
Pre-publication draft of paper published in Machine Learning, 41, 53–87 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Lazy Learning of Bayesian Rules

ZIJIAN ZHENG AND GEOFFREY I. WEBB {zijian,webb}@deakin.edu.au

School of Computing and Mathematics
Deakin University, Geelong, Victoria 3217, Australia

Revised April 2000

Editor: Douglas Fisher

Abstract. The naive Bayesian classifier provides a simple and effective approach to classifier
learning, but its attribute independence assumption is often violated in the real world. A number
of approaches have sought to alleviate this problem. A Bayesian tree learning algorithm builds a
decision tree, and generates a local naive Bayesian classifier at each leaf. The tests leading to a leaf
can alleviate attribute inter-dependencies for the local naive Bayesian classifier. However, Bayesian
tree learning still suffers from the small disjunct problem of tree learning. While inferred Bayesian
trees demonstrate low average prediction error rates, there is reason to believe that error rates
will be higher for those leaves with few training examples. This paper proposes the application
of lazy learning techniques to Bayesian tree induction and presents the resulting lazy Bayesian
rule learning algorithm, called Lbr. This algorithm can be justified by a variant of Bayes theorem
which supports a weaker conditional attribute independence assumption than is required by naive
Bayes. For each test example, it builds a most appropriate rule with a local naive Bayesian
classifier as its consequent. It is demonstrated that the computational requirements of Lbr are
reasonable in a wide cross-section of natural domains. Experiments with these domains show
that, on average, this new algorithm obtains lower error rates significantly more often than the
reverse in comparison to a naive Bayesian classifier, C4.5, a Bayesian tree learning algorithm,
a constructive Bayesian classifier that eliminates attributes and constructs new attributes using
Cartesian products of existing nominal attributes, and a lazy decision tree learning algorithm.
It also outperforms, although the result is not statistically significant, a selective naive Bayesian
classifier.

Keywords: Bayesian classification, semi-naive Bayesian classification, decision trees, decision
rules, lazy learning

1. Introduction

Bayes’ theorem provides an optimal way to predict the class of an unseen instance
described by a conjunction of attribute values V = v1∧v2∧...∧vn (Duda & Hart,
1973). The predicted class is the one with the highest probability given the instance
V :

P (Ci |V) = P (Ci) × P (V |Ci)/P (V). (1)

The application of this formula in machine learning is restricted by the inability
to determine accurate values for P (V |Ci)

1. In standard machine learning applica-
tions, these probabilities must be estimated from the training data. If there were
sufficient randomly sampled examples of every possible combination of attribute
values, such estimation would be straightforward and acceptably reliable and accu-
rate. In practice, however, most combinations are not represented in the training

54 ZIJIAN ZHENG AND GEOFFREY I. WEBB

data at all, let alone in sufficient numbers to support accurate estimation of the
required conditional probabilities. Naive Bayesian classification (Kononenko, 1990;
Langley, Iba, & Thompson, 1992; Langley & Sage, 1994) circumvents this problem
by assuming that all attributes are mutually independent within each class. This
allows the following equality to be used:2

P (V |Ci) =
∏

vj∈V

P (vj |Ci). (2)

Naive Bayesian classifier learning is simple and computationally efficient. It has
been shown that in many domains the prediction accuracy of the naive Bayesian
classifier compares surprisingly well with that of other more complex learning algo-
rithms including decision tree learning, rule learning, and instance-based learning
algorithms (Cestnik, Kononenko, & Bratko, 1987; Langley et al., 1992; Domingos
& Pazzani, 1996). In addition, the naive Bayesian classifier is robust to noise and
irrelevant attributes. Some experts report that the learned theories are easy to un-
derstand (Kononenko, 1993). The naive Bayesian classifier considers evidence from
many attributes to classify examples. This is important in a situation where many
attributes affect the classification. However, when the attribute independence as-
sumption is violated, which appears to be very common,3 the performance of the
naive Bayesian classifier might be poor. In other words, the performance of the
naive Bayesian classifier in this kind of domain can be further improved.

This paper utilizes a variant of Bayes theorem,

P (Ci |V1∧V2) = P (Ci |V2) × P (V1 |Ci∧V2)/P (V1 |V2). (3)

This can be derived as follows, where Eq. 4 is by definition and Eq. 5 is by factor-
ization:

P (Ci |V1∧V2) = P (Ci∧V1∧V2) /P (V1∧V2) (4)

= P (V1 |Ci∧V2)P (Ci |V2)P (V2) /P (V1 |V2)P (V2) (5)

= P (V1 |Ci∧V2)P (Ci |V2) /P (V1 |V2) (6)

Eq. 3 can be substituted for Eq. 1 with V1 and V2 being any two conjunctions of
values such that each vi from V belongs to exactly one of V1 or V2. A naive-Bayes-
like simplifying independence assumption can be used:

P (V1 |Ci∧V2) =
∏

vj∈V1

P (vj |Ci∧V2). (7)

Eq. 7 is a weaker assumption than the naive Bayes assumption, Eq. 2, assuming
independence between fewer variables and under stronger conditions. The more
attribute values in V2 the weaker the assumption required. However, a counter-
balancing disadvantage of adding attribute values to V2 is that the numbers of
training examples from which the required conditional probabilities are estimated
decrease and hence the accuracy of estimation can be expected to also decrease.

This paper describes a novel lazy Bayesian rule (Lbr) approach to alleviating
the attribute inter-dependence problem of the naive Bayesian classifier by utilizing

LAZY LEARNING OF BAYESIAN RULES 55

Eq. 3 in place of Eq. 1 and hence the weaker independence assumptions required
by Eq. 7 in place of those of Eq. 2. In addition, it provides an extensive exper-
imental comparison of key existing techniques for improving the performance of
the naive Bayesian classifier. The following two sections discuss existing techniques
for improving the naive Bayesian classifier and the motivation for Lbr. Section 3
discusses lazy learning. Section 4 describes the Lbr algorithm. Experimental eval-
uation of Lbr is presented in Section 5, including a comparison with six related
algorithms. The final section draws conclusions and outlines some directions for
further research.

2. Existing techniques for improving the naive Bayesian classifier and

motivation

A number of techniques have been developed to improve upon the performance
of the naive Bayesian classifier. They include the semi-naive Bayesian classifier
(Kononenko, 1991), attribute deletion (Langley & Sage, 1994), the constructive
Bayesian classifier (Bsej) (Pazzani, 1996), probability adjustment (Webb & Paz-
zani, 1998), Bayesian networks (Friedman & Goldszmidt, 1996; Sahami, 1996; Singh
& Provan, 1995; 1996), the recursive Bayesian classifier (Rbc) (Langley, 1993), and
the naive Bayesian tree learner (NBTree) (Kohavi, 1996). These studies have
shown that it is possible to improve upon the general error performance of the
naive Bayesian classifier, although Domingos and Pazzani (1996) argue that the
naive Bayesian classifier is still in fact optimal when the attribute independence as-
sumption is violated, so long as the ranks of the conditional probabilities of classes
given an example are correct. The extent to which the above approaches improve
upon the performance of the naive Bayesian classifier suggests that these ranks are
in practice incorrect in a substantial number of cases.

Kononenko’s (1991) semi-naive Bayesian classifier performs exhaustive search to
iteratively join pairs of attribute values. The aim is to optimize the trade-off be-
tween the “non-naivety” and the reliability of estimates of probabilities. For the
same purpose, Bsej (Backward Sequential Elimination and Joining) adopts a wrap-
per model (John, Kohavi, & Pfleger, 1994), using N -fold cross-validation (N -CV,
also called leave-1-out) estimation (Breiman, Friedman, Olshen, & Stone, 1984)
to find the best Cartesian product attributes from existing nominal attributes for
the naive Bayesian classifier (Pazzani, 1996). It also considers deleting existing
attributes. Here, N is the number of training examples. The Cartesian product
attribute formed from two nominal attributes is a nominal attribute whose value
set is the Cartesian product of the value sets of the nominal attributes. For ex-
ample, two nominal attributes A and B have value sets {a1, a2, a3} and {b1, b2}
respectively. The Cartesian product attribute formed from A and B has the value
set {a1b1, a1b2, a2b1, a2b2, a3b1, a3b2}.

