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ABSTRACT

Continuations, or 'the rest of the computation’, are a con-
cept that is most often used in the context of functional
and dynamic programming languages. Implementations of
such languages that work on top of the Java virtual ma-
chine (JVM) have traditionally been complicated by the lack
of continuations because they must be simulated.

We propose an implementation of continuations in the
Java virtual machine with a lazy or on-demand approach.
Our system imposes zero run-time overhead as long as no
activations need to be saved and restored and performs well
when continuations are used. Although our implementation
can be used from Java code directly, it is mainly intended to
facilitate the creation of frameworks that allow other func-
tional or dynamic languages to be executed on a Java virtual
machine.

As there are no widely used benchmarks for continua-
tion functionality on JVMs, we developed synthetical bench-
marks that show the expected costs of the most important
operations depending on various parameters.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—compil-
ers, interpreters, run-time environments

General Terms

Algorithms, Languages, Performance

Keywords

Java, virtual machine, continuation, stack frame, activation,
optimization, performance

1. INTRODUCTION

With the increasing success of dynamic languages such as
Ruby or Python, the interest in continuations has been re-
newed. Also, web frameworks such as RIFE [12] or the PLT
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Scheme web server [8] propagate the use of continuations
for web development. Continuations, or more precisely first
class continuations, can be seen as ’the rest of the compu-
tation’, or the rest of the program as it would run from the
point where the continuation was created.

In a more practical sense a continuation is the state of a
running thread that can be stored, possibly modified, and
reinstated. Continuations can be categorized as follows [5]:

First-class continuations store the full state of the com-
putation and can be reinstated any number of times
from anywhere in the program.

Delimited continuations (also known as partial or com-
posable continuations) turn a part of a continuation
into a function that can be called any number of times.
Scheme, for example, uses reset and shift [4] to cre-
ate delimited continuations.

One-shot continuations (or exit continuations) work as
non-local exit statements and can basically be seen as
a return that exits multiple method scopes at once.

Mobile continuations (which can be resumed on a different
thread or even on a different virtual machine) can in the con-
text of this paper be seen as a special case of delimited con-
tinuations. The implementation presented in this paper is
primarily concerned with first-class continuations, although
it deals efficiently with one-shot continuations as well and
could easily be expanded for delimited continuations.

In the context of Java VMs, storing a continuation can
be seen as storing all stack frames of the current thread
with their local variables and intermediate computation re-
sults. However, in most situations it is unnecessary to store
all stack frames, because when a continuation is reinstated
some of the frames on the stack are still the same as in the
continuation and do not have to be restored. We therefore
propose a lazy approach where a stack frame is only stored
in a continuation if it would otherwise be destroyed or mod-
ified. In other words, we store a stack frame only when
the control flow returns to the method to which the frame
belongs.

We implemented our approach for the interpreter and the
client compiler of the Java HotSpot™ VM, but in principle
it can also be implemented for other Java VMs or managed
runtimes of other languages. This paper contributes the
following;:

e We present an algorithm to lazily store the contents of
a continuation. This algorithm exploits the fact that
many continuations share activation frames.
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Figure 1: System overview

e We show the modifications of the Java HotSpot™ VM
needed to implement the algorithm.

e We outline the characteristics of our algorithm with an
evaluation of the run-time behavior of our implemen-
tation.

This paper consists of the following parts: Section 2 pro-
vides a brief description of all the relevant parts of the Java
HotSpot™ VM. Section 3 describes the actual details of our
implementation, followed by an evaluation of how this im-
plementation can be used in Java code or by language frame-
works in Section 4. Section 5 provides estimations for mem-
ory consumption and execution time. Section 6 presents
related work, and Section 7 concludes this paper.

2. SYSTEM OVERVIEW

We developed our implementation as an extension to the
Java HotSpot™ VM [14]. It is part of a larger effort to
extend this JVM with first-class architectural support for
languages other than Java (especially dynamic languages),
called the Da Vinci Machine Project or Multi- Lanugage Vir-
tual Machine Project (MLVM) [15].

