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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lazy learning algorithms, exemplified by nearest- 

neighbor algorithms, do not induce a concise hypoth- 

esis from a given training set; the inductive process 

is delayed until a test instance is given. Algorithms 

for constructing decision trees, such as C4.5, ID3, and 

CART create a single “ best”  decision tree during the 

training phase, and this tree is then used to classify 

test instances. The tests at the nodes of the con- 

structed tree are good on average, but there may be 

better tests for classifying a specific instance. We pro- 

pose a lazy decision tree algorithm-LAzuDT-that 

conceptually constructs the “ best”  decision tree for 

each test instance. In practice, only a path needs to 

be constructed, and a caching scheme makes the al- 

gorithm fast. The algorithm is robust with respect to 

missing values without resorting to the complicated 

methods usually seen in induction of decision trees. 

Experiments on real and artificial problems are pre- 

sented. 

Introduction 
Delay is preferable to error-. 

-Thomas Jeflerson (1743-1826) 

The task of a supervised learning algorithm is to build 

a classifier that can be used to classify unlabelled in- 

stances accurately. Eager (non-lazy) algorithms con- 

struct classifiers that contain an explicit hypothesis 

mapping unlabelled instances to their predicted labels. 

A decision tree classifier, for example, uses a stored de- 

cision tree to classify instances by tracing the instance 

through the tests at the interior nodes until a leaf con- 

taining the label is reached. In eager algorithms, the 

inductive process is attributed to the phase that builds 

the classifier. Lazy algorithms (Aha to appear), how- 

ever, do not construct an explicit hypothesis, and the 

inductive process can be attributed to the classifier, 

which is given access to the training set, possibly pre- 

processed (e.g., data may be normalized). No explicit 
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mapping is generated and the classifier must use the 

training set to map each given instance to its label. 

Building a single classifier that is good for all pre- 

dictions may not take advantage of special character- 

istics of the given test instance that may give rise to 

an extremely short explanation tailored to the specific 

instance at hand (see Example 1). 

In this paper, we introduce a new lazy algorithm- 

LAzYDT-that conceptually constructs the “ best”  de- 

cision tree for each test instance. In practice, only a 

path needs to be constructed, and a caching scheme 

makes the algorithm fast. Practical algorithms need to 

deal with missing values, and LAZYDT naturally han- 

dles them without resorting to the complicated meth- 

ods usually seen in induction of decision trees (e.g., 

sending portions of instances down different branches 

or using surrogate features). 

ecision Trees and Their Limitations 

Top down algorithms for inducing decision trees usu- 

ally follow the divide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand conquer strategy (Quinlan 

1993; Breiman et cal. 1984). The heart of these algo- 

rithms is the test selection, i.e., which test to conduct 

at a given node. Numerous selection measures exist 

in the literature, with entropy measures and the Gini 

index being the most common. 

We now detail the entropy-based selection measure 

commonly used in ID3 and its descendants (e.g., C4.5) 

because the LAZYDT algorithm uses a related mea- 

sure. We will then discuss some of the limitations of 

eager decision tree algorithms and motivate our lazy 

approach. 

Test Selection in Decision Trees 

To describe the entropy-based selection measure, we 

follow the notation of Cover 8z Thomas (1991). Let 

Y be a discrete random variable with range Y; the 

entropy of Y, sometimes called the information of Y, 
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is defined as Problems with Decision Trees 

The problems with decision trees can be divided into 

two categories: algorithmic problems that complicate 

the algorithm’s goal of finding a small tree and inherent 

problems with the representation. 

Top-down decision-tree induction algorithms imple- 

ment a greedy approach that attempts to find a small 

tree. All the common selection measures are based on 

one level of lookahead. 

Two related problems inherent to the representation 

structure are replication and fragmentation (Pagallo 

& Haussler 1990). The replication problem forces du- 

plication of subtrees in disjunctive concepts, such as 

(A A B) v (C A 0) ( one subtree, either A A B or 

C A D must be duplicated in the smallest possible 

decision tree); the fragmentation problem causes par- 

titioning of the data into smaller fragments. Replica- 

tion always implies fragmentation, but fragmentation 

may happen without any replication if many features 

need to be tested. For example, if the data splits ap- 

proximately equally on every split, then a univariate 

decision tree cannot test more than O(logn) features. 

This puts decision trees at a disadvantage for tasks 

with many relevant features. 

