary5.

In contrast to most machine learning and QSAR methods,

which create a global prediction model from all training data,

lazar uses local QSAR models, similar to the read across procedure

(Figure 1). To obtain a prediction for a given query compound

lazar

• identifies similar compounds in the training data (neighbors)

• creates a local prediction model (based on experimental activi-

ties of neighbors)

• uses the local model to predict properties of the query com-

pound

5We plan a tighter integration of ontologies without compromising the statistical

foundation of lazar in the near future.

FIGURE 1 |The workflow of the lazar framework, with regard to the configurable algorithms for descriptor calculation, chemical similarity calculation,

and local QSAR models.
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We have shown experimentally (Helma, 2006; Maunz and

Helma, 2008) that this procedure gives superior results compared

to global models, which is also in consensus with the commonly

accepted notion in the QSAR community that local QSAR mod-

els provide results superior to global QSAR models (Guha et al.,

2006). For this reason, the core prediction scheme remains unal-

tered in lazar, but considerable flexibility arises from the selection

of algorithms for

• descriptor calculation

• chemical similarity calculation

• local QSAR models

lazar is able to utilize OpenTox compatible algorithm imple-

mentations. Within the scope of the collaborative EU project

OpenTox, a unified interface for an interoperable predictive tox-

icology framework was defined, and several applications and

services have been created. The available OpenTox implementa-

tions give us access to many chemoinformatics and data mining

algorithms implemented in open source projects like Chem-

istry Development Kit (CDK; Steinbeck et al., 2006), OpenBabel

(O’Boyle et al., 2011), R (R Core Team, 2012), and WEKA (Hall

et al., 2009). In addition we have implemented novel algorithms

for substructure mining and similarity calculations, which are

described below.

lazar fills a niche between specialized toxicity prediction tools6,

which rely mostly on pre-built models and general purpose statis-

tical and data mining tools (like R or WEKA) which lack chemoin-

formatics algorithms for the predictive toxicology domain and are

frequently hart to use for non-experts. lazar streamlines the model

building and validation process and creates standalone prediction

models that can be used without prior processing of input data

(e.g., external descriptor calculation).

ALGORITHMS

Several types of algorithms ensure the flexibility of the lazar sys-

tem. Figure 1 shows the integration of these algorithms into the

workflow.

Similarity

Although the concept of chemical similarity is very intuitive at

a first glance, there is no global similarity property intrinsic to

chemical structures (Raymond and Willett, 2002). Instead, there

are many ways to define chemical similarity, and each of them may

serve different purposes.

Structural similarity. The similarity between structures is the

most frequently used chemical similarity concept. Although visu-

ally obvious for the trained eye of a chemist, it is far from

straightforward to define structural similarity formally. A few

methods can work with structure graphs directly, but they are too

computationally expensive for practical purposes (e.g., database

searches). Most practical methods require the decomposition of

structures into a set of distinct substructures (fingerprints). While

standard chemoinformatics libraries provide methods based on

6Popular tools are e.g., DEREK, Toxtree (Patlewicz et al., 2008), or

the OECD toolbox (available at http://www.oecd.org/env/ehs/risk-assessment/

theoecdqsartoolbox.htm).

predefined fingerprints (Raymond and Willett, 2002), we have

developed methods that allow us to mine efficiently for rele-

vant substructures (see Substructure Mining) and use them to

determine activity specific similarities. Technically, most structural

similarity indices work with either with binary (i.e., true/false)

classifications, indicating the presence of a given substructure in a

compound, or consist of substructure frequency counts.

Property similarity. It can be argued that the biological activity

of a compound is not determined by its structure per se, but by its

physico-chemical properties. However, these are in turn deter-

mined by chemical structure. Physico-chemical properties can

be determined either experimentally, or calculated from chemi-

cal structure. Although many similarity indices from the literature

combine physico-chemical properties and substructures in a sin-

gle index, we prefer to keep both concepts separated. Technically,

we have to work with numerical values instead of nominal class

values.

Biological similarity. The similarity of compounds can be also

determined by their biological behavior. Although it is frequently

(silently) assumed that similar structures exhibit similar biological

behavior, every pharmacology and toxicology textbook provides

examples where a small modification of the chemical structure

causes a big difference in biological effects. It is therefore useful to

define biological similarities in addition to structural and property

similarities. Descriptors for biological similarity can originate, for

example, from high throughput assays [as in the ToxCast (Dix

et al., 2007) exercise] and may consist of quantitative assay results,

affected targets, or pathways, among others. Technically, they will

have to work with numerical values as well as binary classifications.