Langley and Sage (1994) have shown that attribute deletion can improve upon the
performance of the naive Bayesian classifier when attributes are inter-dependent,
especially when some attributes are redundant. This technique is referred to as
selective naive Bayesian classification. In Langley and Sage’s (1994) study, the

56 ZIJIAN ZHENG AND GEOFFREY I. WEBB

Forward Sequential Selection (FSS) method is used for selecting a subset of the
available attributes with which to build a naive Bayesian classifier. Pazzani (1996)
also investigates attribute deletion for naive Bayesian classifiers using the Backward
Sequential Elimination (BSE) and FSS approaches (Kittler, 1986). In addition,
Kubat, Flotzinger, and Pfurtscheller (1993) show that using decision tree learning
as a pre-process to select attributes for naive Bayesian classification performs better
than either decision tree learning or naive Bayesian classification alone in a domain
for discovering patterns in EEG-signals.

Instead of manipulating the set of attributes for generating the naive Bayesian
classifier, Webb and Pazzani (1998) propose a technique for adjusting the prob-
abilities inferred by the naive Bayesian classifier. The adjustments are numeric
weights learned for each class. These weights can correct incorrect ranking of the
conditional probabilities produced by the naive Bayesian classifier due to certain
violations of the attribute independence assumption.

In order to relax the attribute independence assumption of naive Bayesian clas-
sification, Friedman and Goldszmidt (1996) explore the Tree Augmented Naive
Bayes (Tan) model for classifier learning. The tree augmented naive Bayes model
belongs to a restricted sub-class of Bayesian network (Pearl, 1988), which is pre-
viously proposed by Geiger (1992) using a method introduced by Chow & Liu
(1968). Experimental comparisons suggest that Tan can frequently reduce the er-
ror of the naive Bayesian classifier. Sahami (1996) proposes a framework using
Bayesian networks and a learning algorithm, Kdb, for studying approaches to re-
laxing the restriction on attribute independencies of the naive Bayesian classifier.
Kdb learns Bayesian classifiers that allow each attribute to depend on at most k
other attributes within a class for a given number k. When k is equal to 0, Kdb

generates naive Bayesian classifiers, while when k is equal to the number of all at-
tributes - 1, Kdb creates full Bayesian classifiers without attribute independencies.
Singh and Provan (1995; 1996) investigate the forward sequential attribute subset
selection method for learning Bayesian networks and compare it with conventional
Bayesian networks, the naive Bayesian classifier, and the selective naive Bayesian
classifier.

Rbc (Langley, 1993) alleviates the attribute inter-dependence problem of naive
Bayesian classification by identifying regions of the instance space in which the
independence assumption holds. It recursively splits the instance space into sub-
spaces using a tree structure. Each internal node of the tree is a naive Bayesian
classifier that divides the local training examples at the node into clusters of which
each corresponds to an instance sub-space of the (sub) space at the node. Each
cluster usually contains training examples from more than one class. When a cluster
consists of training examples from only one class, the tree growing procedure halts.
Langley (1993) shows that Rbc can perform well learning conjunctive concepts
which involve attribute inter-dependencies using artificial domains. However, Rbc

did not prove superior to the naive Bayesian classifier on a set of natural domains.

Kohavi (1996) proposes NBTree as a hybrid approach combining the naive
Bayesian classifier and decision tree learning (Quinlan, 1993; Breiman et al., 1984).
It has been shown that NBTree frequently achieves higher accuracy than either

LAZY LEARNING OF BAYESIAN RULES 57

a naive Bayesian classifier or a decision tree learner (Kohavi, 1996). Like Rbc,
NBTree also uses a tree structure to split the instance space into sub-spaces and
generates one naive Bayesian classifier in each sub-space. However, it uses a dif-
ferent splitting method and generates Bayesian trees. The decision nodes of these
trees contain the univariate tests of conventional decision trees. Each leaf of a
Bayesian tree contains a local naive Bayesian classifier that does not consider at-
tributes involved in tests on the path leading to the leaf. Whereas a conventional
decision tree labels each leaf with a single class and predicts this class for examples
that reach the leaf, the naive Bayesian tree uses a local naive Bayesian classifier to
predict the classes of these examples. Appropriate selection of tests may enable the
tree to factor out damaging attribute inter-dependencies for local naive Bayesian
classifiers at leaves. This can be illustrated with reference to Eq. 3. Suppose that
we wish to classify an instance 〈A = vA1, B = vB1,D = vD1, E = vE1〉. Suppose
further that A is not conditionally independent of any of B, D, or E, given the
class, but that the latter are conditionally independent of each other given the class
and A. If we substitute vA1 for V2 and vB1∧vD1∧vE1 for V1 in Eq. 3, we obtain

P (Ci | vA1∧vB1∧vD1∧vE1) = P (Ci | vA1) ×
P (vB1∧vD1∧vE1 |Ci∧vA1)

P (vB1∧vD1∧vE1 | vA1)
. (8)

As

P (Ci | vA1) ×
P (vB1∧vD1∧vE1 |Ci∧vA1)

P (vB1∧vD1∧vE1 | vA1)
∝

P (Ci | vA1) × P (vB1∧vD1∧vE1 |Ci∧vA1) (9)

we need not estimate P (vB1∧vD1∧vE1 | vA1). As B, D, and E are conditionally
independent given the class and vA1,

P (vB1∧vD1∧vE1 |Ci∧vA1) =
∏

v∈{vB1,vD1,vE1}

P (v |Ci∧vA1). (10)

The relative probability of each class can thus be calculated by

P (Ci | vA1) ×
∏

v∈{vB1,vD1,vE1}

P (v |Ci∧vA1) (11)

which is the value estimated by an NBTree below a single split on A for cases with
values vA1∧vB1∧vD1∧vE1.

However, tree learning algorithms, including NBTree and other conventional
decision tree learning algorithms such as C4.5 (Quinlan, 1993), suffer from the
problem of small disjuncts (Holte, Acker, & Porter, 1989; Ting, 1994a). This type of
algorithm usually tries to build a single tree that is most appropriate, on average, to
all examples. However, it is likely that this tree is not good for those examples that
match paths with few training examples at their leaves. The prediction performance
of such leaves is usually very poor (Holte et al., 1989). Rule learning algorithms
may also suffer from this problem, since some rules in a rule set may only cover few
training examples (Holte et al., 1989).

58 ZIJIAN ZHENG AND GEOFFREY I. WEBB

To avoid splits with little value, NBTree requires that the relative error reduc-
tion of a split should be greater than 5% and there should be at least 30 training
instances at a decision node. Even so, when a decision node does not evenly divide
the instances between its branches, leaves with few training examples may result.
Local naive Bayesian classifiers at such leaves are likely to be unreliable. For ex-
ample, if a split divides a training set of 60 examples into two subsets with 55 and
5 examples respectively, the overall relative error reduction might be greater than
the threshold 5%. In this case, the local naive Bayesian classifier at the leaf with
55 training examples might perform reasonably well. It dominates the overall error
reduction of the split. This results in acceptance of the split. Nevertheless, the
other local naive Bayesian classifier at the small leaf is not trustworthy, because
the number of training examples used to generate it is too small. Later on, when
the Bayesian tree is used to classify unseen examples, examples that are traced
down to this small leaf are very likely to be classified incorrectly. This problem
may degrade the performance of NBTree in some domains.