A third problem inherent to the representation is the 

ability to deal with missing values (unknown values). 

The correct branch to take is unknown if a feature 

tested is missing, and algorithms must employ special 

mechanisms to handle missing values. In order to re- 

duce the occurrences of tests on missing values, C4.5 

penalizes the information gain by the proportion of un- 

known instances and then splits these instances to both 

subtrees. CART uses a much more complex scheme 

of surrogate features. Friedman estimated that about 

half the code in CART and about 80% of the program- 

ming effort went into missing values! 

w-7 = - c P(Y) h3 P(Y) , 

YEY 

(1) 

where 0 log 0 = 0 and the base of the log is usually 

two so that entropy is expressed in bits. The entropy 

is always non-negative and measures the amount of 

uncertainty of the random variable Y. It is bounded by 

log IyI with equality only if Y is uniformly distributed 

over y. 

The conditionul entropy of a variable Y given an- 

other variable X is the expected value of the entropies 

of the conditional distributions averaged over the con- 

ditioning random variable: 

N(Y 1 X) = - c p(x)H(Y 1 x = z) 

XEX 

= - c P(2) c P(Y I 4 l%P(Y I 4 (3) 

x:EX YEY 

= - c CPb,Yh% P(Y I 4 * (4) 

XEK YEY 

Note that N(Y 1 X) # H(X I Y). 

The mzdtzsul information of two random variables Y 

and X, sometimes called the information g&n of Y 

given X, measures the relative entropy between the 

joint distribution and the product distribution: 

I(Y;X) = c c P(G Y) log ;;;$) (5) 

YEY XcEX 

= H(Y) - H(Y 1 X) . 

The mutual information is symmetric, i.e., I(Y; X) = 

1(X; Y), and non-negative (Cover & Thomas 1991). 

As can be seen from Equation 6, the mutual informa- 

tion measures the reduction in uncertainty in Y after 

observing X. Given a set of instances, the above quan- 

tities can be computed by using the empirical probabil- 

ities, with the variable Y representing the class labels 

and X a given feature variable. 

The test selection step of common decision tree al- 

gorithms is implemented by testing the mutual infor- 

mation (or a similar measure) for each feature X with 

the class label Y and picking the one with the highest 

value (highest information gain). 

Many eager decision tree algorithms, such as C4.5 

and CART, have a post-processing step that prunes 

the tree to avoid overfitting. The reader is referred to 

Quinlan (1993) and B reiman et al. (1984) for the two 

most common pruning mechanisms. The current im- 

plementation of our LAZYDT algorithm does no prun- 

ing because there is no simple analog between pruning 

in lazy decision trees and pruning in ordinary decision 

trees. 

Lazy ecisim Trees 

We now introduce LAZYDT, a lazy algorithm for in- 

ducing decision trees. We begin with general motiva- 

tion and compare the advantages and disadvantages of 

the lazy construction of decision trees to that of the 

eager approach. We then describe the specific algo- 

rithmic details and the caching scheme that is used to 

speed up classification. 

Motivation 

A single decision tree built from the training set is mak- 

ing a compromise: the test at the root of each subtree 

is chosen to be the best split on average. Common 

feature selection criteria, such as mutual information 

and the Gini index, average the purity of the children 
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by the proportions of instances in those children. En- 

tropy measures used in C4.5 and ID3 are guaranteed to 

decrease on average (i.e., the information gain is non- 

negative) but the entropy of a specific child may not 

change or may increase. A single tree built in advance 

can lead to many irrelevant splits for a given test in- 

stance, thus fragmenting the data unnecessarily. Such 

fragmentation reduces the significance of tests at lower 

levels since they are based on fewer instances. A de- 

cision tree built for the given instance can avoid splits 

on features that are irrelevant for the specific instance. 

Example 1 Suppose a domain requires one to classify 

patients as sick or healthy. A Boolean feature denoting 

whether a person is HIV positive is extremely relevant. 

(For this example we will assume that such persons 

should be classified as sick.) 

Even though all instances having HIV positive set 

to true have the same class, a decision tree is unlikely 

to make the root test based on this feature because 

the proportion of these instances is so small; the condi- 

tional (or average) entropy of the two children of a test 

on the HIV-positive feature will not be much different 

from the parent and hence the information gain will 

be small. It is therefore likely that the HIV-positive 

instances will be fragmented throughout the nodes in 

the tree. Moreover, many branches that contain such 

instances will need to branch on the HIV-positive fea- 

ture lower down the tree, resulting in the replication 

of tests. 

