
Lazy Decision Trees

Jerome H. Friedman Ron Kohavi Ueogirl Uun zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Statistics Department and Data Mining and Visualization Electrical Engineering Department

Stanford Linear Accelerator Center Silicon Graphics, Inc.

Stanford University 2011 N. Shoreline Blvd Stanford University

Stanford, CA 94305 Mountain View, CA 94043-1389 Stanford, CA 94305

jhf@playfair.stanford.edu ronnyk@sgi.com yygirlQcs.stanford.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lazy learning algorithms, exemplified by nearest-

neighbor algorithms, do not induce a concise hypoth-

esis from a given training set; the inductive process

is delayed until a test instance is given. Algorithms

for constructing decision trees, such as C4.5, ID3, and

CART create a single “ best” decision tree during the

training phase, and this tree is then used to classify

test instances. The tests at the nodes of the con-

structed tree are good on average, but there may be

better tests for classifying a specific instance. We pro-

pose a lazy decision tree algorithm-LAzuDT-that

conceptually constructs the “ best” decision tree for

each test instance. In practice, only a path needs to

be constructed, and a caching scheme makes the al-

gorithm fast. The algorithm is robust with respect to

missing values without resorting to the complicated

methods usually seen in induction of decision trees.

Experiments on real and artificial problems are pre-

sented.

Introduction
Delay is preferable to error-.

-Thomas Jeflerson (1743-1826)

The task of a supervised learning algorithm is to build

a classifier that can be used to classify unlabelled in-

stances accurately. Eager (non-lazy) algorithms con-

struct classifiers that contain an explicit hypothesis

mapping unlabelled instances to their predicted labels.

A decision tree classifier, for example, uses a stored de-

cision tree to classify instances by tracing the instance

through the tests at the interior nodes until a leaf con-

taining the label is reached. In eager algorithms, the

inductive process is attributed to the phase that builds

the classifier. Lazy algorithms (Aha to appear), how-

ever, do not construct an explicit hypothesis, and the

inductive process can be attributed to the classifier,

which is given access to the training set, possibly pre-

processed (e.g., data may be normalized). No explicit

A longer version of this paper is available at

http://robotics.stanford.edu/“ ronnyk

mapping is generated and the classifier must use the

training set to map each given instance to its label.

Building a single classifier that is good for all pre-

dictions may not take advantage of special character-

istics of the given test instance that may give rise to

an extremely short explanation tailored to the specific

instance at hand (see Example 1).

In this paper, we introduce a new lazy algorithm-

LAzYDT-that conceptually constructs the “ best” de-

cision tree for each test instance. In practice, only a

path needs to be constructed, and a caching scheme

makes the algorithm fast. Practical algorithms need to

deal with missing values, and LAZYDT naturally han-

dles them without resorting to the complicated meth-

ods usually seen in induction of decision trees (e.g.,

sending portions of instances down different branches

or using surrogate features).

ecision Trees and Their Limitations

Top down algorithms for inducing decision trees usu-

ally follow the divide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand conquer strategy (Quinlan

1993; Breiman et cal. 1984). The heart of these algo-

rithms is the test selection, i.e., which test to conduct

at a given node. Numerous selection measures exist

in the literature, with entropy measures and the Gini

index being the most common.

We now detail the entropy-based selection measure

commonly used in ID3 and its descendants (e.g., C4.5)

because the LAZYDT algorithm uses a related mea-

sure. We will then discuss some of the limitations of

eager decision tree algorithms and motivate our lazy

approach.

Test Selection in Decision Trees

To describe the entropy-based selection measure, we

follow the notation of Cover 8z Thomas (1991). Let

Y be a discrete random variable with range Y; the

entropy of Y, sometimes called the information of Y,

Decision zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATrees 717

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

is defined as Problems with Decision Trees

The problems with decision trees can be divided into

two categories: algorithmic problems that complicate

the algorithm’s goal of finding a small tree and inherent

problems with the representation.

Top-down decision-tree induction algorithms imple-

ment a greedy approach that attempts to find a small

tree. All the common selection measures are based on

one level of lookahead.