3. Lazy learning

The new algorithm we propose utilizes lazy learning (Aha, 1997), of which the
archetypal example is nearest neighbor or instance-based learning (Cover & Hart,
1967; Hart, 1968; Gates, 1972; Dasarathy, 1980; Aha, Kibler, & Albert, 1991).
Lazy learning is distinguished by delaying computation until classification time.
No explicit theories, such as decision trees or rules, are created at training time.
When facing a test example, lazy learning algorithms access training examples
to make a prediction. One such algorithm is LazyDT. Although it is called a
lazy decision tree learning algorithm (Friedman, Kohavi, & Yun, 1996), it can be
considered to generate decision rules4 at classification time. For each example to
be classified, LazyDT builds one rule that is most appropriate to the example by
using an entropy measure. The antecedent of the rule is a conjunction of conditions
in the form of attribute-value pairs. The consequent of the rule is the class to
be predicted, being the majority class of the training examples that satisfy the
antecedent of the rule. With caching of relevant information from classification to
classification, LazyDT is reasonably fast (Friedman et al., 1996). This provides
another approach to alleviating the small disjunct problem of decision tree learning.
Osr (Briand and Thomas, 1992) is an approach with some similarities to LazyDT.
It differs by developing a number of rules for each case and by allowing the use of a
Bayesian loss matrix to select the best classification, rather than simply using the
majority class of the cases selected by a rule. Also related is the Learning All Rules
technique (Webb, 1996; Viswanathan & Webb, 1998) that uses complete search to
select the decision rule with the highest Laplace accuracy estimate from those that
cover the case to be classified.

Fulton, Kasif, Salzberg, and Waltz (1996) describe a number of further variations
on this lazy learning scheme, exploring a number of alternative techniques that can
be used to select training cases for a given test case. These selected training cases

LAZY LEARNING OF BAYESIAN RULES 59

are used to construct one or more decision trees that are finally used to classify the
test case.

4. The lazy Bayesian rule learning algorithm

Our proposal is to use lazy learning to learn Bayesian rules at classification time.
Lbr is similar to LazyDT with respect to performing lazy learning of decision rules.
For each test example, Lbr also builds an individual rule that is most appropriate
to the test example, albeit, using a different technique. However, whereas the
consequent of a rule in LazyDT is a single class that is used for classification, Lbr

uses a local naive Bayesian classifier. Lbr can be considered as a combination of
the two techniques NBTree and LazyDT. Alternatively, it can be considered as
a lazy approach to classification using Eq. 3. At classification time, for each case
to be classified, the attribute values in V are allocated to V1 and V2 in a manner
that is expected to minimize estimation error. V2 is the antecedent of the rule and
V1 is the set of attribute values used in the local naive Bayesian classifier.

Lazy learning techniques can be viewed in terms of a two stage process. First,
a subset of training cases is selected for a case to be classified (the k closest for
nearest neighbor or instance-based learning, those matching the decision rule for
LazyDT, and so on). Next, these selected cases are used as a training set for
a learning technique that ultimately forms a classifier with which the test case is
classified. For a nearest neighbor learning algorithm, LazyDT, Osr, and Learning
All Rules, this classifier is a majority class classifier. Fulton et al. (1996) use one
or more decision trees. All these existing techniques seek to include in the subset
those cases that seem pertinent to classifying the case. For selecting such subsets,
they use criteria that are not directly relevant to the classifiers used in the second
stage. In contrast, we are proposing an approach that seeks to exclude from the
subset only those cases for which there is evidence that inclusion will be harmful
to the classifier used in the second stage, a naive Bayesian classifier.

In order to avoid the small disjunct problem from which NBTree may suffer,
Lbr uses lazy learning. It retains all training examples until classification time.
Before classifying a test example, Lbr generates a rule (called a Bayesian rule)
that is most appropriate to the test example. This contrasts with creating a theory
at training time, such as a single tree, that is, on average, most appropriate to all
examples, as NBTree does. The antecedent of a Bayesian rule is a conjunction
of attribute-value pairs (conditions) each in the form of (attribute = value). The
current version of Lbr can only directly deal with nominal attributes. Numeric
attributes are discretized as a pre-process. The consequent of a Bayesian rule is
a local naive Bayesian classifier created from those training examples (called local

training examples) that satisfy the antecedent of the rule. This local naive Bayesian
classifier only uses those attributes that do not appear in the antecedent of the rule.

During the generation of a Bayesian rule, the test example to be classified is used
to guide the selection of attributes for creating attribute-value pairs. The values in
the attribute-value pairs are always the same as the corresponding attribute values
of the test example. The objective is to grow the antecedent of a Bayesian rule that

60 ZIJIAN ZHENG AND GEOFFREY I. WEBB

ultimately decreases the errors of the local naive Bayesian classifier in the conse-
quent of the rule. The antecedent of the Bayesian rule defines a sub-space of the
instance space to which the test example belongs. This sub-space selects a subset of
the available training instances. For all instances in the instance sub-space, each of
the attributes occurring in the antecedent has the value specified in the antecedent.
In consequence, these attributes can be excluded from the local naive Bayesian clas-
sifier as irrelevant to classification within the instance sub-space. These attributes
are removed from the local naive Bayesian classifier for computational efficiency.
Finally, the local naive Bayesian classifier of the Bayesian rule classifies the test
example, since this example satisfies the antecedent of the rule. This is the same
as dividing the available attribute values into two sets, assigning one to V1 and the
other to V2 and then employing Eq. 3 assuming conditional independence between
the attribute values in V1 when conditioned by V2 and Ci. The attribute values
assigned to V2 are the values in the antecedent of the Bayesian rule.

Note that including an attribute A in the antecedent of a Bayesian rule factors
out any distortions of inferred probabilities due to conditional inter-dependencies
between A and any other attribute.

4.1. An operational description of LBR

Table 1 outlines the Lbr algorithm. For a given training set and each test example,
Lbr starts from a special Bayesian rule whose antecedent is true. Its local naive
Bayesian classifier in the consequent part is trained on the entire training set using
all attributes. This Bayesian rule is identical to a conventional naive Bayesian
classifier. Lbr then uses a greedy search to grow an antecedent that matches the
test example, with the aim of reducing the errors of its local naive Bayesian classifier.
The inference is made that attributes that most seriously affect error have the most
harmful conditional interdependencies and hence are most important to factor out.

Any attribute A that is added to the antecedent is removed from the local naive
Bayesian classifier. This effectively removes any redundant attributes of A, since
these redundant attributes have the same value vA on all examples in the instance
sub-space defined by the antecedent of the rule. Therefore, they do not affect the
classification behavior of the local naive Bayesian classifier.

During the growth of a Bayesian rule, each candidate Bayesian rule is evaluated by
performing N -fold cross-validation estimation of its local naive Bayesian classifier
on the local training set. We choose N -CV as the evaluation method because
N -CV errors are more reliable estimates of true errors than re-substitution errors
(Breiman et al., 1984) and for a naive Bayesian classifier, the operations of removing
and adding an example are very easy and efficient. The N -CV errors of a Bayesian
rule form a baseline reference against which the performance of rules formed by
adding another condition is evaluated.

At each step of the greedy search, Lbr tries to add, to the current Bayesian rule,
each attribute that has not already been in the antecedent of the rule, so long as
its value on the test example is not missing. The objective is to determine whether
including a test on this attribute can significantly improve upon the classification

LAZY LEARNING OF BAYESIAN RULES 61

Table 1. The Lazy Bayesian Rule learning algorithm

LBR(Att ,Dtraining ,Etest)
INPUT: Att : a set of attributes,

Dtraining : a set of training examples described using Att and classes,
Etest : a test example described using Att .

OUTPUT: a predicted class for Etest .

LocalNB = a naive Bayesian classifier trained using Att on Dtraining

Errors = errors of LocalNB estimated using N -CV on Dtraining

Cond = true

REPEAT
TempErrorsbest = the number of examples in Dtraining + 1
FOR each attribute A in Att whose value vA on Etest is not missing DO

Dsubset = examples in Dtraining with A = vA

TempNB = a naive Bayesian classifier trained using Att − {A} on Dsubset

TempErrors = errors of TempNB estimated using N -CV on Dsubset +
errors from Errors for examples in Dtraining − Dsubset

IF ((TempErrors < TempErrorsbest) AND

(TempErrors is significantly lower than Errors))
THEN

TempNBbest = TempNB

TempErrorsbest = TempErrors

Abest = A

IF (an Abest is found)
THEN

Cond = Cond ∧ (Abest = vAbest
)

LocalNB = TempNBbest

Dtraining = Dsubset corresponding to Abest

Att = Att − {Abest}
Errors = errors of LocalNB estimated using N -CV on Dtraining

ELSE

EXIT from the REPEAT loop
classify Etest using LocalNB

RETURN the class

62 ZIJIAN ZHENG AND GEOFFREY I. WEBB

accuracy. Adding one condition to a Bayesian rule can be considered as reducing the
instance space (or sub-space) defined by the rule to a further sub-space and moving
its local naive Bayesian classifier to this new sub-space. If the attribute being added
causes damaging attribute inter-dependencies in the current local naive Bayesian
classifier, the new local naive Bayesian classifier in the reduced instance sub-space
should have lower errors.