The example leads to an interesting observation: 

trees, or rather classification paths, built for a spe- 

cific test instance may be much shorter and hence may 

provide a short explanation for the classification. A 

person that is healthy might be explained by a path 

testing fever, blood-cell counts, and a few other fea- 

tures that fall within the normal ranges. A person 

might be classified as sick with the simple explanation 

that he or she is HIV positive. 

Another advantage to lazy decision trees is the nat- 

ural way in which missing values are handled. Missing 

feature values require special handling by decision tree 

classifiers, but a decision tree built for the given in- 

stance simply need never branch on a value missing 

in that instance, thus avoiding unnecessary fragmen- 

tation of the data. 

The Framework for Lazy Decision Trees 

We now describe the general framework for a lazy de- 

cision tree classifier and some pitfalls associated with 

using common selection measures, such as mutual in- 

formation or the Gini index. We assume the data has 

been discretized and that all features are nominal. 

Input: A training set T of labelled instances and an 

unlabelled instance I to classify. 

Output: A label for instance 1. 

1. If T is pure, i.e., all instances in T have label e, 

return C. 

2. Otherwise, if all instances in T have the same feature 

values, return the majority class in T. 

3. Otherwise, select a test X and let x be the value of 

the test on the instance I. Assign the set of instances 

with X = II: to T and apply the algorithm to T. 

Figure 1: The generic lazy decision trees algorithm. 

As with many lazy algorithms, the first part of the 

induction process (i.e., building a classifier) is non- 

existent; all the work is done during the classification 

of a given instance. 

The lazy decision tree algorithm, which gets the test 

instance as part of the input, follows a separate and 

classify methodology: a test is selected and the sub- 

problem containing the instances with the same test 

outcome as the given instance is then solved recur- 

sively. The overall effect is that of tracing a path in an 

imaginary tree made specifically for the test instance. 

Figure 1 shows a generic lazy decision tree algorithm. 

The heart of the algorithm is the selection of a test 

to conduct at each recursive call. Common measures 

used in decision tree algorithms usually indicate the 

average gain in information after the outcome of the 

chosen test is taken into account. Because the lazy 

decision tree algorithm is given extra information, 

namely the (unlabelled) test instance, one would like 

to use that information to choose the appropriate test. 

The simplest approach that comes to mind is to find 

the test that maximally decreases the entropy for the 

node our test instance would branch to and define the 

information gain to be the difference between the two 

entropies. There are two problems with this approach: 

the first is that the information gain can be negative, 

in which case it is not clear what to do with negative 

gains. If class A is dominant but class B is the correct 

class, then it may be necessary for the created path 

to go through a node with equal frequencies before 

class B becomes the majority class. This means that 

avoiding splits on features that have negative gain is 

a mistake. A second, related problem, is that only 

the frequencies are taken into account, not the actual 

classes. If the parent node has 80% class A and 20% 

class B and the child node has 80% class B and 20% 
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class A, then there will be no information gain (the 

entropy will be the same), but the feature tested at 

the parent is clearly relevant. 

In light of these problems, we normalize the class 

probabilities at every node by re-weighting the in- 

stances such that each class has equal weight. The nor- 

malization scheme solves both problems. The entropy 

of the re-weighted parent node will be log Ic, where k 

is the number of classes (see Equation 1 and the text 

following it). The normalization implies that the in- 

formation gain will always be positive and that the 

80%/ 20% split described above will have large infor- 

mation gain. 

The LazyDT Algorithm 

We now describe the exact details of the LAZYDT algo- 

rithm including the way it handles continuous features 

and the caching scheme used to speed the classification. 

Since the LAZYDT algorithm described is only ca- 

pable of processing nominal features, the training set is 

first discretized (Dougherty, Kohavi, & Sahami 1995). 

We chose to discretize the instances using recursive 

minimization of entropy as proposed by Fayyad & Irani 

(1993) and as implemented in MLC++ (Kohavi et al. 

1994)) which is publicly available and thus allows repli- 

cation of this discretization step. The exact details are 

unimportant for this paper. 