Two related problems inherent to the representation

structure are replication and fragmentation (Pagallo

& Haussler 1990). The replication problem forces du-

plication of subtrees in disjunctive concepts, such as

(A A B) v (C A 0) (one subtree, either A A B or

C A D must be duplicated in the smallest possible

decision tree); the fragmentation problem causes par-

titioning of the data into smaller fragments. Replica-

tion always implies fragmentation, but fragmentation

may happen without any replication if many features

need to be tested. For example, if the data splits ap-

proximately equally on every split, then a univariate

decision tree cannot test more than O(logn) features.

This puts decision trees at a disadvantage for tasks

with many relevant features.

A third problem inherent to the representation is the

ability to deal with missing values (unknown values).

The correct branch to take is unknown if a feature

tested is missing, and algorithms must employ special

mechanisms to handle missing values. In order to re-

duce the occurrences of tests on missing values, C4.5

penalizes the information gain by the proportion of un-

known instances and then splits these instances to both

subtrees. CART uses a much more complex scheme

of surrogate features. Friedman estimated that about

half the code in CART and about 80% of the program-

ming effort went into missing values!

w-7 = - c P(Y) h3 P(Y) ,

YEY

(1)

where 0 log 0 = 0 and the base of the log is usually

two so that entropy is expressed in bits. The entropy

is always non-negative and measures the amount of

uncertainty of the random variable Y. It is bounded by

log IyI with equality only if Y is uniformly distributed

over y.

The conditionul entropy of a variable Y given an-

other variable X is the expected value of the entropies

of the conditional distributions averaged over the con-

ditioning random variable:

N(Y 1 X) = - c p(x)H(Y 1 x = z)

XEX

= - c P(2) c P(Y I 4 l%P(Y I 4 (3)

x:EX YEY

= - c CPb,Yh% P(Y I 4 * (4)

XEK YEY

Note that N(Y 1 X) # H(X I Y).

The mzdtzsul information of two random variables Y

and X, sometimes called the information g&n of Y

given X, measures the relative entropy between the

joint distribution and the product distribution:

I(Y;X) = c c P(G Y) log ;;;$) (5)

YEY XcEX

= H(Y) - H(Y 1 X) .

The mutual information is symmetric, i.e., I(Y; X) =

1(X; Y), and non-negative (Cover & Thomas 1991).

As can be seen from Equation 6, the mutual informa-

tion measures the reduction in uncertainty in Y after

observing X. Given a set of instances, the above quan-

tities can be computed by using the empirical probabil-

ities, with the variable Y representing the class labels

and X a given feature variable.

The test selection step of common decision tree al-

gorithms is implemented by testing the mutual infor-

mation (or a similar measure) for each feature X with

the class label Y and picking the one with the highest

value (highest information gain).

Many eager decision tree algorithms, such as C4.5

and CART, have a post-processing step that prunes

the tree to avoid overfitting. The reader is referred to

Quinlan (1993) and B reiman et al. (1984) for the two

most common pruning mechanisms. The current im-

plementation of our LAZYDT algorithm does no prun-

ing because there is no simple analog between pruning

in lazy decision trees and pruning in ordinary decision

trees.

Lazy ecisim Trees

We now introduce LAZYDT, a lazy algorithm for in-

ducing decision trees. We begin with general motiva-

tion and compare the advantages and disadvantages of

the lazy construction of decision trees to that of the

eager approach. We then describe the specific algo-

rithmic details and the caching scheme that is used to

speed up classification.

Motivation

A single decision tree built from the training set is mak-

ing a compromise: the test at the root of each subtree

is chosen to be the best split on average. Common

feature selection criteria, such as mutual information

and the Gini index, average the purity of the children

718 Learning

by the proportions of instances in those children. En-

tropy measures used in C4.5 and ID3 are guaranteed to

decrease on average (i.e., the information gain is non-

negative) but the entropy of a specific child may not

change or may increase. A single tree built in advance

can lead to many irrelevant splits for a given test in-

stance, thus fragmenting the data unnecessarily. Such

fragmentation reduces the significance of tests at lower

levels since they are based on fewer instances. A de-

cision tree built for the given instance can avoid splits

on features that are irrelevant for the specific instance.

Example 1 Suppose a domain requires one to classify

patients as sick or healthy. A Boolean feature denoting

whether a person is HIV positive is extremely relevant.

(For this example we will assume that such persons

should be classified as sick.)