2.1 Java Virtual Machine

A Java virtual machine (JVM) loads, verifies, and exe-
cutes Java bytecode. It needs to adhere strictly to the se-
mantics defined by the Java virtual machine specification [9].
The Java HotSpot™ VM in particular can either interpret
the bytecodes or use one of its two just-in-time (JIT) com-
pilers, called client compiler [7] and server compiler [11],
to compile bytecodes into optimized machine code. It de-
cides at run time on a per-method level if the compilation
overhead is justified, because in normal applications most of
the execution time is concentrated in a few frequently called
methods, known as hot spots.

In order to achieve maximum performance, all JVMs use
the CPU-supported stack to manage local variables and ex-
pression stacks. All the information belonging to one exe-
cution of a method is called an activation frame. The stack
containing these activation frames grows and shrinks in de-
fined directions, and obsolete activation frames are overwrit-
ten automatically without the need for explicit management.
In addition to the local variables and expression stacks, the
stack also holds the bytecode index (bci) or program counter
(pc) for each activation frame such that it can be restored
upon a return instruction.

Figure 1 gives an overview of how bytecode is loaded into
the JVM and how it interacts with the stack. The interpreter
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Queue<Continuation> queue;
public void yield() {
Continuation cont = new Continuation();
if (cont.capture() == Continuation.CAPTURED) {
queue.add(cont) ;
queue.remove () .resume (null) ;

}

}

public void coroutine(int n) {
int i = 0;

while (true) {
println("coroutine " + n +
" iteration " + i);
yieldO;
i++;
}
}
public void start() {
for (int i = 0; i < 10; i++) {
Continuation cont = new Continuation();
if (cont.capture() == Continuation.CAPTURED) {
queue.add(cont) ;
} else {
coroutine(i);
// never reached because of while loop
}
}
queue.remove () .resume (null) ;

}
Figure 2: Coroutines implemented via continuations

and the compiler contain the main parts of our implemen-
tation.

2.2 Continuations

Continuations can be seen as dynamic labels, compara-
ble to a label jumped to by a goto statement. The cre-
ation of a continuation works like a fork on the thread,
but the new context is stored in the continuation instead
of run in parallel. A prime example for continuations is the
call-with-current-continuation (short: call/cc) construct
of the Scheme programming language [1]. call/cc creates
a function that can restore the thread to the state after the
call to call/cc. Scheme was one of the first programming
languages to establish the concept of continuations. There
are two main operations that define continuations:

capture creates a continuation: the dynamic execution con-
text of the current thread is stored.

resume reinstates the given continuation. This means that
the thread resumes execution at the instruction fol-
lowing the capture call that created the continuation.
The stack of activation frames is restored to exactly
the same state as it was after the continuation was
captured.

A complete implementation of continuations, like the one
presented in this paper, allows resume to be called multiple
times on the same continuation and regardless of the current
state of the stack. Many other implementations restrict con-
tinuations to one resume call that has to take place as long



as all activation frames of the continuation are still present
on the stack.

Figure 2 shows an example that uses continuations to
implement coroutines [10]. Coroutines are a form of ex-
plicit, cooperative multitasking where multiple tasks run
in parallel using only one operating system thread. The
yield method captures the current continuation, enqueues
it, and resumes the continuation of the first waiting corou-
tine, thereby switching to this coroutine. The start method
creates ten coroutines by creating their initial continuation,
and then starts the first one. Continuations are initially re-
sumed at the capture call in the start method and enter
the else branch of the if statement. It is important to note
that the capture method returns CAPTURED whenever it cre-
ated the continuation, and the value passed to resume if it
was resumed. The API used to capture and resume con-
tinuations is explained in detail in Section 4. The example
produces the output shown in Figure 3.

The while loop of each coroutine runs independently from
the others, i.e., the local variable i is independently man-
aged. After each loop iteration, the execution is paused and
control is transfered to the next coroutine. The coroutines
therefore run intermingled, i.e., ten instances of the while
loop are managed at the same time, but only the stack frame
of one of them is active. The other nine stack frames are
saved in continuation objects. Therefore, the coroutines do
not run in parallel, as it would be when each of them was
started in its own thread. This reduces the overhead of
thread creation and scheduling, which is crucial if the num-
ber of coroutines is high.