It is also essential that the similarity index handles missing values

gracefully.

Activity specific similarities. The calculation of similarity

indices may require large lists of descriptors, most of them unre-

lated to the endpoint under investigation. In the case of structural

similarity our intention is to compare only biologically active parts

of the molecule, and ignore the inert parts. For this purpose we

have defined activity specific similarities, which weight the contri-

bution of each descriptor by its correlation with a given endpoint.

Weights are determined by simple statistical tests (e.g., Chi-square

test), and descriptors below a predefined threshold are discarded.

We were able to show that prediction accuracies can be

improved significantly (Helma, 2006; Maunz and Helma, 2008)

with activity specific similarities. This procedure yields also lists

of relevant descriptors as an important byproduct, which can

be useful to indicate possible biological mechanisms, or provide

directions for designing safer compounds.

Similarity indices. Two implementations exist, depending on

descriptor type.

• Substructures: Employs a weighted Tanimoto index to deter-

mine neighbors to the query structure and derive a prediction

from them. The Tanimoto index is essentially a set kernel (Gärt-

ner, 2006). The related Tanimoto index is one of the most useful

chemical similarity indices, as shown by Willet and colleagues
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(Holliday et al., 2002). It encodes presence or absence of sub-

structures in molecules, or the number of times substructures

occur in molecules.

• Physico-chemical properties: The features are preprocessed

using a singular value decomposition (SVD). This has many

desirable effects, e.g., normalization of the feature value range,

selection of the most expressive features, and redundancy reduc-

tion. Subsequently, the distance between two compounds is

computed using cosine similarity, by measuring the angle

between the feature value vectors. In natural language pro-

cessing, this approach is known as Latent Semantic Indexing

(Berry et al., 1995). The algorithm uses the Golub–Reinsch SVD

algorithm (Galassi et al., 2009).

lazar provides a confidence value with every prediction, ranging

between 0 and 1, based on the mean neighbor similarity.

Descriptor calculation

Substructure mining. Substructure mining algorithms often

produce huge sets of redundant chemical fragments with the same

biochemical relevance (e.g., substructures that differ only by a few

carbon atoms). Since experts cannot draw any conclusions from a

vast amount of very similar substructures, it has been argued that

uncompressed results would require post-processing (Chi et al.,

2004; Huan et al., 2004; Schietgat et al., 2011), in order to find

meaningful patterns. Similarly, a high-dimensional pattern space

prevents machine learning methods from obtaining meaningful

models (Al Hasan et al., 2007).

Backbone Refinement Class Mining (Maunz et al., 2011) and

LAST-PM (Maunz et al., 2010) are two algorithmic approaches

to mining compact sets of descriptors in the search space of

chemical structure graphs, creating compressed and elaborate rep-

resentations of chemical structure. Both methods combine feature

generation and feature selection into one step.

Backbone Refinement Class Mining (BBRC) creates a sparse

selection from the search space of frequent and significant sub-

trees, based on structural and statistical constraints. It has very

high compression potential, which has been shown theoretically

(Maunz et al., 2011). Empirical results confirmed the compres-

sion results in practice, while retaining good database coverage.

Moreover, it has been shown that the structural constraints

produce structurally diverse features with low co-occurrence

rates. BBRC descriptors compare favorable to other compressed

representations in the context of classification models.

Latent Structure Pattern Mining (LAST-PM) repeatedly com-

bines related substructures into a weighted edge graph and mines

elaborate patterns from this graph. The elaborate patterns differ in

two aspects from basic substructures. First, the process superim-

poses the substructures, and substructures may differ in size. This

yields different weights for the constituent nodes and edges (i.e.,

atoms and bonds). Heavy components (in terms of the weights)

are extracted from the weighted edge graph by SVD, and the ambi-

guities are resolved by logical “OR” operations. It also generates

ambiguities (e.g., oxygen or nitrogen at a certain position), since

substructures may be conflicting, i.e., node and edge labels may

differ at certain positions. The procedure yields a tightly condensed

representation of the dataset. The resulting chemical fragments

are expressed in a chemical fragment query language (SMARTS),

FIGURE 2 | A gray fragment with atom ambiguity, inducing polarity at

the marked positions.

preserving the ambiguities. They are interpretable for chemical

experts.