We considered two univariate test criteria. The first 

is similar to that of C4.5 ( i.e., a multi-way split). The 

second is a binary split on a single value. To avoid 

fragmentation as much as possible, we chose the second 

method and have allowed splitting on any feature value 

that is not equal to the instance’s value. For example, 

if the instance has feature A with value a and the do- 

main of A is {a, b,c}, then we allow a split on A = b 

(two branches, one for equality, one for non-equality) 

and a split on A = c. For non-binary features, this 

splitting method makes more splits, but the number of 

instances that are split off each time is smaller. 

Missing feature values are naturally handled by con- 

sidering only splits on feature values that are known in 

the test instance. Training instances with unknowns 

filter down and are excluded only when their value is 

unknown for a given test in a path. Avoiding any tests 

on unknown values is the correct thing to do proba- 

bilistically, assuming the values are truly unknown (as 

opposed to unknown because there was a reason for 

not measuring them). 

The LAZYDT algorithm proceeds by splitting the 

instances on tests at nodes as described in the previous 

section. Because we found that there are many ties 

between features with very similar information gains, 

we call the algorithm recursively for all features with 

information gains higher than 90% of the highest gain 

achievable. The recursive call that returns with the 

highest number of instances in the majority class of a 

leaf node that was reached makes the final prediction 

(ties from the recursive calls are broken arbitrarily). 

As defined, the algorithm is rather slow. For each in- 

stance, all splits must be considered (a reasonably fast 

process if the appropriate counters are kept), but each 

split then takes time proportional to the number of 

training instances that filtered to the given node. This 

implies that the time complexity of classifying a given 

instance is O(m . n. d) for m instances, n features, and 

a path of depth d. If we make the reasonable assump- 

tion that at least some fixed fraction of the instances 

are removed at each split (say IO%), then the time 

complexity is O(m . n). In order to speed up the pro- 

cess in practice, we cache the information gains and 

create lists of pointers to instances, representing the 

sets of instances that filter to each node. After a few 

instances have been classified, commonly used paths al- 

ready exist, and the calculations need not be repeated, 

especially at higher levels. The caching scheme was 

found to be very efficient time-wise, but it consumes a 

lot of memory. 

Experiments 

We now describe experiments that compare LAZYDT 

with other algorithms for inducing decision trees. 

The Algorithms and Datasets 

We compare LAZYDT to three algorithms: simple ID3, 

C4.5, and C4.5-NP. Simple ID3 is a basic basic top- 

down induction of decision trees algorithm. It selects 

the features based on information gain and considers 

unknowns to be a separate value. C4.5 (Quinlan 1993) 

is a state-of-the-art algorithm that penalizes multi-way 

splits using the gain-ratio, prunes the tree, and splits 

every instance into multiple branches when hitting un- 

known values. We used the default parameter settings. 

C4.5NP is C4.5 without pruning and it is compared 

in order to estimate the effect of pruning. Because 

LAZYDT does not prune, the difference between C4.5 

and C4.5-NP might indicate that there is similar room 

for improvement to LAZYDT if a pruning algorithm 

were added. 

The datasets we use are common ones used in the lit- 

erature and stored in the U.C. Irvine repository (Mur- 

phy & Aha 1996). Th e estimated prediction accuracy 

was computed by doing five-fold cross-validation for all 

domains except the artificial domains where a standard 

training set was used and the test set was the complete 

inst ante space. 
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Results and Discussion 

Characteristics of the datasets and accuracy results are 

shown in Table 1, and a graph presenting the difference 

in accuracies and standard deviations is shown in Fig- 

ure 2. 

The LAZYDT algorithm is a reasonably fast al- 

gorithm. The largest running time by far was for 

mushroom with 8.4 Spare-10 cpu minutes per cross- 

validation fold (equivalent to a run), followed by chess 

with 1.59 cpu minutes. These datasets have 8124 in- 

stances and 3196 instances, respectively. 

From the table we can see that simple ID3 is gener- 

ally inferior, as is C4.5 without pruning. Pruning im- 

proves C4.5-NP’s performance, except for a few cases. 

The LAZYDT algorithm and C4.5 (with pruning) be- 

have somewhat similarly but there are some datasets 

that have large differences. The LAZYDT’S average er- 

ror rate is 1.9% lower, which is a relative improvement 

in error of 10.6% over C4.5’~ 17.9% average error rate. 

Three datasets deserve special discussion: anneal, au- 

diology, and the monk2 problem. 

Anneal is interesting because ID3 manages so well. 