Neither capturing nor resuming continuations is defined
by the Java virtual machine specification, and up to now
only research projects have implemented continuations in
the context of a Java virtual machine. Continuation support
necessarily breaks JVM invariants. For example, code that
is usually executed only once can be run multiple times, and
finally blocks can be skipped. This means that any method
that is included in a continuation needs to be aware of this
and needs to be marked (see Section 4.3). Also, methods and
blocks holding locks via the synchronized keyword cannot
be included in a continuation because it is not clear if and
when the runtime system should release and reacquire these
locks.

In general, a call site in a method may be associated with
matched pairs of set-up and take-down actions, to be ex-
ecuted whenever control enters and leaves that point, ei-
ther via normal control flow or via continuation processing.
This structure may be observed explicitly in the Scheme
DYNAMIC-WIND function, which surrounds the computa-
tion within a call site with matched pairs of “before” and
“after” actions. In the JVM bytecode architecture, the take-
down actions are specified by “finally” blocks, but there are
no explicit “initially” blocks to make the matching set-up
actions explicit. When a continuation exits a JVM frame,
it might often be reasonable to execute the “finally” blocks
associated with the pending call, but there is no way to be
sure of the programmer’s intent, and there is certainly no
corresponding way to determine the matching set-up actions
intended by the programmer. Because the present resume
functionality is based on bitwise copying of stack frame im-
ages, it does not address these problems at all. Language
frameworks built using a continuation implementation need
to deal with them.

coroutine O iteration O
coroutine 1 iteration O
[...]

coroutine 9 iteration O
coroutine O iteration 1
coroutine 1 iteration 1

[...]

Figure 3: Output of coroutines example

Continuation alpha = new Continuation();
Continuation beta = new Continuation();
void main() {

a);

}

void a() {
bO;

}

void b() {
alpha.capture();
/] ...
beta.capture();

}

Figure 4: Example source code

3. IMPLEMENTATION

In the context of stack-based activation frame manage-
ment, capturing a continuation means to store all or part
of the stack such that it can be restored later on, because
some activation frames might have been modified or over-
written. The runtime system needs to provide methods and
data structures for storing and retrieving activation frames.

The Java program of Figure 4 captures two continuations.
The two continuation objects are created in advance, and the
actual capturing is done via the capture method. To sim-
plify matters we use this stripped-down example throughout
most parts of this paper instead of the one in Figure 2.

Figure 5 shows the evolution of the runtime stack of the
example code over time. The gray areas visualize when an
activation frame can possibly be modified, which always ap-
plies only to the topmost frame. A simple implementation of
continuation capturing could store the stack contents by per-
forming a complete copy of the whole stack contents every
time a continuation is created. The resulting self-containing
continuation objects are shown on the right side of Figure 5.
This simple implementation suffers from a number of draw-
backs:

e The immediate costs for creating a continuation al-
ways depend on the current stack depth (up to the
delimiting frame).

e In practice many continuations share all but the few
topmost stack frames, and the duplication of identical
frames wastes memory and run time.

e Because it is not known if a stack frame has already
been modified, all stack frames need to be restored,
even though this is unnecessary.

In order to minimize the memory and run-time costs, the
actual saving of activation frames needs to be delayed as
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Figure 6: Optimized continuation capturing

long as possible. Frames need not be saved immediately
when it is guaranteed that they will be saved before they
are modified. Modifications to an activation frame cannot
occur before the execution returns to the frame in question.

Intercepting the actual return instruction allows us to
solve all of the aforementioned drawbacks because we can
store activation frames just before they are modified. By
storing activation frames in this “lazy” manner, all continu-
ations that use a particular activation frame are automati-
cally accumulated so that only one copy of this frame needs
to be stored. Figure 6 shows how our algorithm represents
continuations as a tree structure. In this example both con-
tinuations share all activation frames starting at the “a”
frame.