Attributes with missing values on the test example are ignored both when the
local naive Bayesian classifier computes the posterior probabilities P (Ci |V) and
when Lbr selects attribute-value pairs to grow a Bayesian rule. This gives Lbr a
natural approach to dealing with missing values for test examples. When computing
the frequencies of attribute values given each class from the local training set, as
the estimates of the conditional probabilities P (vj |Ci) for a local naive Bayesian
classifier, the algorithm does not count missing attribute values.

The utility of each possible attribute-value pair to be added to the antecedent of
a Bayesian rule is evaluated in the following manner. The local training examples
that satisfy the attribute-value pair are used to train a temporary naive Bayesian
classifier using all attributes that do not occur in the antecedent of the current
Bayesian rule and are not the attribute being examined. These examples are then
classified by conducting a N -CV using this temporary naive Bayesian classifier.
The metric used to evaluate the benefit obtained by using an attribute-value pair
for growing the current Bayesian rule is calculated as follows. The errors of the
temporary naive Bayesian classifier on the local training examples that satisfy the
attribute-value pair are calculated. To these are added the errors of the existing
local naive Bayesian classifier on the remaining local training examples.5 If this
measure is lower than the errors of the local naive Bayesian classifier of the current
Bayesian rule at a significance level better than 0.05 using a one-tailed pairwise
sign-test (Chatfield, 1978), this attribute-value pair becomes a candidate condition
to be added to the current Bayesian rule. The sign-test is used to control the
likelihood of adding conditions that reduce error by chance.

At the end of this step, the candidate attribute-value pair with the lowest measure
(errors) is added to the antecedent of the current Bayesian rule. All the current
local training examples that satisfy this attribute-value pair form the local training
set of the new Bayesian rule, while all other examples are discarded. Those training
examples whose values for this attribute are missing are treated as not satisfying
the attribute-value pair, and are removed. The temporary naive Bayesian classifier
corresponding to this attribute-value pair becomes the local naive Bayesian classifier
of the new Bayesian rule. Its N -CV estimation errors on the new local training set
will be used as a reference for further growing the Bayesian rule.

This process is repeated until no candidate attribute-value pair can be found.
Then, the growth of the Bayesian rule stops. This happens when no damaging
attribute inter-dependencies exist for the local naive Bayesian classifier, or the local
training set is too small to further reduce the instance sub-space by specializing the
antecedent of the Bayesian rule. In such cases, further growing the Bayesian rule
would not significantly reduce its errors. Then, the local naive Bayesian classifier
of this Bayesian rule is used to classify the test example.

LAZY LEARNING OF BAYESIAN RULES 63

4.2. Characteristics of LBR

In the process of generating a Bayesian rule, there is a trade-off between decreasing
error by removing harmful attributes and increasing error as a result of reducing
the accuracy of the probability estimations of the local naive Bayesian classifier
due to decreases in the size of the available training set. The use of a sign-test to
filter candidate conditions manages this trade-off by rejecting the relatively small
decreases in estimated error that result from rules with small local training sets.

For Lbr, each rule can be considered in isolation from others. Between two
attribute-value pairs that result in Bayesian rules with similar error rates, the
attribute-value pair selection criteria for growing a Bayesian rule in Lbr implic-
itly favor an attribute-value pair that makes the antecedent of the Bayesian rule
cover more training examples. Lbr tries to create a single Bayesian rule that is
most appropriate to a given test case rather than a theory that is most appropriate,
on average, to all cases. Thus, it is free to select and consider all examples that may
relate to the test case, giving greater scope for utilizing a large number of training
examples for any test case. In addition, Lbr’s stopping criteria cease the growth
of a Bayesian rule before the local training set becomes too small. All these factors
guard Lbr against the small disjunct problem.

It is important to notice that building a Bayesian rule with attributes causing
damaging attribute inter-dependencies included in its antecedent is better than
just deleting these attributes for naive Bayesian classification. The reason is that
some information which is important for classification is lost when deleting these
attributes, while this information is retained in the local naive Bayesian classifier
of the Bayesian rule as a result of the composition of the instance sub-space. For
example, consider a learning problem with a target concept of exclusive-or of two
binary attributes A and B. The naive Bayesian classifier has poor performance
with this problem, since these two attributes are inter-dependent. After deleting
either A or B, the naive Bayesian classifier will still not perform well, since a
half of the information for determining the classes of examples is lost. However,
for those test examples with A = 0, we can build a Bayesian rule with (A = 0)
as its antecedent. This Bayesian rule can easily solve the problem, since there
are no attribute inter-dependencies in the sub-space defined by (A = 0) and the
classes of examples in this sub-space are fully determined by the values of B. In
short, building Bayesian rules can alleviate damaging attribute inter-dependencies
for naive Bayesian classification.

Like other lazy learning algorithms, Lbr needs to keep all the training examples
for use at classification time. In contrast, non-lazy learning algorithms, such as C4.5
(Quinlan, 1993) and the naive Bayesian classifier, learn a theory at training time.
After this theory is learned, the training examples can be discarded. Therefore,
Lbr may have higher memory requirements than non-lazy learning algorithms at
the classification stage, especially when training sets are very large.

64 ZIJIAN ZHENG AND GEOFFREY I. WEBB

5. Experiments

The theoretical advantages of Lbr over naive Bayesian classification, decision tree
learning, and Bayesian tree learning have been discussed. In this section, we provide
empirical evaluation of the relative performance of these approaches. Here, we focus
on the prediction accuracy of the algorithms.

The following subsection briefly describes six learning algorithms used for com-
parison. Then, the experimental domains and methods are presented in the sec-
ond subsection. Subsection 5.3 reports and discusses error rates of these algo-
rithms. Subsection 5.4 further explores in what situations Lbr outperforms the
naive Bayesian classifier in terms of lower error rate. Subsection 5.5 provides ex-
perimental evidence that Lbr can avoid the small disjunct problem. The final
subsection briefly addresses the computational requirements of Lbr.

5.1. Comparison algorithms

The six algorithms used for comparison with Lbr are NB, C4.5, BT, Bsej, Bse,
and LazyTree. We describe them, and our motivations for including them in the
study, as follows.

The primary design aim for Lbr is to improve upon the performance of the naive
Bayesian classifier, so it is compared with NB, our implementation of the naive
Bayesian classifier. Its working principle is as described at the beginning of this
paper. When the probability of an attribute value conditional on a class is estimated
from a training set, the m-estimate (Cestnik, 1990) with m = 2 is used. When the
probability of a class is estimated, the Laplace estimate (Cestnik, 1990) is used. At
the training stage, NB does not count missing attribute values of training examples.
During classification, NB ignores attributes with missing values on the test example
being classified. To enhance comparability of results, NB is used to create the local
naive Bayesian classifiers for Lbr, BT, Bsej, and Bse.

Since Lbr was motivated by a naive Bayesian tree learning algorithm, and we
argue that Lbr can avoid the small disjunct problem from which tree learning
algorithms may suffer, it is interesting to compare its performance with that of
a conventional decision tree learning algorithm. Here, C4.5 (release 8) (Quinlan,
1996), a state-of-the-art decision tree learning algorithm, is used. We report results
for pruned trees (Quinlan, 1993). C4.5 uses a probabilistic approach for dealing
with missing values in a training set. When partitioning training examples at a
decision node, a training example with a missing value of the test attribute at
the decision node is partially assigned to each branch of the node. The fraction
of the example assigned to a branch is in proportion to the fraction of examples
with known values of that branch in the set of examples with known values at
the node. When classifying an unseen example with an unknown value of a test
attribute, C4.5 explores all the branches and combines the resulting classifications
arithmetically. The result is then a class distribution rather than a single class.
The final predicted class is the one with the highest frequency. For other details
about C4.5, please refer to Quinlan (1993).