Even though all instances having HIV positive set

to true have the same class, a decision tree is unlikely

to make the root test based on this feature because

the proportion of these instances is so small; the condi-

tional (or average) entropy of the two children of a test

on the HIV-positive feature will not be much different

from the parent and hence the information gain will

be small. It is therefore likely that the HIV-positive

instances will be fragmented throughout the nodes in

the tree. Moreover, many branches that contain such

instances will need to branch on the HIV-positive fea-

ture lower down the tree, resulting in the replication

of tests.

The example leads to an interesting observation:

trees, or rather classification paths, built for a spe-

cific test instance may be much shorter and hence may

provide a short explanation for the classification. A

person that is healthy might be explained by a path

testing fever, blood-cell counts, and a few other fea-

tures that fall within the normal ranges. A person

might be classified as sick with the simple explanation

that he or she is HIV positive.

Another advantage to lazy decision trees is the nat-

ural way in which missing values are handled. Missing

feature values require special handling by decision tree

classifiers, but a decision tree built for the given in-

stance simply need never branch on a value missing

in that instance, thus avoiding unnecessary fragmen-

tation of the data.

The Framework for Lazy Decision Trees

We now describe the general framework for a lazy de-

cision tree classifier and some pitfalls associated with

using common selection measures, such as mutual in-

formation or the Gini index. We assume the data has

been discretized and that all features are nominal.

Input: A training set T of labelled instances and an

unlabelled instance I to classify.

Output: A label for instance 1.

1. If T is pure, i.e., all instances in T have label e,

return C.

2. Otherwise, if all instances in T have the same feature

values, return the majority class in T.

3. Otherwise, select a test X and let x be the value of

the test on the instance I. Assign the set of instances

with X = II: to T and apply the algorithm to T.

Figure 1: The generic lazy decision trees algorithm.

As with many lazy algorithms, the first part of the

induction process (i.e., building a classifier) is non-

existent; all the work is done during the classification

of a given instance.

The lazy decision tree algorithm, which gets the test

instance as part of the input, follows a separate and

classify methodology: a test is selected and the sub-

problem containing the instances with the same test

outcome as the given instance is then solved recur-

sively. The overall effect is that of tracing a path in an

imaginary tree made specifically for the test instance.

Figure 1 shows a generic lazy decision tree algorithm.

The heart of the algorithm is the selection of a test

to conduct at each recursive call. Common measures

used in decision tree algorithms usually indicate the

average gain in information after the outcome of the

chosen test is taken into account. Because the lazy

decision tree algorithm is given extra information,

namely the (unlabelled) test instance, one would like

to use that information to choose the appropriate test.

The simplest approach that comes to mind is to find

the test that maximally decreases the entropy for the

node our test instance would branch to and define the

information gain to be the difference between the two

entropies. There are two problems with this approach:

the first is that the information gain can be negative,

in which case it is not clear what to do with negative

gains. If class A is dominant but class B is the correct

class, then it may be necessary for the created path

to go through a node with equal frequencies before

class B becomes the majority class. This means that

avoiding splits on features that have negative gain is

a mistake. A second, related problem, is that only

the frequencies are taken into account, not the actual

classes. If the parent node has 80% class A and 20%

class B and the child node has 80% class B and 20%

Decision Trees 719

class A, then there will be no information gain (the

entropy will be the same), but the feature tested at

the parent is clearly relevant.

In light of these problems, we normalize the class

probabilities at every node by re-weighting the in-

stances such that each class has equal weight. The nor-

malization scheme solves both problems. The entropy

of the re-weighted parent node will be log Ic, where k

is the number of classes (see Equation 1 and the text

following it). The normalization implies that the in-

formation gain will always be positive and that the

80%/ 20% split described above will have large infor-

mation gain.

The LazyDT Algorithm

We now describe the exact details of the LAZYDT algo-

rithm including the way it handles continuous features

and the caching scheme used to speed the classification.

Since the LAZYDT algorithm described is only ca-

pable of processing nominal features, the training set is

first discretized (Dougherty, Kohavi, & Sahami 1995).

We chose to discretize the instances using recursive

minimization of entropy as proposed by Fayyad & Irani

(1993) and as implemented in MLC++ (Kohavi et al.

1994)) which is publicly available and thus allows repli-

cation of this discretization step. The exact details are

unimportant for this paper.