As an example, in Figure 2, LAST-PM, instead of returning a

set of similar fragments to the user, aligns the structure graphs and

extracts a common motif. It is the gray fragment with two polarity

inducing positions, marked red. The fragment is not identical

in both molecules, but has an ambiguous position that abstracts

from differences not influencing the toxicological behavior (the

arrow-marked atom, which may be oxygen or nitrogen).

In classification tasks with either nearest-neighbor or support

vector machine (SVM) models, the accuracy of (models based

on) BBRC descriptors was on par with the complete set of fre-

quent and significant subtrees, but significantly better than that

of other compressed representations. LAST-PM descriptors per-

formed even significantly better than the complete set from which

they were derived. They also outperformed BBRC descriptors and

highly optimized physico-chemical descriptor models from the

literature in the classification of compounds for complex bio-

logical endpoints (Maunz et al., 2010). Both algorithms perform

substructure selection with regard to the endpoint under investi-

gation, and calculate substructure associations to the endpoint in

the form of p-values.

Physico-chemical properties. lazar utilizes open source chemoin-

formatics libraries to calculate a range of physico-chemical

descriptors. Furthermore, other existing OpenTox (Hardy et al.,

2010) compliant descriptor calculation services can be queried.

Categories were formed for the available chemical descriptors

(with a selection of descriptors):

Constitutional: largest chain, aromatic bonds count, longest aliphatic

chain, rule of five, atom count, XLogP, ALOGP, aromatic atoms count,

Mannhold LogP, bond count, rotatable bonds count, largest Pi system.
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Electronic: APol, BPol, H-bond acceptor count, H-bond donor count,

charged partial surface area descriptors (CPSA).

Geometrical: geometrical diameter, geometrical radius, gravitational

index, length over breadth, moments of inertia.

Topological: Chi Path, fragment complexity, Kier–Hall Smarts, Kappa

Shape Indices, Petitjean Number, autocorrelation mass, VAdjMa, Chi

Path Cluster, Wiener Numbers, Autocorrelation Polarizability, carbon

types, eccentric connectivity index, Chi Chain, MDE, Petitjean shape

index, TPSA, Chi cluster, Zagreb index, autocorrelation charge.

Hybrid: Burden–CAS–University of Texas (BCUT) descriptor, weighted

holistic invariant molecular (WHIM) descriptor.

In total, lazar can be used to generate more than 300 dif-

ferent, numerically unconstrained descriptors. In its current

implementation, it is able to calculate all of them on its own.

Measured properties. In addition to calculated properties lazar

can utilize experimental measurements (e.g., of physico-chemical

properties or results from high-throughput assays) to character-

ize compounds. This allows us to encode biological similarities

(e.g., in respect to affected targets or pathways) and to apply the

lazar framework to compounds without well defined chemical

structures like nano particles.

Learning algorithms

lazar uses a weighted majority voting scheme for classification, or

SVM formulations for both classification and regression problems

(numerical predictions). For the latter, either the Tanimoto kernel

or the Gaussian radial basis function kernel is available. In any

case, lazar builds a dedicated model for any single prediction from

the neighbors of the associated query compound. Multicore pro-

cessing is used for SVM kernel parameter and hyper parameter

optimization, which keeps runtime efficiently under control even

for large sets of neighbors.

Applicability domains

Applicability domain estimation is a core module of the lazar algo-

rithm, and is closely tied to the prediction algorithm, subject to

the same validation procedures as predictions. Conceptually, the

following factors affect the applicability domain of an individual

prediction:

• Number of neighbors

• Similarities of neighbors

• Coherence of experimental data within neighbors

Consequently, a prediction based on a large number of neigh-

bors with high similarity and concordant experimental data will be

more reliable than a prediction based on a low number of neigh-

bors with low similarity and contradictory experimental results.

Hence, the confidence of the lazar algorithm is even more compre-

hensive than classical applicability domain approaches that only

consider the feature value space, but not the coherence of the

endpoint values.

More formally, the confidence of a prediction is defined by the

mean neighbor similarity (see similarity indices for the different

cases of neighbor similarity).

IMPLEMENTATION

lazar is based on the OpenTox (Hardy et al., 2010) framework and

consists of four main layers:

Clients Command line and graphical user interfaces using the ruby

library.

Ruby library Ruby abstraction of the OpenTox REST API.

Webservices OpenTox compliant webservices for compounds, features,

datasets, algorithms, models, validation, tasks.