LAZY LEARNING OF BAYESIAN RULES 65

We have mentioned before that Lbr is similar to NBTree in the sense that they
use a conjunction of attribute-value pairs to define an instance sub-space to build
a local naive Bayesian classifier, the most significant difference being that Lbr

builds a separate Bayesian rule for each instance to be classified while NBTree

builds a single model that is used to classify all unseen instances. Therefore, Lbr is
compared with BT, a Bayesian tree learning algorithm. BT is our implementation
of Kohavi’s (1996) NBTree. Like NBTree, BT also uses at least 5% relative error
reduction and 30 training instances at a node as the stopping criterion for splitting
the node. The utility of a split is the weighted sum of the utility of its nodes as
in NBTree, but the utility of a node is the accuracy of the local naive Bayesian
classifier at the node estimated using a N -CV instead of a 5-fold cross-validation.
BT adopts the method of dealing with missing values used by C4.5 when building
and using tree structures (Quinlan, 1993) as described above. When training local
naive Bayesian classifiers and using them to classify examples, BT uses the same
approaches to handling missing values as Lbr. Actually, both systems use NB for
local naive Bayesian classification as mentioned before.

Bsej (Pazzani, 1996) uses constructive induction and attribute deletion to alle-
viate the attribute inter-dependence problem of the naive Bayesian classifier. It is
also included in the comparison. Bsej uses a wrapper model (John et al., 1994)
with N -CV estimation to join and delete attributes. A greedy search, at each step,
either deletes one attribute or creates one new attribute through joining (generat-
ing the Cartesian product of) two attributes. Bsej starts from the set of all the
original attributes, and stops when neither join nor deletion can improve upon the
accuracy of the naive Bayesian classifier estimated using N -CV on the training set.
Then, the naive Bayesian classifier built on the current set of attributes including
new attributes is returned as the final classifier. The Bsej algorithm used here is
our implementation.

The selective naive Bayesian classifier Bse is our implementation of the back-
ward sequential attribute elimination algorithm for naive Bayesian classification
(Pazzani, 1996; Kittler, 1986). It is exactly the same as Bsej except that at each
step of the greedy search, Bse only considers deleting one existing attribute.

Another algorithm with which Lbr should be compared is LazyDT (Friedman
et al., 1996). LazyDT also generates rules (Friedman et al., 1996, refer to them
as decision paths) using lazy learning. The main difference between these two
algorithms is that the consequent of a rule, for LazyDT, is the majority class of
the local training examples, while it is a local naive Bayesian classifier for Lbr. In
this paper, we use our implementation of LazyDT, called LazyTree. LazyTree

uses the same techniques as LazyDT except that the caching scheme (Friedman et

al., 1996) is not implemented in LazyTree since it only reduces the computational
requirements of the algorithm and does not affect its accuracy.

5.2. Experimental domains and methods

Twenty-nine natural domains are used in the experiments reported here. They
include all the domains (twenty-eight) used by Domingos and Pazzani (1996) for

66 ZIJIAN ZHENG AND GEOFFREY I. WEBB

Table 2. Description of learning tasks

Domain Size No. of No. of Attributes
Classes Numeric Nominal

Annealing processes 898 6 6 32
Audiology 226 24 0 69
Breast cancer (Wisconsin) 699 2 9 0
Chess (King-rook-vs-king-pawn) 3169 2 0 36
Credit screening (Australia) 690 2 6 9
Echocardiogram 131 2 6 1
Glass identification 214 6 9 0
Heart disease (Cleveland) 303 2 13 0
Hepatitis prognosis 155 2 6 13
Horse colic 368 2 7 15
House votes 84 435 2 0 16
Hypothyroid diagnosis 3163 2 7 18
Iris classification 150 3 4 0
Labor negotiations 57 2 8 8
LED 24 (noise level = 10%) 200 10 0 24
Liver disorders 345 2 6 0
Lung cancer 32 3 0 56
Lymphography 148 4 0 18
Pima Indians diabetes 768 2 8 0
Postoperative patient 90 3 1 7
Primary tumor 339 22 0 17
Promoter gene sequences 106 2 0 57
Solar flare 1389 2 0 10
Sonar classification 208 2 60 0
Soybean large 683 19 0 35
Splice junction gene sequences 3177 3 0 60
Tic-Tac-Toe end game 958 2 0 9
Wine recognition 178 3 13 0
Zoology 101 7 0 16

LAZY LEARNING OF BAYESIAN RULES 67

studying naive Bayesian classification. In addition, the Tic-Tac-Toe domain is cho-
sen because it contains inter-dependent attributes and its target concept is known.
We want to evaluate whether Lbr can really increase the prediction accuracy of
a naive Bayesian classifier in this type of domain. This test suite covers a wide
variety of domains from the UCI machine learning repository (Blake, Keogh, &
Merz, 1998). Table 2 gives a summary of the characteristics of these domains, in-
cluding dataset size, the number of classes, the number of numeric attributes, and
the number of nominal attributes.

In each domain, two stratified 10-fold cross-validations (Breiman, Friedman, Ol-
shen, & Stone, 1984; Kohavi, 1995) are carried out for each algorithm. All the
algorithms are run with their default option settings on the same training and test
set partitions in every domain. An error rate reported in the following subsections
is an average over the 20 trials for an algorithm.

Since some of these algorithms can only deal with nominal attributes, numeric
attributes are discretized as a pre-process in the experiments. An entropy-based
discretization method (Fayyad & Irani, 1993; Ting, 1994b) is used. For each pair
of training set and test set, both training set and test set are discretized by using
cut points found from the training set alone.

5.3. Error rates

Figures 1, 2, and 3 compare the error rates of Lbr to each of NB, C4.5, BT, Bsej,
Bse, and LazyTree in the 29 domains. The domains (the X axis) are sorted in
ascending order of the error differences of the two corresponding algorithms such
that the two curves cross only once in each graph. A bar in the figures indicates
one standard error on each side of a curve. The detailed error rates of these seven
algorithms are available in Table 3. Their standard errors are given in Table 4. For
ease of comparison, error rate ratios of Lbr over other algorithms are derived from
Table 3 and presented in Table 5. An error rate ratio, for example for Lbr vs NB,
presents a result for Lbr divided by the corresponding result for NB - a value less
than 1 indicates an improvement due to Lbr. To compare the error rates of two
algorithms in a domain, a one-tailed pairwise t-test (Chatfield, 1978) on the error
rates of the 20 trials is carried out. The difference is considered as significant, if the
significance level of the t-test is better than 0.05. In Table 5, boldface (italic) font,
for example for Lbr vs NB, indicates that Lbr is significantly more (less) accurate
than NB. The second last row in Table 5 shows the numbers of wins, ties, and losses
between the error rates of the corresponding two algorithms in the 29 domains, and
the significance level of a one-tailed pairwise sign-test (Chatfield, 1978) on these
win/tie/loss records.6 The last row in this table presents similar comparison results
but treating insignificant wins and losses in individual domains as ties.

From Figures 1, 2, and 3 as well as Tables 3 and 5, we have the following obser-
vations:

(1) Of the seven learning algorithms, Lbr achieves the lowest average error rate
across the 29 domains.