We considered two univariate test criteria. The first

is similar to that of C4.5 (i.e., a multi-way split). The

second is a binary split on a single value. To avoid

fragmentation as much as possible, we chose the second

method and have allowed splitting on any feature value

that is not equal to the instance’s value. For example,

if the instance has feature A with value a and the do-

main of A is {a, b,c}, then we allow a split on A = b

(two branches, one for equality, one for non-equality)

and a split on A = c. For non-binary features, this

splitting method makes more splits, but the number of

instances that are split off each time is smaller.

Missing feature values are naturally handled by con-

sidering only splits on feature values that are known in

the test instance. Training instances with unknowns

filter down and are excluded only when their value is

unknown for a given test in a path. Avoiding any tests

on unknown values is the correct thing to do proba-

bilistically, assuming the values are truly unknown (as

opposed to unknown because there was a reason for

not measuring them).

The LAZYDT algorithm proceeds by splitting the

instances on tests at nodes as described in the previous

section. Because we found that there are many ties

between features with very similar information gains,

we call the algorithm recursively for all features with

information gains higher than 90% of the highest gain

achievable. The recursive call that returns with the

highest number of instances in the majority class of a

leaf node that was reached makes the final prediction

(ties from the recursive calls are broken arbitrarily).

As defined, the algorithm is rather slow. For each in-

stance, all splits must be considered (a reasonably fast

process if the appropriate counters are kept), but each

split then takes time proportional to the number of

training instances that filtered to the given node. This

implies that the time complexity of classifying a given

instance is O(m . n. d) for m instances, n features, and

a path of depth d. If we make the reasonable assump-

tion that at least some fixed fraction of the instances

are removed at each split (say IO%), then the time

complexity is O(m . n). In order to speed up the pro-

cess in practice, we cache the information gains and

create lists of pointers to instances, representing the

sets of instances that filter to each node. After a few

instances have been classified, commonly used paths al-

ready exist, and the calculations need not be repeated,

especially at higher levels. The caching scheme was

found to be very efficient time-wise, but it consumes a

lot of memory.

Experiments

We now describe experiments that compare LAZYDT

with other algorithms for inducing decision trees.

The Algorithms and Datasets

We compare LAZYDT to three algorithms: simple ID3,

C4.5, and C4.5-NP. Simple ID3 is a basic basic top-

down induction of decision trees algorithm. It selects

the features based on information gain and considers

unknowns to be a separate value. C4.5 (Quinlan 1993)

is a state-of-the-art algorithm that penalizes multi-way

splits using the gain-ratio, prunes the tree, and splits

every instance into multiple branches when hitting un-

known values. We used the default parameter settings.

C4.5NP is C4.5 without pruning and it is compared

in order to estimate the effect of pruning. Because

LAZYDT does not prune, the difference between C4.5

and C4.5-NP might indicate that there is similar room

for improvement to LAZYDT if a pruning algorithm

were added.

The datasets we use are common ones used in the lit-

erature and stored in the U.C. Irvine repository (Mur-

phy & Aha 1996). Th e estimated prediction accuracy

was computed by doing five-fold cross-validation for all

domains except the artificial domains where a standard

training set was used and the test set was the complete

inst ante space.

720 LeaJming

Results and Discussion

Characteristics of the datasets and accuracy results are

shown in Table 1, and a graph presenting the difference

in accuracies and standard deviations is shown in Fig-

ure 2.

The LAZYDT algorithm is a reasonably fast al-

gorithm. The largest running time by far was for

mushroom with 8.4 Spare-10 cpu minutes per cross-

validation fold (equivalent to a run), followed by chess

with 1.59 cpu minutes. These datasets have 8124 in-

stances and 3196 instances, respectively.

From the table we can see that simple ID3 is gener-

ally inferior, as is C4.5 without pruning. Pruning im-

proves C4.5-NP’s performance, except for a few cases.

The LAZYDT algorithm and C4.5 (with pruning) be-

have somewhat similarly but there are some datasets

that have large differences. The LAZYDT’S average er-

ror rate is 1.9% lower, which is a relative improvement

in error of 10.6% over C4.5’~ 17.9% average error rate.

Three datasets deserve special discussion: anneal, au-

diology, and the monk2 problem.

Anneal is interesting because ID3 manages so well.