Backends Special purpose backends for data storage (4store), authenti-

cation and authorization (OpenSSO), statistical computing (Rserve).

The main implementation language is Ruby. Computationally

expensive parts are written in C/C++, while statistical computing

is delegated to R. Both backends are dynamically loaded into Ruby

via dynamic libraries and Ruby’s native language interface. Services

communicate through the OpenTox REST API using Resource

Description Framework (RDF) as the primary data exchange for-

mat. In depth discussion of implementation details can be found

on the web at http://opentox.github.com.

AVAILABILITY

A web interface for lazar is freely accessible from http://lazar.in-

silico.ch. Public OpenTox compliant REST webservices exist at the

URIs

• http://webservices.in-silico.ch/compound

• http://webservices.in-silico.ch/dataset

• http://webservices.in-silico.ch/algorithm

• http://webservices.in-silico.ch/model

• http://webservices.in-silico.ch/task

Source code has been published at Github7 under the GPL3

license. Ruby Gems for client and server libraries, webservices,

and applications are hosted at http://gemcutter.org. Pre-installed

and configured virtual appliances with commercial support can

be obtained from in silico toxicology gmbh.

EXPERIMENTS

During lazar development we have performed a large number

of validation experiments to investigate various variants of the

overall algorithm. As it is beyond the scope of a single paper to

present all of them even in condensed form, we focus here on

a few results which could be interesting for a larger community

and justify the selection of lazar algorithms. For further reference,

very detailed and up-to-date validation reports for all lazar models

can be obtained from the lazar website at http://lazar.in-silico.ch.

For the purpose, of this overview we have selected two example

datasets, one for classification and one for regression (numerical

predictions). Experiments include 10-fold cross-validation, and

the creation of a validation report.

CLASSIFICATION

For substructure-based models, we have shown that substantial

improvements may be achieved by weighting each descriptor with

its association to the endpoint (Maunz and Helma, 2008). For

example, in the case of the fathead minnow acute toxicity dataset,

the p-values were employed as weights in a kernel-based approach.

The effects were twofold:

• A substantially higher fraction of molecules could be predicted,

compared to the same setting without weighting.

• The predictive performance increased.

7http://github.com/opentox
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This indicates the utility of p-values to identify relevant descrip-

tors, in that they are able to extract some relevant descriptors, and

“mute” a large fraction of irrelevant descriptors, that would oth-

erwise outweigh the former, simply because there are so many of

them. We refer the reader to our earlier work (Maunz and Helma,

2008) for details. In the present implementation of lazar, p-value

weighting is implemented by using a cutoff in the substructure

mining step (see Substructure Mining).

The lazar algorithm with BBRC descriptors was applied to the

Kazius/Bursi mutagenicity dataset (Kazius et al., 2005) using a 10-

fold cross-validation. For each training fold, substructures were

mined and a lazar model was built and subsequently applied to

the corresponding test fold. Any instance was represented in bit

vector form (fingerprints), where each index represents presence

or absence of the corresponding descriptor. Weighted majority

voting was used for prediction. The validation results are shown

in Tables 1 and 2. Note that the given statistics neglect prediction

confidences – higher accuracies can be achieved by setting a cutoff

for acceptable confidences, albeit at the cost of obtaining fewer

predictions.

Figure 3 plots total accuracy (left) and the class specific

accuracies (right).

REGRESSION

The fathead minnow acute toxicity dataset (Russom et al., 1997)

was modeled using physico-chemical descriptors. As the compu-

tation of these descriptors is independent of the endpoint variable

(unsupervised), the features can be computed prior to cross-

validation. In contrast, supervised feature computation (like e.g.,

discriminative graph mining) has to be applied to each training

fold to avoid information leakage. Any instance was represented

in numeric vector form, where each index represented the cor-

responding descriptor value. Support vector regression was used,

Table 1 | Validation statistics for the Kazius/Bursi dataset.

Num instances 4068

Num unpredicted 11

Accuracy 0.746

Area under roc 0.830

F measure 0.778

True positive rate 0.785

True negative rate 0.696

Positive predictive value 0.770

Negative predictive value 0.714

Table 2 | Confusion table for the Kazius/Bursi dataset.

Actual Total

Active Inactive

Predicted Active 1799 537 2336

Inactive 492 1229 1721

Total 2291 1766

where for each prediction a dedicated SVM model was built on

the neighbors. The parameters of the radial basis function kernel

have been optimized using a grid-search with different parameter

values. In more detail, the SVM was trained on a 8 x 8 grid for the

cost parameter C and hyper parameter µ.