68 ZIJIAN ZHENG AND GEOFFREY I. WEBB

T
T
T

C
h
e
s
s

H
o
u
s
e
v

S
o
y
b
e
a
n

S
o
l
a
r

H
o
r
s
e

G
l
a
s
s

S
o
n
a
r

S
p
l
i
c
e

A
u
d
i
o
l
o
g
y

L
i
v
e
r

t
u
m
o
r

H
y
p
o

A
n
n
e
a
l
i
n
g

W
i
n
e

B
r
e
a
s
t

Z
o
o
l
o
g
y

I
r
i
s

L
a
b
o
r

P
r
o
m
o
t
e
r
s

C
r
e
d
i
t

H
e
p
a
t
i
t
i
s

L
y
m
p
h

H
e
a
r
t

P
o
s
t

L
E
D

2
4

L
u
n
g

P
i
m
a

E
c
h
o

1

10

20

30

40

50

60
E
rr

o
r

ra
te

(%
)

Lbr vs NB

� NB

�

�
� �

� �

�

�

�

�

�

�

� � � �
� �

� �

� �
� �

� �

�

�

�

• Lbr

•

•

• •

•
•

•

•

•

•

•

•

• • • •
• •

• •

• •
• •

• •

•

•

•

L
a
b
o
r

L
u
n
g

W
i
n
e

S
o
n
a
r

t
u
m
o
r

P
r
o
m
o
t
e
r
s

A
n
n
e
a
l
i
n
g

L
y
m
p
h

H
e
a
r
t

H
e
p
a
t
i
t
i
s

E
c
h
o

S
o
y
b
e
a
n

L
E
D
2
4

B
r
e
a
s
t

Z
o
o
l
o
g
y

S
p
l
i
c
e

G
l
a
s
s

C
r
e
d
i
t

T
T
T

H
o
u
s
e
v

H
y
p
o

P
i
m
a

I
r
i
s

S
o
l
a
r

L
i
v
e
r

C
h
e
s
s

A
u
d
i
o
l
o
g
y

H
o
r
s
e

P
o
s
t

0

10

20

30

40

50

60

70

E
rr

o
r

ra
te

(%
)

Lbr vs C4.5

� C4.5

�

�

�

�

�

�

�

� �
�

�

�

�

�
� �

�

� �

�

�

�

�

�

�

�

�

�

�

• Lbr

•

•

•

•

•

•

•

• •
•

•

•

•

•
• •

•

• •

•
•

•

•

•

•

•

•
•

•

Figure 1. Comparing the error rates of Lbr to those of NB and C4.5. A one-tailed pairwise
sign-test shows that against each alternative Lbr has lower error significantly more often than it
has higher error.

LAZY LEARNING OF BAYESIAN RULES 69

T
T
T

L
u
n
g

H
o
u
s
e
v

L
E
D
2
4

S
o
y
b
e
a
n

L
y
m
p
h

G
l
a
s
s

P
r
o
m
o
t
e
r
s

t
u
m
o
r

W
i
n
e

C
r
e
d
i
t

L
a
b
o
r

C
h
e
s
s

H
o
r
s
e

S
p
l
i
c
e

E
c
h
o

H
e
p
a
t
i
t
i
s

H
e
a
r
t

L
i
v
e
r

B
r
e
a
s
t

P
o
s
t

P
i
m
a

I
r
i
s

S
o
l
a
r

H
y
p
o

A
u
d
i
o
l
o
g
y

S
o
n
a
r

Z
o
o
l
o
g
y

A
n
n
e
a
l
i
n
g

0

10

20

30

40

50

60
E
rr

o
r

ra
te

(%
)

Lbr vs Bsej

� Bsej

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�
�

• Lbr

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•
•

T
T
T

C
h
e
s
s

L
u
n
g

S
o
y
b
e
a
n

G
l
a
s
s

H
o
u
s
e
v

L
a
b
o
r

L
y
m
p
h

E
c
h
o

W
i
n
e

H
o
r
s
e

S
o
n
a
r

C
r
e
d
i
t

L
i
v
e
r

S
p
l
i
c
e

B
r
e
a
s
t

H
e
a
r
t

P
i
m
a

t
u
m
o
r

H
y
p
o

P
r
o
m
o
t
e
r
s

A
n
n
e
a
l
i
n
g

S
o
l
a
r

L
E
D
2
4

I
r
i
s

H
e
p
a
t
i
t
i
s

Z
o
o
l
o
g
y

P
o
s
t

A
u
d
i
o
l
o
g
y

1

10

20

30

40

50

60

E
rr

o
r

ra
te

(%
)

Lbr vs Bse

� Bse

�

�

�

�

�

�
�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

• Lbr

•

•

•

•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2. Comparing the error rates of Lbr to those of Bsej and Bse. Against each alternative,
Lbr has higher accuracy more often than lower accuracy. A one-tailed pairwise sign-test shows
that this accuracy advantage is significant with respect to Bsej.

70 ZIJIAN ZHENG AND GEOFFREY I. WEBB

P
o
s
t

L
a
b
o
r

H
e
p
a
t
i
t
i
s

T
T
T

P
r
o
m
o
t
e
r
s

I
r
i
s

H
e
a
r
t

L
E
D

2
4

E
c
h
o

S
o
n
a
r

C
r
e
d
i
t

S
o
y
b
e
a
n

A
u
d
i
o
l
o
g
y

S
p
l
i
c
e

S
o
l
a
r

A
n
n
e
a
l
i
n
g

L
y
m
p
h

W
i
n
e

t
u
m
o
r

B
r
e
a
s
t

H
o
u
s
e
v

P
i
m
a

L
u
n
g

H
y
p
o

C
h
e
s
s

L
i
v
e
r

H
o
r
s
e

G
l
a
s
s

Z
o
o
l
o
g
y

1

10

20

30

40

50

60
E
rr

o
r

ra
te

(%
)

Lbr vs BT

� BT

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

• Lbr

•

•

• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

P
r
o
m
o
t
e
r
s

S
p
l
i
c
e

W
i
n
e

t
u
m
o
r

L
a
b
o
r

S
o
n
a
r

L
u
n
g

G
l
a
s
s

A
u
d
i
o
l
o
g
y

B
r
e
a
s
t

L
E
D
2
4

S
o
y
b
e
a
n

P
o
s
t

H
e
p
a
t
i
t
i
s

L
y
m
p
h

H
e
a
r
t

P
i
m
a

C
r
e
d
i
t

E
c
h
o

Z
o
o
l
o
g
y

H
y
p
o

H
o
u
s
e
v

S
o
l
a
r

I
r
i
s

A
n
n
e
a
l
i
n
g

H
o
r
s
e

C
h
e
s
s

L
i
v
e
r

T
T
T

1

10

20

30

40

50

60

70

E
rr

o
r

ra
te

(%
)

Lbr vs LazyTree

� LazyTree

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�

�

�
�

�

�
�

�

�

�

�

• Lbr

•

•
•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•
•

•

•

•
•

•

•

•

•

Figure 3. Comparing the error rates of Lbr to those of BT and LazyTree. A one-tailed pairwise
sign-test shows that against each alternative Lbr has lower error significantly more often than it
has higher error.

LAZY LEARNING OF BAYESIAN RULES 71

Table 3. Error rates (%) of NB, C4,5, BT, Bsej, Bse, LazyTree, and Lbr. Lbr obtains a lower
average error rate than any other algorithm.

Domain NB C4.5 BT Bsej Bse LazyTree Lbr

Annealing 2.8 9.6 3.1 1.0 2.2 2.6 2.7
Audiology 23.2 21.4 23.8 22.3 19.8 30.3 23.0
Breast (W) 2.7 4.7 2.7 2.7 2.8 8.7 2.7
Chess (KR-KP) 12.2 0.7 1.5 2.7 6.5 1.6 2.0
Credit (A) 14.0 14.5 14.9 14.9 14.6 15.9 14.0
Echocardiogram 29.0 34.0 31.3 30.5 31.7 31.7 30.1
Glass 30.9 31.4 29.1 32.0 32.7 37.4 30.0
Heart (C) 16.8 21.6 18.1 17.1 16.8 19.5 16.8
Hepatitis 14.2 18.4 17.4 14.5 12.9 17.9 14.2
Horse colic 20.8 16.4 18.4 20.0 20.4 19.0 19.3
House votes 84 9.8 5.6 5.6 8.4 7.4 6.1 5.6
Hypothyroid 1.7 1.4 1.3 1.0 1.5 2.9 1.6
Iris 6.3 5.7 7.7 6.0 5.3 6.3 6.3
Labor 9.0 23.0 12.5 9.8 10.7 20.0 9.0
LED 24 34.2 36.5 35.5 37.0 33.5 39.2 34.2
Liver disorders 35.1 34.1 34.2 35.2 35.5 34.2 34.9
Lung cancer 47.1 57.5 47.1 50.0 50.4 54.6 47.1
Lymphography 16.1 21.9 16.5 18.2 17.8 19.5 16.1
Pima 25.2 25.0 25.4 25.3 25.4 28.1 25.4
Postoperative 33.9 30.0 37.8 33.9 31.6 37.8 33.9
Primary tumor 50.9 59.6 50.9 52.2 50.7 62.0 50.7
Promoters 9.3 17.5 10.8 11.2 8.9 45.7 9.3
Solar flare 19.4 15.6 16.9 15.9 15.9 16.8 16.4
Sonar 23.5 31.7 23.8 21.9 23.6 32.0 22.8
Soybean 9.2 8.5 6.7 8.2 9.0 10.0 5.9
Splice junction 4.4 5.8 4.5 4.5 4.2 30.2 4.0
Tic-Tac-Toe 30.6 13.7 15.7 21.8 28.0 4.5 13.5
Wine 2.2 12.1 2.5 3.6 3.4 18.8 2.2
Zoology 5.5 7.4 3.5 4.0 4.0 7.0 5.5