3.1 Data Structures

The contents of a continuation are stored in so-called acti-
vation objects, three of which are shown in Figure 7. A con-
tinuation is represented by a reference to its first activation
object, which is called the continuations topmost activation
object. Activation objects contain the following fields:

next frame This field is used to denote the next activation
object in the continuation, and thus it creates a linked
list of activation objects. When multiple continuations
share activation objects the linked lists merge into a
tree structure.

method The method of the activation frame that is con-
tained in this activation object.

bci / pc The pointer to the next instruction, either as a
bytecode index for interpreted methods, or a program
counter for compiled machine code.
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Activation object

4—® next frame
method

bci / pc
frame pointer

Activation object

|e next frame
method

beci / pe
frame pointer

Activation object

[® next frame
method

beci / pe
frame pointer

Figure 7: Layout of the activation objects
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filled activation object for method x I:] empty activation object

Figure 8: Evolution of the inverse tree structure

frame pointer The position of the activation frame on the
stack when it was last seen on-stack. This information
is needed for joining continuations (see Section 3.3).

data The data field stores a plain copy of the stack con-
tents of the activation frame. Copying byte-by-byte
is fast and simple. If we need to inspect the contents
of the activation object (for garbage collection, etc.)
the JVM methods for inspecting activation frames are
used. During garbage collection all object pointers
contained in the activation frame data need to be vis-
ited because otherwise the referenced objects might be
reclaimed. If referenced objects are moved, the stack
frame must be adjusted to contain their new addresses.
The drawback of byte-by-byte copying is that acti-
vation frames from compiled methods and activation
frames from interpreted methods need to be treated
differently because they have a different structure.

An activation object can exist without actually containing
any data. In this case it acts as a skeleton object that can
later be filled with the data of the activation frame.

Figure 8 shows how the activation objects evolve into the
structure shown in Figure 6. In this case the implementa-
tion recognizes that both continuations refer to the same
activation frame for the method a, and thus can share the
activation object. When alpha.capture is called, a new
activation object is created and the frame of method b at
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Figure 9: Capturing continuations

position b; is stored into it. Since there is no activation
object for the caller’s frame yet, we create a skeleton object
and link bi’s activation object to it. When beta.capture
is called, we create another activation object and fill it with
the frame at position ba. Since there is already an activa-
tion object for the caller (the skeleton object), we link ba’s
activation object to it, thus creating a tree. When method b
returns, we intercept this event and fill the skeleton object of
a with the corresponding frame contents and in turn create
a new skeleton object for a’s caller.

Having a skeleton object for the next activation frame
that needs to be stored (i.e., the caller’s frame) serves two
purposes:

e Skeleton objects represent activation objects that are
still unmodified on the stack. If a continuation is re-
sumed and it uses a skeleton object, the runtime knows
that it does not need to restore this frame.

e [f the skeleton object did not exist, the runtime would
have to maintain a set of activation objects that share
the caller’s activation frame. The next pointers of the
objects in this list would have to be changed to the
caller’s activation object as soon as it is created.

3.2 Capturing Continuations

In our approach the frames of a continuation are copied
lazily at the latest possible time. We just copy the current
frame, and when the control flow returns to the caller we
copy the caller’s frame as well. As explained above, the
caller’s activation object already exists when the callee’s ac-
tivation object is filled, so the question arises where to store
the reference to the caller’s activation object. As a simple
solution we store it in the thread object of the current thread
and refer to it as the thread’s caller activation object (CAO).
In Figure 8 the CAO is always an empty activation object,
although this is not necessarily true in all cases.

When instructed to capture the current continuation the
capture method creates an empty activation object for the
current frame and patches its own return address, i.e., it re-
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Figure 10: Storing activation frames

places it with the address of a small call-site-specific tram-
poline. When capture returns, the trampoline code is exe-
cuted, which fills the activation object with the frame of the
method that called capture, and then jumps back to this
method. This is explained in more detail in Section 3.3.
Linking activation objects can be more complicated than
in the simple case above. Figure 9 shows the three cases
that can occur. In case (1) no continuation was created so
far, thus there is no CAO yet. capture not only creates an
activation object for b’s frame but also an empty skeleton
object as the CAO. In case (2) there is already a contin-
uation, thus the CAO already exists. capture creates an
activation object for b’s frame and links it to the existing
CAO. In case (3) there is also already a continuation, but it
was created in the caller of the method where we now create
the new continuation. capture not only has to create an ac-
tivation object for ¢’s frame but also an activation object for
b’s frame, which becomes the CAO. Note that there may be
more not yet stored activation frames in between, for which
activation objects would be created one-by-one on return.