Table 3 provides common regression performance statistics,

Figure 4 plots actual against predicted values (left) and R-squared

against confidence (right).

FIGURE 3 | Kazius/Bursi Salmonella mutagenicity dataset: total

accuracy (left) and the class specific accuracies (right). The left

plot shows that model accuracy decreases with decreasing confidence

(variability at the left hand side of the plot can be ignored, because

they are artifacts from small sample sizes). Note that prediction

confidences are not probabilities or any statistical measure of model

performance. These values can be obtained from plots in the validation

reports, by identifying the confidence value on the x -axis and looking

up the corresponding value (e.g., accuracy or R-Square) on the

y -axis.
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Table 3 | Validation statistics for the fathead minnow dataset.

Num instances 535

Num unpredicted 76

Root mean squared error 0.586

Mean absolute error 0.428

R-squared 0.714

Sample correlation coefficient 0.846

Concordance correlation coefficient 0.833

Figures 3 and 4 are excerpts of detailed validation reports from

http://lazar.in-silico.ch that include the following information:

• Cross-validation statistics

• Confusion matrix (classification only)

• Plots: pairs of confidence vs. cross-validation statistics, ROC

(classification), Scatterplot (Regression)

• Cross-validation statistics per fold

• All single predictions from all folds: 2D-structure image of

compound, actual value, predicted value, confidence

DISCUSSION

It is beyond the scope of this manuscript to present detailed vali-

dation results of all currently implemented lazar models. Detailed

and up-to-date validation reports can be retrieved from the

lazar website http://lazar.in-silico.ch, and new regression models

will be discussed in greater detail in a forthcoming publication.

Instead, we will present a brief comparison of the lazar mod-

els from the Section “Experiments,” compare results from the

literature, and discuss the consequences of the modular lazar

design.

MODEL PERFORMANCE

Comparisons with competing models from the literature are

always difficult, because of different training sets, validation

schemes, and performance estimates. To enable unbiased com-

parisons, we provide detailed validation reports, including not

only all commonly used statistical performance indicators together

with graphs, but also results for all training/test set splits, as well

as tables of all validation instances with predicted and measured

values, and applicability domain estimates8.

For the Kazius/Bursi mutagenicity data set, lazar made predic-

tions for 4057 of the total 4068 compounds, only 11 compounds

were outside of the applicability domain. Its AUC value of 0.83

ranks with the generic machine learning methods in the compar-

ative study by Hansen et al. (2009), with AUC values between 0.79

and 0.86. It shows that these methods are clearly superior to the

commercial systems DEREK and MultiCASE on this dataset. How-

ever, the authors point out the need for specific absorption rate

(SAR) information, i.e., “interpretable structural information” on

mutagenicity prediction, which generic machine learning meth-

ods do not provide. It should be pointed out that lazar provides

both, predictive performance and detailed SAR information with

every single prediction, among others all the substructures (here:

BBRC descriptors) that were used to represent query compound

and neighbors, as well as the neighbors themselves.

For fathead minnow acute toxicity, lazar predicted 535 of the

total 611 compounds, which is comparable to the 555 in the study

by In et al. (2012). In contrast to their approach, however, lazar

determined the domain of applicability domain autonomously.

Moreover, the lazar R-squared values, obtained by pooling the

results from 10-fold cross-validation, are also substantially higher

than their values (ranging between 0.553 and 0.632). They were

obtained by a single train/test split, which can be considered less

8http://lazar.in-silico.ch

FIGURE 4 | Fathead minnow acute toxicity dataset: actual against predicted values (left) and R -squared against confidence (right). The left plot shows

the correlation of model prediction and actual values. The plot on the right shows that the model performance decreases with decreasing confidence (see

description of Figure 3).
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reliable. The R-squared values are also higher than the values in

the overview for which they gathered results from the literature.

APPLICABILITY DOMAINS

In contrast to generic machine learning methods, applicability

domains are tightly integrated with the lazar framework, in that

any prediction is associated with a confidence value. Cumulative

plots of confidence and accuracy for the experiments discussed

above are depicted in Figures 3 and 4. These figures document

that the confidence value provides meaningful information, as the

model accuracy decreases with decreasing confidence.