An investigation of the problem shows that the main 

difference stems from the dissimilar ways in which un- 

known values are handled. Simple ID3 considers un- 

knowns as a separate value whereas C4.5 has a special 

mechanism for handling unknowns. In this dataset, 

changing the unknown values into a separate feature 

value improves the performance of C4.5 to 98.7%. 

Schaffer (1993) h s owed that neural nets considerably 

outperformed C4.5 on the anneal dataset, but we can 

now attribute this difference to the fact that for back- 

propagation Schaffer has converted the unknown val- 

ues to an additional discrete value. 

The second file we discuss is audiology. The per- 

formance of LAZYDT on this dataset is significantly 

lower than that of C4.5. This dataset has 69 features, 

24 classes, and only 226 instances. LAZYDT is likely 

to find a pure class on one of the features because of 

the small number of instances. Thus the extra flexi- 

bility to branch differently depending on the test in- 

stance hurts LAZYDT in cases such as audiology. This 

is a bias-variance tradeoff (Kohavi & Wolpert 1996; 

Geman, Bienenstock, & Doursat 1992) and to over- 

come such cases we would have to bias the algorithm 

to avoid early splits that leave only a few instances to 

classify the test instance. 

The final file to discuss is monk2, where the per- 

formance of LAZYDT is superior to that of C4.5. The 

monk2 problem is artificial and the concept is that any 

two features (and only two) have to have their first 

value. Quinlan (1993) writes that “ [The monk2 prob- 

lem] is just plain difficult to express either as trees or 

as rules. . . all classifiers generated by the programs are 

very poor .”  While the problem is hard to represent in 

a univariate decision tree, the flexibility of LAZYDT 

(which is still restricted to univariate splits), is helpful 

here. The root test in the examined runs indeed tends 

to pick a feature whose value is not equal to the first 

value and thus separate those inst antes from the rest. 

Missing Values 

To test the robustness of LAZYDT to missing val- 

ues, we added noise to the datasets. The “ noise pro- 

cess”  changes each feature value to unknown with the 

20% probability. The average accuracy over all the 

datasets changed as follows: ID3’s accuracy decreased 

to 68.22%; C4.5’~ accuracy decreased to 77.10%, and 

LAZYDT’S accuracy decreased to 77.81%. 

Some of the biggest differences between the accuracy 

on the original datasets and the corrupted datasets 

occur on the artificial datasets: monkl, monk2, and 

monk3; and pseudo-artificial datasets: tic-tat-toe, and 

chess. Hayes-roth and glass2 also have large differ- 

ences probably because they have many strongly rele- 

vant features and few weakly relevant features (John, 

Kohavi, & Pfleger 1994). If we ignore the artificial 

problems, the average accuracy for LAZYDT on the 

datasets without missing values is 82.15% and the ac- 

curacy on the datasets with 20% missing values is 

78.40%. Thus there is less than 4% reduction in per- 

formance when 20% of the feature values are missing. 

With many missing values pruning may be impor- 

tant, but our current implementation of LAZYDT does 

no pruning. For example, the worse difference in ac- 

curacy on the corrupted datasets is on the breast (L) 

dataset. LAZYDT overfits the data and has accuracy 

of 61.54% while majority is 70.28%. 

Most work on lazy learning was motivated by nearest- 

neighbor algorithms (Dasarathy 1990; Wettschereck 

1994; Aha to appear). LAZYDT was motivated by 

Friedman (1994)) who defined a (separate) distance 

metric for a nearest-neighbor classifier based on the 

respective relevance of each feature for classifying each 

particular test instance. Subsequently, Hastie & Tib- 

shirani (1995) proposed using local linear discrimi- 

nant methods to define nearest-neighbor metrics. Both 

these methods are intended for continuous features and 

thus they can control the number of instances removed 

at each step. In contrast, the caching scheme used by 

LAZYDT cannot be applied with these methods, and 

hence they are much slower. 

Smyth & Goodman (1992) described the use of the 

J-measure, which is the inner sum of Equation 4. The 
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Table 1: Comparison of the accuracy of simple ID3, C4.5 with no pruning, C4.5 with pruning, and LAZYDT. The 

number after the f indicates one standard error of the cross-validation folds. The table is sorted by difference 

between LAZYDT and C4.5. 