3.3 Storing Activation Frames

The runtime creates a trampoline for each call site within
a compiled method that are marked as @Continuable (see
Section 4.3). There is only one instance of the trampoline for
interpreted methods because interpreter activation frames
are verbose enough so that all information can be deduced
from the frame itself. The trampoline code that is executed
during a patched return to a method M has the following
tasks:

e It fills the CAO, which is guaranteed to exist, with the
frame contents of M.

e [t possibly creates an empty skeleton object and in-
stalls it as the CAO.

e It patches the return address of M with the address of
another trampoline.

Figure 10 shows the four different cases that can occur:

e In the simplest case (1) the next pointer of the CAO
is empty, and this also implies that the CAO is not
yet filled. The CAO is filled now and a new one is
created and appended to the list. Finally the CAO is
advanced.
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Figure 12: Resuming continuations (complex case)

e In (2) the CAO is already filled. This happens when
a continuation has been resumed, i.e., the activation
frame on the stack has been created from the activa-
tion object in question. Under this premise the next
pointer can never be null, and the pointer in the thread
is simply advanced to the next object without creating
any new objects.

e In the most complex cases (3) and (4) the CAO is
empty and its next pointer is not null. First the CAO
is filled, and then the frame pointer stored in the next

activation object (here “a”) is compared with the frame

pointer if the caller’s activation frame. If it is the same

(3), the CAO is simply advanced, otherwise (4) a new

skeleton object is inserted just after the CAQO; this ob-

ject becomes the new CAO.

Whenever the algorithm creates a new activation object,
it also needs to store an activation frame into it later. There-
fore it needs to patch the return address to this activation
frame. If no new object has been created then no patching is
needed. This guarantees that the return address has already
been patched to the call-site-specific trampoline whenever an
activation frame of interest for a continuation gets active.

3.4 Resuming Continuations

In the tree of activation objects, each continuation can be
seen as one concrete path from the topmost activation ob-
ject of the continuation (i.e., a leaf) to the root. This path
is described by traversing the continuation using the next
pointers of the activation objects. As the current point in
the execution of a program can also be seen as a continu-
ation, and thus as a list of activation objects, reinstating a
continuation can be performed by transforming the current
list of activation frames to the continuation’s list of activa-
tion frames. We achieve the smallest number of changes by
searching for the nearest common ancestor of the CAO and
the topmost activation object of the continuation.

Figures 11 and 12 show two examples of transformations
that resume a continuation. A few activation objects are
marked: “c” is the topmost frame of the continuation to
be reinstated, “j” is the object at which the CAO and the
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continuation are joined and “e” is the first empty activation
object (“skeleton”) when the list of activation objects of the
continuation is traversed.

In order to resume the continuation, and thus transform
the activation stack, all or some of the following steps are
performed:

1. Traverse the activation objects starting from the top-
most frame of the continuation until an empty activa-
tion object is encountered. During the traversal the
next pointers are modified such that the list is re-
versed. Additionally the activation objects are marked
as being traversed. During this step “e” is discovered.

2. Traverse the activation objects starting from the CAO
of the thread until either “e” or an activation object
marked during step 1 is hit. This leads to “j”.

. If “” and “e” are not the same object (as in Figure 12)
then the activation objects between these two do not
need to be restored, thus we can restore the next point-
ers for these objects.

. The CAO is advanced towards “j”. Frames are removed
from the stack, and if the corresponding activation ob-
jects are still empty skeletons, the contents of these
frames are saved in their activation objects.

5. Now that the thread is at the join point “j”, the acti-
vation objects from “j” to “c” are reinstated onto the
stack and the thread now points to the activation ob-

ject after “c”.

Note that after a continuation is resumed the thread now
points to previously filled activation objects. These filled
objects can quickly be skipped during capturing without the
need to fill them again (see case (2) in Figure 9).

4. API FOR CONTINUATIONS

We have designed the API of our implementation with
two main goals in mind: to allow for an efficient imple-
mentation and to be easy to use for a language implemen-
tation framework. All methods are accessible via a single



public class Continuation {
public static final Object CAPTURED;
public native Object capture();
public native void resume(Object retVal);

}

public @interface Continuable {

}
Figure 13: API for continuations

class Continuation, which makes it easy for frameworks
to generate calls. Figure 13 shows the API for our con-
tinuation implementation: the Continuation class and the
@Continuable annotation.