An investigation of the problem shows that the main

difference stems from the dissimilar ways in which un-

known values are handled. Simple ID3 considers un-

knowns as a separate value whereas C4.5 has a special

mechanism for handling unknowns. In this dataset,

changing the unknown values into a separate feature

value improves the performance of C4.5 to 98.7%.

Schaffer (1993) h s owed that neural nets considerably

outperformed C4.5 on the anneal dataset, but we can

now attribute this difference to the fact that for back-

propagation Schaffer has converted the unknown val-

ues to an additional discrete value.

The second file we discuss is audiology. The per-

formance of LAZYDT on this dataset is significantly

lower than that of C4.5. This dataset has 69 features,

24 classes, and only 226 instances. LAZYDT is likely

to find a pure class on one of the features because of

the small number of instances. Thus the extra flexi-

bility to branch differently depending on the test in-

stance hurts LAZYDT in cases such as audiology. This

is a bias-variance tradeoff (Kohavi & Wolpert 1996;

Geman, Bienenstock, & Doursat 1992) and to over-

come such cases we would have to bias the algorithm

to avoid early splits that leave only a few instances to

classify the test instance.

The final file to discuss is monk2, where the per-

formance of LAZYDT is superior to that of C4.5. The

monk2 problem is artificial and the concept is that any

two features (and only two) have to have their first

value. Quinlan (1993) writes that “ [The monk2 prob-

lem] is just plain difficult to express either as trees or

as rules. . . all classifiers generated by the programs are

very poor .” While the problem is hard to represent in

a univariate decision tree, the flexibility of LAZYDT

(which is still restricted to univariate splits), is helpful

here. The root test in the examined runs indeed tends

to pick a feature whose value is not equal to the first

value and thus separate those inst antes from the rest.

Missing Values

To test the robustness of LAZYDT to missing val-

ues, we added noise to the datasets. The “ noise pro-

cess” changes each feature value to unknown with the

20% probability. The average accuracy over all the

datasets changed as follows: ID3’s accuracy decreased

to 68.22%; C4.5’~ accuracy decreased to 77.10%, and

LAZYDT’S accuracy decreased to 77.81%.

Some of the biggest differences between the accuracy

on the original datasets and the corrupted datasets

occur on the artificial datasets: monkl, monk2, and

monk3; and pseudo-artificial datasets: tic-tat-toe, and

chess. Hayes-roth and glass2 also have large differ-

ences probably because they have many strongly rele-

vant features and few weakly relevant features (John,

Kohavi, & Pfleger 1994). If we ignore the artificial

problems, the average accuracy for LAZYDT on the

datasets without missing values is 82.15% and the ac-

curacy on the datasets with 20% missing values is

78.40%. Thus there is less than 4% reduction in per-

formance when 20% of the feature values are missing.

With many missing values pruning may be impor-

tant, but our current implementation of LAZYDT does

no pruning. For example, the worse difference in ac-

curacy on the corrupted datasets is on the breast (L)

dataset. LAZYDT overfits the data and has accuracy

of 61.54% while majority is 70.28%.

Most work on lazy learning was motivated by nearest-

neighbor algorithms (Dasarathy 1990; Wettschereck

1994; Aha to appear). LAZYDT was motivated by

Friedman (1994)) who defined a (separate) distance

metric for a nearest-neighbor classifier based on the

respective relevance of each feature for classifying each

particular test instance. Subsequently, Hastie & Tib-

shirani (1995) proposed using local linear discrimi-

nant methods to define nearest-neighbor metrics. Both

these methods are intended for continuous features and

thus they can control the number of instances removed

at each step. In contrast, the caching scheme used by

LAZYDT cannot be applied with these methods, and

hence they are much slower.

Smyth & Goodman (1992) described the use of the

J-measure, which is the inner sum of Equation 4. The

Decision Trees 721

Table 1: Comparison of the accuracy of simple ID3, C4.5 with no pruning, C4.5 with pruning, and LAZYDT. The

number after the f indicates one standard error of the cross-validation folds. The table is sorted by difference

between LAZYDT and C4.5.