No. Dataset Feat- Train Test Simple ID3 C4.5-NP c4.5 LAZYDT 

ures sizes accuracy accuracy accuracy accuracy 

monk-2 169 432 69.9lf2.21 65.30f2.29 65.00f2.30 82.18fl.84 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

monk- 1 

tic-tat-toe 

cleve 

glass 

hayes-roth 

glass2 

anneal 

heart 

diabetes 

soybean-small 

labor-neg 

1ymphography 
hepatitis 

german 

pima 

mushroom 

iris 

vote 

monk-3 

chess 

breast-(W) 

breast-(L) 

horse-colic 

austrahan 

crx 

vote1 

audiology 

Average 

6 

6 

9 

13 

9 

4 

9 

24 

13 

8 

35 

16 

18 

19 

24 

8 

22 

4 

16 

6 

36 

10 

9 

22 

14 

15 

15 

69 

124 432 81.25fl.89 76.60f2.04 75.70f2.07 91.90fl.31 

958 cv-5 84.38f2.62 85.59rtl.35 84.02fl.56 93.63f0.83 

303 cv-5 63.93f6.20 72.97xk2.50 73.62f2.25 81.2lf3.55 

214 cv-5 62.79zt7.46 64.47f2.73 65.89f2.38 72.92fl.81 

160 cv-5 68.75h8.33 71.25f3.03 74.38f4.24 78.75f1.53 

163 cv-5 81.82f6.82 72.97f4.05 73.6Ok4.06 77.92fl.11 

898 cv-5 100.00f0.00 94.10f0.45 91.65fl.60 95.77f0.87 

270 cv-5 77.78f5.71 75.93f3.75 77.04f2.84 81.11f2.89 

768 cv-5 66.23f3.82 67.72f2.76 70.84fl.67 74.4831.27 

47 cv-5 100.OOfO.OO 95.5652.72 95.56f2.72 97.78f2.22 

57 CV-t 83.33511.2 79.09f5.25 77.42f6.48 79.09zt4.24 

148 cv-5 73.33f8.21 74.97f2.98 77.OlxkO.77 78.4lf2.19 

155 cv-5 67.74f8.54 76.77f4.83 78.06f2.77 79.35f2.41 

1000 cv-5 63.00f3.43 70.20fl.70 72.30fl.37 73.50f1.57 

768 cv-5 67.53f3.79 69.79fl.68 72.65Al.78 73.7O~tl.58 

8124 cv-5 100.00f0.00 100.00f0.00 100.00f0.00 100.00f0.00 

150 cv-5 96.67f3.33 95.33f0.82 94.67kl.33 94.67f0.82 

435 cv-5 93.lOf2.73 94.71f0.59 95.63f0.43 95.17f0.76 

122 432 90.28xtl.43 92.60fl.26 97.203x0.80 96.53f0.88 

3196 cv-5 99.69xt0.22 99.3lf0.15 99.34Zto.12 98.22hO.21 

699 cv-5 95.71fl.72 93.99Ztl.05 94.7lZtO.37 92.99zt0.69 

286 cv-5 62.07f6.43 64.34fl.67 71.00f2.25 68.55f2.86 

368 cv-5 75.68f5.02 82.88f2.15 84.78fl.31 82.07kl.79 

690 cv-5 78.26f3.52 82.90fl.14 85.36xt0.74 81.74fl.56 

690 cv-5 79.71f3.44 83.62fl.35 85.80f0.99 82.03f0.87 

435 cv-5 85.061t3.84 86.44f2.00 86.67fl.13 81.84~tl.56 

226 CV-5 80.43f5.91 76.52f3.30 78.74k3.05 66.36&1.69 

80.30 80.93 82.09 84.00 

Act diff 

2c _ 
LazyDT - C4.5 

DataSet 

Figure 2: The difference between the accuracy of LAZYDT and C4.5. Positive values indicate LAZYDT outperforms 

C4.5. Error bars indicate one standard deviation. 
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J-measure can be used in LAZYDT because it was 

shown to be non-negative. However, initial experi- 

ments showed it was slightly inferior on the tested 

datasets. Perhaps our measure would be useful in 

systems where the J-measure is currently used (e.g., 

ITrule). 