average 18.6 20.2 17.9 18.1 18.2 22.8 17.2

72 ZIJIAN ZHENG AND GEOFFREY I. WEBB

Table 4. Standard errors (%) of the error rates of NB, C4,5, BT, Bsej, Bse, LazyTree, and Lbr.

Domain NB C4.5 BT Bsej Bse LazyTree Lbr

Annealing 0.4 0.7 0.5 0.2 0.4 0.4 0.4
Audiology 1.4 1.5 1.6 1.4 1.5 1.5 1.4
Breast (W) 0.4 0.4 0.4 0.4 0.4 0.7 0.4
Chess (KR-KP) 0.4 0.1 0.3 0.3 0.4 0.2 0.1
Credit (A) 0.7 1.1 1.0 1.0 0.8 1.0 0.7
Echocardiogram 3.2 3.3 3.4 3.1 3.3 2.9 3.2
Glass 2.4 2.6 2.5 2.6 2.6 2.9 2.3
Heart (C) 1.2 1.6 1.3 1.3 1.3 1.4 1.2
Hepatitis 2.2 2.1 2.3 2.1 1.8 2.7 2.2
Horse colic 1.3 1.6 1.5 1.2 1.2 1.4 1.0
House votes 84 0.9 0.8 0.7 0.9 0.8 0.9 0.8
Hypothyroid 0.1 0.2 0.1 0.1 0.1 0.2 0.1
Iris 1.0 1.0 1.5 1.1 1.1 1.1 1.0
Labor 2.5 3.5 2.7 2.8 2.7 4.1 2.5
LED 24 2.6 2.4 2.6 2.7 2.6 2.2 2.6
Liver disorders 1.7 1.4 1.3 1.8 1.7 1.4 1.7
Lung cancer 6.5 6.2 6.5 6.7 7.0 3.5 6.5
Lymphography 2.9 2.4 2.5 2.5 2.5 2.1 2.9
Pima 1.2 0.9 1.0 1.2 1.1 1.4 1.2
Postoperative 2.5 1.4 3.0 2.2 1.9 2.7 2.5
Primary tumor 1.9 1.5 1.9 1.8 1.6 2.0 1.9
Promoters 2.0 2.6 2.2 1.6 1.6 2.0 2.0
Solar flare 0.5 0.2 0.4 0.5 0.4 0.4 0.6
Sonar 1.7 2.0 2.0 1.6 1.6 1.7 1.8
Soybean 0.8 0.5 0.6 0.7 0.7 0.7 0.5
Splice junction 0.3 0.3 0.3 0.3 0.3 0.4 0.3
Tic-Tac-Toe 1.2 0.8 0.9 1.1 1.1 0.4 0.8
Wine 1.2 2.0 1.2 1.3 1.2 2.0 1.2
Zoology 1.5 1.7 1.5 1.3 1.1 1.5 1.5

LAZY LEARNING OF BAYESIAN RULES 73

Table 5. Error rate ratios: Lbr vs NB, C4,5, BT, Bsej, Bse, and LazyTree

Domain Lbr

(vs) NB C4.5 BT Bsej Bse LazyTree

Annealing .96 .28 .87 2.70 1.23 1.04
Audiology .99 1.07 .97 1.03 1.16 .76

Breast (W) 1.00 .57 1.00 1.00 .96 .31

Chess (KR-KP) .16 2.86 1.33 .74 .31 1.25
Credit (A) 1.00 .97 .94 .94 .96 .88
Echocardiogram 1.04 .89 .96 .99 .95 .95
Glass .97 .96 1.03 .94 .92 .80

Heart (C) 1.00 .78 .93 .98 1.00 .86
Hepatitis 1.00 .77 .82 .98 1.10 .79

Horse colic .93 1.18 1.05 .97 .95 1.02
House votes 84 .57 1.00 1.00 .67 .76 .92
Hypothyroid .94 1.14 1.23 1.60 1.07 .55

Iris 1.00 1.11 .82 1.05 1.19 1.00
Labor 1.00 .39 .72 .92 .84 .45

LED 24 1.00 .94 .96 .92 1.02 .87
Liver disorders .99 1.02 1.02 .99 .98 1.02
Lung cancer 1.00 .82 1.00 .94 .93 .86
Lymphography 1.00 .74 .98 .88 .90 .83
Pima 1.01 1.02 1.00 1.00 1.00 .90
Postoperative 1.00 1.13 .90 1.00 1.07 .90
Primary tumor 1.00 .85 1.00 .97 1.00 .82

Promoters 1.00 .53 .86 .83 1.04 .20

Solar flare .85 1.05 .97 1.03 1.03 .98
Sonar .97 .72 .96 1.04 .97 .71

Soybean .64 .69 .88 .72 .66 .59

Splice junction .91 .69 .89 .89 .95 .13

Tic-Tac-Toe .44 .99 .86 .62 .48 3.00
Wine 1.00 .18 .88 .61 .65 .12

Zoology 1.00 .74 1.57 1.38 1.38 .79

average .91 .90 .98 .97 .95 .84

w/t/l 14/13/2 19/1/9 19/4/6 19/2/8 16/3/10 23/1/5
p of wtl .0021 .0436 .0073 .0261 .1635 .0005

significant w/t/l 7/22/0 10/17/2 3/25/1 7/20/2 5/23/1 12/16/1
p of sign. wtl .0078 .0193 .3125 .0898 .1094 .0017

74 ZIJIAN ZHENG AND GEOFFREY I. WEBB

(2) A one-tailed pairwise sign-test on the win/tie/loss records shows that Lbr sig-
nificantly outperforms NB, in terms of lower average error rate, at a significance
level better than 0.05 across the 29 domains. This holds both using exact com-
parisons and when differences that are not statistically significant are treated
as ties. Lbr achieves an average relative error rate reduction of 9% over NB in
the 29 domains.

Considering the performance in individual domains, Lbr has lower error rates
than NB in 14 out of the 29 domains, and higher error rates in only 2 domains.
Lbr has the same error rate as NB in 13 domains. For nine of these domains,
Lbr uses no conditions, and hence the original naive Bayesian classifier, to
classify every test example. In the other four domains, the average number of
conditions in a Bayesian rule is less 0.12. This means that Lbr only builds
very short rules for small numbers of test examples. As a result, Lbr uses
conventional naive Bayesian classification for almost all test cases in these 13
domains.

When only counting significant error differences, Lbr is significantly more ac-
curate than NB in 7 out of the 29 domains. In no domain, does Lbr get
significantly higher error rates than NB.

(3) Lbr obtains lower error rates than C4.5 in 19 out of the 29 domains with 10
being significant and higher error rates in 9 domains with 2 being significant.
These win/loss records (both exact, and counting non-significant differences as
draws) are statistically significant at the 0.05 level using a one-tailed pairwise
sign-test. The average relative error reduction of Lbr over C4.5 in the 29
domains is 10%.