No. Dataset Feat- Train Test Simple ID3 C4.5-NP c4.5 LAZYDT

ures sizes accuracy accuracy accuracy accuracy

monk-2 169 432 69.9lf2.21 65.30f2.29 65.00f2.30 82.18fl.84 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

monk- 1

tic-tat-toe

cleve

glass

hayes-roth

glass2

anneal

heart

diabetes

soybean-small

labor-neg

1ymphography
hepatitis

german

pima

mushroom

iris

vote

monk-3

chess

breast-(W)

breast-(L)

horse-colic

austrahan

crx

vote1

audiology

Average

6

6

9

13

9

4

9

24

13

8

35

16

18

19

24

8

22

4

16

6

36

10

9

22

14

15

15

69

124 432 81.25fl.89 76.60f2.04 75.70f2.07 91.90fl.31

958 cv-5 84.38f2.62 85.59rtl.35 84.02fl.56 93.63f0.83

303 cv-5 63.93f6.20 72.97xk2.50 73.62f2.25 81.2lf3.55

214 cv-5 62.79zt7.46 64.47f2.73 65.89f2.38 72.92fl.81

160 cv-5 68.75h8.33 71.25f3.03 74.38f4.24 78.75f1.53

163 cv-5 81.82f6.82 72.97f4.05 73.6Ok4.06 77.92fl.11

898 cv-5 100.00f0.00 94.10f0.45 91.65fl.60 95.77f0.87

270 cv-5 77.78f5.71 75.93f3.75 77.04f2.84 81.11f2.89

768 cv-5 66.23f3.82 67.72f2.76 70.84fl.67 74.4831.27

47 cv-5 100.OOfO.OO 95.5652.72 95.56f2.72 97.78f2.22

57 CV-t 83.33511.2 79.09f5.25 77.42f6.48 79.09zt4.24

148 cv-5 73.33f8.21 74.97f2.98 77.OlxkO.77 78.4lf2.19

155 cv-5 67.74f8.54 76.77f4.83 78.06f2.77 79.35f2.41

1000 cv-5 63.00f3.43 70.20fl.70 72.30fl.37 73.50f1.57

768 cv-5 67.53f3.79 69.79fl.68 72.65Al.78 73.7O~tl.58

8124 cv-5 100.00f0.00 100.00f0.00 100.00f0.00 100.00f0.00

150 cv-5 96.67f3.33 95.33f0.82 94.67kl.33 94.67f0.82

435 cv-5 93.lOf2.73 94.71f0.59 95.63f0.43 95.17f0.76

122 432 90.28xtl.43 92.60fl.26 97.203x0.80 96.53f0.88

3196 cv-5 99.69xt0.22 99.3lf0.15 99.34Zto.12 98.22hO.21

699 cv-5 95.71fl.72 93.99Ztl.05 94.7lZtO.37 92.99zt0.69

286 cv-5 62.07f6.43 64.34fl.67 71.00f2.25 68.55f2.86

368 cv-5 75.68f5.02 82.88f2.15 84.78fl.31 82.07kl.79

690 cv-5 78.26f3.52 82.90fl.14 85.36xt0.74 81.74fl.56

690 cv-5 79.71f3.44 83.62fl.35 85.80f0.99 82.03f0.87

435 cv-5 85.061t3.84 86.44f2.00 86.67fl.13 81.84~tl.56

226 CV-5 80.43f5.91 76.52f3.30 78.74k3.05 66.36&1.69

80.30 80.93 82.09 84.00

Act diff

2c _
LazyDT - C4.5

DataSet

Figure 2: The difference between the accuracy of LAZYDT and C4.5. Positive values indicate LAZYDT outperforms

C4.5. Error bars indicate one standard deviation.

722 Learning

J-measure can be used in LAZYDT because it was

shown to be non-negative. However, initial experi-

ments showed it was slightly inferior on the tested

datasets. Perhaps our measure would be useful in

systems where the J-measure is currently used (e.g.,

ITrule).

Holte, Acker, & Porter (1989) noted that existing

inductive systems create definitions that are good for

large disjuncts but are far from ideal for small dis-

juncts, where a disjunct is a conjunction that correctly

classifies few training examples. It is hard to assess

the accuracy of small disjuncts because they cover few

examples, yet removing all of them without signifi-

cance tests is unjustified since many of them are sig-

nificant and the overall accuracy would degrade. The

authors propose a selective specificity bias and present

mixed results; Quinlan (1991) suggests an improved

estimate that also takes into account the proportion

of the classes in the context of the small disjunct. We

believe that LAZYDT suffers less from the problem of

small disjuncts because the training set is being “ fit-

ted” to the specific instance and hence is likely to be

less fragmented. The normalization of class probabil-

ities in LAZYDT is in line with Quinlan’s suggestions

(Quinlan 1991) oft k a ing the context (the parent node

in our case) into account.