Holte, Acker, & Porter (1989) noted that existing 

inductive systems create definitions that are good for 

large disjuncts but are far from ideal for small dis- 

juncts, where a disjunct is a conjunction that correctly 

classifies few training examples. It is hard to assess 

the accuracy of small disjuncts because they cover few 

examples, yet removing all of them without signifi- 

cance tests is unjustified since many of them are sig- 

nificant and the overall accuracy would degrade. The 

authors propose a selective specificity bias and present 

mixed results; Quinlan (1991) suggests an improved 

estimate that also takes into account the proportion 

of the classes in the context of the small disjunct. We 

believe that LAZYDT suffers less from the problem of 

small disjuncts because the training set is being “ fit- 

ted”  to the specific instance and hence is likely to be 

less fragmented. The normalization of class probabil- 

ities in LAZYDT is in line with Quinlan’s suggestions 

(Quinlan 1991) oft k a ing the context (the parent node 

in our case) into account. 

Quinlan (1994) h c aracterizes classification problems 

as sequential or parallel. In parallel tasks, all input 

features are relevant to the classification; in sequen- 

tial type tasks, the relevance of features depends on 

the values of other features. Quinlan conjectures that 

parallel type tasks are unsuitable for current univari- 

ate decision-tree methods because it is rare that there 

are enough instances for doing splits on all the n rele- 

vant features; similarly, he claims that sequential type 

tasks require inordinate amounts of learning time for 

backpropagation based methods because if a feature i 

is irrelevant, inopportune adjustment to a weight wij 

will tend to obscure the sensible adjustments made 

when the feature is relevant. LAZYDT might be infe- 

rior to backpropagation and nearest-neighbor methods 

on some parallel tasks with many relevant features, 

but it should fare better than decision trees. Good 

examples are the monk2 and tic-tat-toe domains: all 

features are relevant, but if a split is to be made on all 

features, there will not be enough instances. LAZYDT 

makes the relevant splits based on the feature values 

in the test-instance and thus fragments the data less. 

F’uture Work 

LAZYDT is a new algorithm in the arena of machine 

learning. The weakest point of our algorithm is the 

fact that it does no regularization (pruning). The aus- 

tralian dataset has 14 features, but the background 

knowledge file describes five features as the important 

ones. If we allow LAZYDT to use only those five fea- 

tures, its accuracy increases from 81.7% to 85.6%. An 

even more extreme case is breast-cancer (L), where re- 

moval of all features improves performance (i.e., ma- 

jority is a better classifier). 

Data is currently discretized in advance. The dis- 

cretization algorithm seems to be doing a good job, but 

since it is a pre-processing algorithm, it is not taking 

advantage of the test instance. It is possible to extend 

LAZYDT to decide on the threshold during classifica- 

tion, as in common decision tree algorithms, but the 

caching scheme would need to be modified. 

The caching algorithm currently remembers all tree 

paths created, thus consuming a lot of memory for 

files with many features and many instances. An en- 

hancement might be made to allow for some space-time 

tradeoff. In practice, of course, the caching scheme 

might be avoided altogether; a doctor, for example, can 

wait a few seconds for classification. Our experiments 

required hundreds of test instances to be classified for 

twenty-eight datasets, so caching was a necessity. 

The dynamic complexity of an algorithm (Holte 

1993) is the number of features used on average. An in- 

teresting experiment would be to compare the dynamic 

complexity of C4.5 with that of LAZYDT. 

Summary 

We introduced a novel lazy algorithm, LAZYDT, that 

can be used in supervised classification. This algorithm 

differs from common lazy algorithms that are usually 

based on a global nearest-neighbor metric. LAZYDT 

creates a path in a tree that would be “ best”  for a 

given test instance, thus mitigating the fragmentation 

problem. 

Empirical comparisons with C4.5, the state-of-the- 

art decision tree algorithm, show that the perfor- 

mance is slightly higher on the tested datasets from the 

U .C. Irvine repository. However, since no algorithm 

can outperform others in all settings (Wolpert 1994; 

Schaffer 1994), the fact that they exhibit different be- 

havior on many datasets is even more important. For 

some datasets LAZYDT significantly outperforms C4.5 

and vice-versa. 

Missing feature values are naturally handled by 

LAZYDT with no special handling mechanisms re- 

quired. Performance on corrupted data is comparable 

to that of C4.5, which has an extremely good algorithm 

for dealing with unknown values. 

The algorithm is relatively fast due to the caching 

scheme employed, but requires a lot of memory. We 

believe that a space-time tradeoff should be investi- 
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gated and hope to pursue 

issue in the future. 

the regularizat ion (pruning) 
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