4.1 Method Capture

The method c.capture() associates the continuation c
with the current thread state. It can be called on the same
Continuation object multiple times, and the object always
refers to the continuation of the last capture call. Aslong as
capture has not been called, the Continuation object is in
an empty state, and calling resume on it leads to a runtime
exception. The return value of the capture call depends on
the situation: if a continuation was just created then the
CAPTURED marker object is returned, and if a continuation
was resumed then the value that was given to resume is
returned.

4.2 Method Resume

The method resume allows a continuation to be reinstated.
It takes one parameter: an object that is returned by the
capture call that created the continuation. If the resumed
continuation is invalid, a runtime exception is thrown. Con-
tinuations can be invalid for the following reasons:

e capture has never been called on the Continuation
object, and thus there is no continuation to resume.

e The continuation to resume belongs to another thread.
Migrating continuations to another thread is not im-
plemented in our current model.

e The activation frame storage code encountered an in-
valid activation frame as explained in Section 4.4.

Additionally, a runtime exception is thrown if CAPTURED is
passed as a return value.

A call of the method resume never returns to the code after
the call, i.e., code that is located immediately after a call
of resume is always dead code. Instead, execution resumes
after the call of the method capture where the continuation
was defined. Code that should be executed after resuming
a continuation must therefore be placed after the call of
capture.

4.3 Annotation @Continuable

The runtime has to assume that including methods in con-
tinuations that are not aware of this is unsafe and likely leads
to undefined behavior. Thus the runtime needs a way to de-
termine if a method is designed with continuation in mind.
We introduce the annotation @Continuable to mark meth-
ods as safe for use within continuations. If a type (class,
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interface, or enum) is marked with @Continuable then all
methods implemented within it (but not inherited methods
or methods added by subclasses) are considered safe.

4.4 Invalid Activation Frames

An activation frame is considered invalid if one of the fol-
lowing applies:

e Its method was not marked with the @Continuable
annotation and thus is not safe to be used within con-
tinuations.

e The activation frame currently holds a lock that was
acquired via the synchronized keyword. Methods that
are declared synchronized always give rise to invalid
frames. Methods that use a synchronized block can
lead to both valid and invalid activation frames, de-
pending on the current position.

e The activation frame belongs to a native (JNI) method.
The JVM has not enough information about native
method activation frames to store and restore them.
This also applies to some reflective methods such as
Method.invoke that, depending on the implementa-
tion, use native calls.

The activation frame storage mechanism (see Section 3.3)
checks if an activation frame is valid before storing it in
an activation object. If it is not valid then the activation
object is marked as invalid, and any attempt to resume a
continuation containing it will fail. Furthermore the return
address of the invalid activation frame is not patched and
thus no more frames are stored for the invalid continuations.

As long as the invalid activation frame does not need to be
stored, the continuations are not invalid, because the invalid
activation frame is still on the stack and thus not restored.
This means that while a Method.invoke is an invalid acti-
vation frame, the method that it calls can still use contin-
uations. All these continuations become invalid as soon as
the control flow returns to the Method. invoke method.

Invalid activation frames can be used on purpose to im-
plement delimited continuations. Continuations that have
been captured with an invalid activation frame on the stack
will be automatically and reliably invalidated as soon as the
execution returns to the invalid activation frame.

S. EVALUATION

All tests and benchmarks presented in this section were
performed on a computer with a dual-core Intel Pentium D
processor at 2.8 GHz and 4 GByte main memory running
Microsoft Windows XP.

5.1 Memory Consumption

Activation frames, when stored on the heap, take up more
space than they do when stored on the stack because they
need to be wrapped in an object that is manageable by the
garbage collector. Storing and restoring a large number of
continuations likely puts a large strain on the memory sys-
tem so it is important to characterize the impact of our
approach with respect to memory consumption.

Compiled method size
For each compiled method that is marked with the
@Continuable annotation, about 40 bytes are needed



for the call-site-specific trampoline and for some addi-
tional control information.