Quinlan (1994) h c aracterizes classification problems

as sequential or parallel. In parallel tasks, all input

features are relevant to the classification; in sequen-

tial type tasks, the relevance of features depends on

the values of other features. Quinlan conjectures that

parallel type tasks are unsuitable for current univari-

ate decision-tree methods because it is rare that there

are enough instances for doing splits on all the n rele-

vant features; similarly, he claims that sequential type

tasks require inordinate amounts of learning time for

backpropagation based methods because if a feature i

is irrelevant, inopportune adjustment to a weight wij

will tend to obscure the sensible adjustments made

when the feature is relevant. LAZYDT might be infe-

rior to backpropagation and nearest-neighbor methods

on some parallel tasks with many relevant features,

but it should fare better than decision trees. Good

examples are the monk2 and tic-tat-toe domains: all

features are relevant, but if a split is to be made on all

features, there will not be enough instances. LAZYDT

makes the relevant splits based on the feature values

in the test-instance and thus fragments the data less.

F’uture Work

LAZYDT is a new algorithm in the arena of machine

learning. The weakest point of our algorithm is the

fact that it does no regularization (pruning). The aus-

tralian dataset has 14 features, but the background

knowledge file describes five features as the important

ones. If we allow LAZYDT to use only those five fea-

tures, its accuracy increases from 81.7% to 85.6%. An

even more extreme case is breast-cancer (L), where re-

moval of all features improves performance (i.e., ma-

jority is a better classifier).

Data is currently discretized in advance. The dis-

cretization algorithm seems to be doing a good job, but

since it is a pre-processing algorithm, it is not taking

advantage of the test instance. It is possible to extend

LAZYDT to decide on the threshold during classifica-

tion, as in common decision tree algorithms, but the

caching scheme would need to be modified.

The caching algorithm currently remembers all tree

paths created, thus consuming a lot of memory for

files with many features and many instances. An en-

hancement might be made to allow for some space-time

tradeoff. In practice, of course, the caching scheme

might be avoided altogether; a doctor, for example, can

wait a few seconds for classification. Our experiments

required hundreds of test instances to be classified for

twenty-eight datasets, so caching was a necessity.

The dynamic complexity of an algorithm (Holte

1993) is the number of features used on average. An in-

teresting experiment would be to compare the dynamic

complexity of C4.5 with that of LAZYDT.

Summary

We introduced a novel lazy algorithm, LAZYDT, that

can be used in supervised classification. This algorithm

differs from common lazy algorithms that are usually

based on a global nearest-neighbor metric. LAZYDT

creates a path in a tree that would be “ best” for a

given test instance, thus mitigating the fragmentation

problem.

Empirical comparisons with C4.5, the state-of-the-

art decision tree algorithm, show that the perfor-

mance is slightly higher on the tested datasets from the

U .C. Irvine repository. However, since no algorithm

can outperform others in all settings (Wolpert 1994;

Schaffer 1994), the fact that they exhibit different be-

havior on many datasets is even more important. For

some datasets LAZYDT significantly outperforms C4.5

and vice-versa.

Missing feature values are naturally handled by

LAZYDT with no special handling mechanisms re-

quired. Performance on corrupted data is comparable

to that of C4.5, which has an extremely good algorithm

for dealing with unknown values.

The algorithm is relatively fast due to the caching

scheme employed, but requires a lot of memory. We

believe that a space-time tradeoff should be investi-

Decision Trees 723

gated and hope to pursue

issue in the future.

the regularizat ion (pruning)

Acknowledgments We thank George John, Rob

Holte, and Pat Langley for their suggestions. The

LAZYDT algorithm was implemented using the

M,CC++ library, partly funded by ONR grant N00014-

95-l-0669. Jerome H. Friedman’s work was supported

in part by the Department of Energy under contract

number DE-AC03-76SF00515 and by the National Sci-

ence Foundation under grant number DMS-9403804.

References

Aha, D. W. to appear. AI review journal: Special

issue on lazy learning.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and

Stone, C. J. 1984. Classification and Regression Trees.