MECHANISTIC INTERPRETATION

lazar intends to present the rationales for each prediction in a form

that is understandable for toxicological experts without a back-

ground in machine learning and statistics. For this purpose, the

following information is displayed graphically in the web interface

(Figure 5):

• Neighbors that have been used for creating the local QSAR

model, together with a graphical display of their structures,

activity specific similarities, and experimental measurements

• Activating and deactivating fragments are highlighted in the

query compound

• Definitions for domain specific terms can be obtained by

following links in the web interface

By providing such detailed information we want to ensure that

predictions are critically examined by toxicologists. Information

about possible mechanisms can be obtained from neighbors

(which are assumed to act by similar mechanisms as the query

compound) and by the structural alerts used to determine activity

specific similarities. In the present version of the web interface

this information has to be retrieved manually, but we plan to add

further visualization and search components (e.g., for obtaining

and comparing pathway information of neighbors) in the future.

LIMITATIONS

It is important to remember that lazar predictions are based on

statistical criteria alone, without any explicit consideration of

chemical or biological knowledge. This implies that lazar capa-

bilities depend – like any other data driven approach – on size,

composition, and quality of the training data. Large and reli-

able datasets with a good coverage of the chemical space will lead

to more accurate predictions and a broader applicability domain

than models based on small and unreliable datasets. Coherent

endpoint values of similar compounds in the training dataset also

increase the applicability domain of our approach. The quality of

an individual prediction will depend also on the proximity of the

query compound to the training data, which is represented by the

confidence index.

One particular problem can arise when the query structure

contains biologically active substructures that are not represented

in sufficient number in the training set. In this case they can-

not be evaluated statistically and will be classified as “inert” by

the similarity calculation algorithm, which may lead to incorrect

predictions. As it is impossible to compute such constraints

FIGURE 5 | lazar prediction example for Salmonella mutagenicity (Kazius/Bursi datset).
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automatically, a toxicological interpretation of lazar results is

essential. For example, if a toxicologist discovers that a confirmed

biologically active substructure is not present in the model, or that

neighbors act by different mechanisms, it is better to discard the

prediction than to trust it blindly.

MODULAR DESIGN AND INTERACTION WITH THE SEMANTIC WEB

The modular structure of the lazar framework and its integration

with the semantic web enables possibilities that go far beyond

the currently implemented lazar prediction models. With the

integration in the OpenTox framework, a researcher can freely

combine algorithms for

• descriptor calculation (or use measured properties, e.g., from

high throughput screening)

• descriptor selection

• similarity calculation

• model building

and validate the resulting model objectively with the OpenTox val-

idation service. We are currently working on the development of

nanoQSAR models that incorporate the behavior of engineered

nanoparticles, as well as on predicting affected pathways within

the lazar framework.

Currently, all major open source chemoinformatics and

machine learning algorithms are supported by wrappers for Open-

Babel, CDK, JoeLib, Weka, and R libraries, and the integration

of newly developed algorithms is straightforward through Open-

Tox algorithm web services. The OpenTox API also allows the

easy integration of lazar models into third party applications

and frameworks like Bioclipse, Taverna, or Knime. lazar can

also interact with external data sources (e.g., the Ambit database;

Jeliazkova and Jeliazkov, 2011) and ontologies through the Open-

Tox API and data model. The integration of ontologies offers

interesting possibilities that go far beyond simple QSAR model

building, for example for the identification of adverse outcome

pathways (Organisation for Economic Co-operation and Devel-

opment [OECD], 2004a), supporting a more mechanistically

oriented risk assessment procedure.

CONCLUSION

lazar is a flexible modular framework for developing predictive

toxicology models with a strong focus on the transparency and

interpretability of predictions. Currently implemented lazar mod-

els perform competitively with the best results reported in the

literature.

While the first principle (a defined endpoint) of the OECD

principles for QSAR validation (Organisation for Economic Co-

operation and Development [OECD],2004b) cannot be supported

directly by a computational framework, lazar clearly complies with

the remaining principles (an unambiguous algorithm, a defined

domain of applicability, appropriate measures of goodness-of-fit,

robustness and predictivity, a mechanistic interpretation, if possible).

For future developments, lazar provides well established and

tested algorithms, semantic web aware web services, and language

bindings, which can serve as building blocks for new algorithms

and applications. We hope that these facilities will speed up

the development cycle of future predictive toxicology applica-

tions, and will ultimately lead to improved and more relevant

applications in this area.
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