Continuation size

An activation frame stores the local variables, inter-
mediate expressions, and some additional data such as
return addresses. The size of an activation frame, and
thus the size of a continuation, depends on the opti-
mizations the compiler performs. Despite this the size
of a continuation can be approximated as (in words):
8 + 8 * [number of stackframes] 4+ [number of local
variables] 4+ [number of expression stack elements]

Comparison to the copy-all approach

While our approach uses more memory for single con-
tinuations than the simple copy-all approach, it bene-
fits from the fact that activation objects can be, and
in practice will be, shared among multiple continua-
tions. If we assume 8 words of bookkeeping informa-
tion per activation object and an average activation
frame size of 16 words then simple calculation shows
that for practical stack depths (5-50) the break-even
point in memory consumption is reached as soon as
the reuse of stack frames reaches 27-33% on average.

5.2 Execution Time

For measuring the performance of continuations we de-
signed a synthetic benchmark that performs a number of
recursive method calls where each method has a certain
number of local variables and then captures a continuation.
Then the methods return and their corresponding activation
frames are stored. Afterwards the benchmark resumes the
continuation.

We performed this benchmark to determine the perfor-
mance of our implementation depending on two parameters:

Stack depth
We expect the time of a benchmark run to be propor-
tional to the number of activation frames it needs to
process because the runtime executes the frame stor-
age code for each individual activation frame.

Local variable count
The number of local variables should also have a linear
influence on the execution time as it determines how
much data needs to be copied for each activation frame.

Figure 14 shows the execution time for capturing one con-
tinuation consisting of 1 to 50 stack frames (x-axis) and for
three different numbers of local variables (different lines in
the chart). This test shows a linear increase of run time
when the number of stack frames or local variables is in-
creased. The numbers include the time necessary for allocat-
ing the continuation and frame objects (we verified that no
garbage collection was necessary during the measurement).
The costs of storing an activation frame is roughly 100 ns
plus 6 ns per local variable, which amounts to about 7 times
the costs of a plain method call. For comparison, the time
necessary for plain method calls is shown in Figure 15.

Figure 16 shows the costs of resuming continuations. They
are lower than for capturing a continuation because no mem-
ory allocation is necessary. The time for restoring an activa-
tion frame is roughly 60 ns plus 2 ns per local variable, which
amounts to about 3.5 times the costs of a plain method call.
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Figure 18: Speedup compared to Javaflow library

Figure 17 shows the costs of capturing continuations that
share activation frames. In this case, the costs per continua-
tion drops significantly. In this series of tests, 50 activation
frames are on the stack, and some of them are shared among
the 10 continuations created in each test. If no activation
frames are shared the execution time is equal to the time
needed to capture 50 frames in Figure 14.

Figure 18 shows a comparison of our implementation with
the Apache Commons Javaflow implementation for contin-
uations [2], which implements continuations via bytecode
instrumentation. All code to capture the continuation is in-
serted into the methods whose stack frames are stored, which
introduces a high overhead. We ran the same benchmarks
as above, but this time using the Javaflow library instead
of our continuation library. The results show that our VM-
based implementation provides a significant speedup of one
to two orders of magnitude.

6. RELATED WORK

Dragos et al. implemented first-class continuations for the
Ovm realtime Java virtual machine [5]. Their implemen-
tation works for the Java-to-C++ (j2c¢) execution engine,
which is an ahead-of-time compiler. The usage of C++ as a
backend forces them to do conservative garbage collection for
the continuation objects. Their algorithm takes the copy-all
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approach and they claim an execution time for capture and
resume of roughly 10 times a normal call. This conforms
to the worst case results for our implementation, but their
algorithm does not benefit from shared activation frames.

The Apache Commons Javaflow library [2] implements
continuations without JVM support using bytecode instru-
mentation. The instrumentation can be performed in ad-
vance or by a special class loader, which adds complexity
either to the build process or to the application itself. All
affected methods are modified such that they can distinguish
between normal execution, continuation capturing, and con-
tinuation resuming, which adds runtime overhead even when
no continuations are used. The local variables, expressions,
and position are stored in a thread-local parallel stack. This
approach is not tied to a specific Java virtual machine and
allows continuations to be serialized. Its performance can-
not compete with VM-based implementations and it was not
designed with heavy use of continuations in mind.

The RIFE Java web application framework [12] also imple-
ments continuations via bytecode instrumentation. It works
similar to the Javaflow library, but it allows continuation
capturing only within a specific method (processElement),
so that there is always only one activation frame per contin-
uation.