Wadsworth International Group.

Cover, T. M., and Thomas, J. A. 1991. Elements of

Information Theory. John Wiley & Sons, Inc.

Dasarathy, B. V. 1990. Nearest Neighbor (NN,)

Norms: NN Pattern Classification Techniques. IEEE

Computer Society Press, Los Alamitos, California.

Dougherty, J.; Kohavi, R.; and Sahami, M. 1995.

Supervised and unsupervised discretization of contin-

uous features. In Prieditis, A., and Russell, S., eds.,

Machine Learning: Proceedings of the Twelfth Inter-

national Conference, 194-202. Morgan Kaufmann.

Fayyad, U. M., and Irani, K. B. 1993. Multi-interval

discretization of continuous-valued attributes for clas-

sification learning. In Proceedings of the 13th Inter-

national Joint Conference on Artificial Intelligence,

1022-1027. Morgan Kaufmann Publishers, Inc.

Friedman, J. H. 1994. Flexible metric nearest neigh-

bor classification. Technical Report 113, Stanford

University Statistics Department.

Geman, S.; Bienenstock, E.; and Doursat, R. 1992.

Neural networks and the bias/ variance dilemma. Neu-

ral Computation 411-48.

Hastie, T., and Tibshirani, R. 1995. Discriminant

adaptive nearest neighbor classification. Technical re-

port, Stanford University Statistics Department.

Holte, R. C.; Acker, L. E.; and Porter, B. W. 1989.

Concept learning and the problem of small disjuncts.

In Proceedings of the 11th International Joint Con-

ference on Artificial Intelligence, 813-818.

Holte, R. C. 1993. Very simple classification rules per-

form well on most commonly used datasets. Machine

Learning 11:63-90.

John, G.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant

features and the subset selection problem. In Machine

Learning: Proceedings of the Eleventh International

Conference, 121-129. Morgan Kaufmann.

Kohavi, R., and Wolpert, D. H. 1996. Bias plus vari-

ance decomposition for zero-one loss functions. In

Saitta, L., ed., Machine Learning: Proceedings of the

Thirteenth International Conference. Morgan Kauf-

mann Publishers, Inc. Available at

http:/ / robotics.stanford.edu/ users/ ronnyk.

Kohavi, R.; John, G.; Long, R.; Manley, D.; and

Pfleger, K. 1994. MLC++: A machine learning li-

brary in C++. In Tools with Artificial Intelligence,

740-743. IEEE Computer Society Press.

Murphy, P. M., and Aha, D. W. 1996. UC1 repository

of machine learning databases.

http:/ / www.ics.uci.edu/ ‘mlearn.

Pagallo, G., and Haussler, D. 1990. Boolean fea-

ture discovery in empirical learning. Machine Learn-

ing 5:71-99.

Quinlan, J. R. 1991. Improved estimates for the ac-

curacy of small disjuncts. Machine Learning 6:93-98.

Quinlan, J. R. 1993. C4.5: Programs for Machine

Learning. Los Altos, California: Morgan Kaufmann

Publishers, Inc.

Quinlan, J. R. 1994. Comparing connectionist and

symbolic learning methods. In Hanson, S. J.; Drastal,

G. A.; and Rivest, R. L., eds., Computational Learn-

ing Theory and Natural Learning Systems, volume I:

Constraints and Prospects. MIT Press. chapter 15,

445-456.

Schaffer, C. 1993. Selecting a classification method

by cross-validation. Machine Learning 13(1):135-143.

Schaffer, C. 1994. A conservation law for general-

ization performance. In Machine Learning: Proceed-

ings of the Eleventh International Conference, 259-

265. Morgan Kaufmann Publishers, Inc.

Smyth, P., and Goodman, R. 1992. An information

theoretic approach to rule induction from databases.

IEEE Transactions on Knowledge and Data Engi-

neering 4(4):301-316.

Wettschereck, D. 1994. A Study of Distance-Based

Machine Learning Algorithms. Ph.D. Dissertation,

Oregon State University.

Wolpert, D. H. 1994. The relationship between PAC,

the statistical physics framework, the Bayesian frame-

work, and the VC framework. In Wolpert, D. H., ed.,

The Mathemtatics of Generalization. Addison Wesley.

724 Learning