Many runtime environments for languages that require
continuations implement them via the simple copy-all ap-
proach. One example is the original Ruby environment [13]
which as of version 1.9.1 implements continuations via a
copy-all approach. The native stack is copied and restored
within C functions, which is very fragile to differences be-
tween C compiler implementations.

Compilers for continuation-aware languages that output
Java bytecode often compromise on supporting only one-
shot continuations. One example of this limited approach
is the Scheme-to-Java compiler BCD Scheme [3]. This im-
plementation approximates continuations by exceptions that
are thrown when the continuation is resumed. The call/cc
function catches the exception and returns the result that is
contained within it.

Hieb et al. describe the more sophisticated implementa-
tion of continuations in the Chez Scheme environment [6].
Their approach splits the stack into segments that are allo-
cated on the heap and lazily copied when needed. It provides
runtime characteristics similar to those of our approach, but
it introduces additional overhead even when continuations
are not used. It also requires more radical changes to the
runtime system.

7. CONCLUSIONS

The implementation of many functional and dynamic lan-
guages requires continuations. Many languages rely on ef-
ficient continuations in order to deliver acceptable perfor-
mance.

In this paper we presented a new approach for capturing
continuations in a lazy way and showed its implementation
for the widely used Java HotSpot™ VM. While there are
continuation libraries that work without changes to the Java
virtual machine these libraries cannot achieve the perfor-
mance of a VM-based implementation.

The main contribution of our approach is the lazy captur-
ing of a thread’s state and an optimized way of resuming this
state by restoring only those stack frames that differ from
the current thread state. We showed that our lazy algorithm



performs well and with predictable run-time costs and that
it can benefit from common patterns of continuation usage
such as sharing of activation frames.

8.
1]

2]
3]

[4]

[5]

[6]

REFERENCES

N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K.
Dybvig, D. P. Friedman, R. Halstead, C. Hanson,

C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.
Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman,
M. Wand, and H. Abelson. Revised® report on the
algorithmic language Scheme. ACM SIGPLAN
Notices, 33(9):26-76, 1998.

Apache Commons. Javaflow, 2009.
http://commons.apache.org/sandbox/javaflow/.

B. D. Carlstrom. Embedding Scheme in Java. Master’s
thesis, Massachusetts Institute of Technology, 2001.
O. Danvy and A. Filinski. Abstracting control. In
Proceedings of the ACM Conference on LISP and
Functional Programming, pages 151-160. ACM Press,
1990.

I. Dragos, A. Cunei, and J. Vitek. Continuations in
the Java virtual machine. In International Workshop
on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems.
Technische Universitiat Berlin, 2007.

R. Hieb, R. K. Dybvig, and C. Bruggeman.
Representing control in the presence of first-class
continuations. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, pages 66-77. ACM Press, 1990.

152

[7]

(15]

T. Kotzmann, C. Wimmer, H. M&ssenbock,

T. Rodriguez, K. Russell, and D. Cox. Design of the
Java HotSpot™ client compiler for Java 6. ACM
Transactions on Architecture and Code Optimization,
5(1):Article 7, 2008.

S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T.
Graunke, G. Pettyjohn, and M. Felleisen.
Implementation and use of the PLT Scheme web
server. Higher-Order and Symbolic Computation,
20(4):431—460, 2007.

T. Lindholm and F. Yellin. The Java™ Virtual
Machine Specification. Addison-Wesley, 2nd edition,
1999.

A. L. D. Moura and R. Ierusalimschy. Revisiting
coroutines. ACM Transactions on Programming
Languages and Systems, 31(2):Article 6, 2009.

M. Paleczny, C. Vick, and C. Click. The Java
HotSpot™ server compiler. In Proceedings of the Java
Virtual Machine Research and Technology Symposium,
pages 1-12. USENIX, 2001.

RIFE Java web application framework -
Continuations, 2009.
http://rifers.org/wiki/display /RIFECNT /Home.
Ruby Programming Language, 2009.
http://www.ruby-lang.org.

Sun Microsystems, Inc. The Java HotSpot
Performance Engine Architecture, 2006. http:
//java.sun.com/products/hotspot /whitepaper.html.
Sun Microsystems, Inc. Da Vinci Machine Project,
2009. http://openjdk.java.net/projects/mlvm/.