(5) The average relative error rate reductions of Lbr over BT, Bsej, Bse, and
LazyTree in the 29 domains are 2%, 3%, 5%, and 16% respectively. Lbr

is more accurate than BT in 19 out of the 29 domains and less accurate in 6
domains. It is more accurate than Bsej and Bse in 19 and 16 domains, as well
as less accurate in 8 and 10 domains respectively. Lbr has lower error rates than
LazyTree in 23 domains and higher error rates in 5 domains. A one-tailed
pairwise sign-test on these win/tie/loss records shows that Lbr is significantly
more accurate than BT, Bsej, and LazyTree at a significance level better
than 0.05 across these 29 domains, but fails to show that Lbr is significantly
more accurate than Bse at a level of 0.05. If insignificant error differences in
individual domains are treated as ties, a one-tailed pairwise sign-test fails to
show that Lbr is significantly more accurate than BT, Bsej, or Bse at a level
of 0.05, but still shows that Lbr is significantly more accurate than LazyTree

at a level better than 0.05 across the 29 domains.

From the experiments, we also found that none of BT, Bsej, and Bse has lower
error rates than NB significantly more often than the reverse across the 29 domains,
while Lbr does. The average relative error rate reductions of BT, Bsej, and Bse

over NB in the 29 domains are 4%, 5%, and 4% respectively, lower than that for
Lbr. These results suggest that Lbr outperforms BT, Bsej, or Bse in terms

LAZY LEARNING OF BAYESIAN RULES 75

of improving upon the performance of the naive Bayesian classifier. Lbr obtains
higher error rates than NB in only 2 domains. This occurs in 16, 15, and 11 domains
for BT, Bsej, and Bse respectively. It is clear that compared with BT, Bsej, and
Bse, Lbr less frequently obtains higher error than NB. In addition, Lbr has never
been found to significantly decrease the accuracy of the naive Bayesian classifier in
the domains under study, while BT, Bsej, and Bse do in some domains (2, 2, and
1 respectively).

It is noticed that BT does not have higher accuracies than C4.5 significantly more
often than the reverse in the 29 domains. LazyTree even has lower accuracies than
C4.5 significantly more often than the reverse.7 These indicate that Lbr performs
better on average over the 29 domains than either BT or LazyTree for improving
upon the accuracy of C4.5.

Compared to Bse, Bsej is significantly more accurate in 4 out of the 29 domains
and significantly less accurate in one domain. This suggests that joining attributes
together with deleting attributes may have some advantage over just deleting at-
tributes for naive Bayesian classification. However, the average error rates of Bsej

(18.1%) and Bse (18.2%) over the 29 domains are very similar.

Since C4.5 is good at dealing with numeric attributes, it might impede C4.5
to carry out discretization as a pre-process when running C4.5. In an additional
experiment, C4.5 (release 8) was run without pre-discretization. The average error
rate of C4.5 without pre-discretization in these 29 domains using the same training
and test set partitions is 20.0%. This is slightly lower than that for C4.5 with
pre-discretization. Comparing the error rates of Lbr with those of C4.5 without
pre-discretization in the 29 domains, the average error rate of Lbr is 2.8 percentage
points lower than that of C4.5; and the average relative error rate reduction of Lbr

over C4.5 is 5%. A one-tailed pairwise sign-test shows that Lbr is superior to C4.5
without pre-discretization at a significance level of 0.0178 across the 29 domains in
terms of lower error rate.

In summary, although it is known that no algorithm can have superior generaliza-
tion performance to another across all possible domains (Wolpert, 1994; Schaffer,
1994; Rao, Gordon, & Spears, 1995), the experimental results show that Lbr ob-
tains lower error significantly more often than the reverse in comparison to NB,
C4.5, BT, Bsej, and LazyTree for the data sets studied. We believe these
data sets to be broadly representative of those in the UCI repository. While the
win/tie/loss outcomes against Bse were not statistically significant, Lbr outper-
formed Bse with respect to all metrics considered—mean error, error rate ratio,
and win/tie/loss record.

5.4. When does LBR outperform the naive Bayesian classifier?

In the previous subsection, we compared the general performance of Lbr against
that of the other algorithms across the 29 domains. Lbr obtained lower error
than NB significantly more often than the reverse. However, for almost 50% of the
domains, Lbr did not improve upon NB’s error rate. In this subsection, we analyze

76 ZIJIAN ZHENG AND GEOFFREY I. WEBB

0

1

2

Lbr/NB

0 1 2 3 4 5 6

C4.5/NB

�� �

�

��� ���

�

�� ��� � ��� � �
�

�

�

�

�

��

Figure 4. The error ratio of Lbr over NB as a function of the error ratio of C4.5 over NB

in what situations Lbr can be expected to reduce the error of the naive Bayesian
classifier.

As specified before, Lbr is intended to alleviate the attribute inter-dependence
problem of naive Bayesian classification. To determine whether it is successful
at this goal, we need to analyze whether Lbr can outperform NB in domains
where NB suffers from this problem. It is also interesting to consider how Lbr

performs relative to NB in other domains. Domingos and Pazzani (1996) have
observed that the naive Bayesian classifier may be optimal when the independence
assumption is violated but the ranks of the conditional probabilities of classes given
an example are correct. In consequence, it is important to know not just whether
the independence assumption is violated, but also to what extent the accuracy of
the naive Bayesian classifier is affected by the attribute inter-dependence problem.
Therefore, measures of attribute inter-dependencies are not appropriate indicators
for this analysis. On the other hand, it is known that the naive Bayesian classifier
is optimal when the independence assumption is not violated (assuming that the
conditional probability estimates employed are accurate). As an approximation,
if the naive Bayesian classifier performs worse than another learning algorithm
in a domain, we can assume that the independence assumption is violated and the
naive Bayesian classifier suffers from the attribute inter-dependence problem in this
domain. Here, we choose C4.5, a well known decision tree learning algorithm, as
the reference for our analysis. We use the relative performance of C4.5 vs NB as an
approximate indicator of whether NB suffers from the attribute inter-dependence
problem in a domain.

Figure 4 shows the error ratio of Lbr over NB as a function of the error ratio of
C4.5 over NB. Each point on the scatter graph represents one of the 29 domains.
Points on the left of the vertical line at 1 indicate that C4.5 performs better than
NB, that is, the independence assumption is violated and NB suffers from the
attribute inter-dependence problem in these domains. Points below the horizontal
line at 1 show that Lbr outperforms NB in those domains.

LAZY LEARNING OF BAYESIAN RULES 77

From Figure 4, we can see a clear positive correlation between when NB suffers
from the attribute inter-dependence problem and when Lbr outperforms NB. C4.5
has lower error rates than NB in 12 out of the 29 domains. Among these 12
domains, Lbr has lower error rates than NB in 9 domains, the same error rate in
2 domains, and a slightly higher error rate in one domain. The (product moment)
correlation coefficient based on these 12 data points is 0.92, indicating a highly
significant correlation (Chatfield, 1978). When considering only significant error
differences, C4.5 is significantly more accurate than NB in 6 domains. Among
these 6 domains, Lbr is significantly more accurate than NB in 4 domains. The
(product moment) correlation coefficient based on these 6 data points is 0.98, again
indicating a highly significant correlation. The two exception domains are Horse
colic and Postoperative. In the Horse colic domain, Lbr is more accurate than NB
at a significance level of 0.061 which is very close to the normally used significance
level 0.05. In the Postoperative domain, the data set size (90) is too small for Lbr

to create Bayesian rules. It is notable that for six out of the ten domains with
data set sizes smaller than 200, Lbr did not create Bayesian rules, thus performing
identically to NB. For the remaining four domains, Bayesian rules were created
rarely. In no case were rules created for more than 11% of test examples. Hence,
error was not greatly affected.

In addition, Figure 4 clearly illustrates that when C4.5 is as accurate, or less
accurate than, NB (see the points on and on the right of the vertical line at 1),
that is, when there is no evidence showing that NB suffers from the attribute inter-
dependence problem, Lbr has the same error rates as, or lower error rates than,
NB. Only in one domain (Echocardiogram) among the domains of this type does
Lbr have a slightly higher error rate than NB. For example, it is known that in
the LED24 domain, all attributes are independent from each other within each
class (some attributes are irrelevant). In such a domain, NB should be optimal.
The average length of Bayesian rules of Lbr is 0. That is, Lbr does not generate
Bayesian rules in this domain. Instead, it just employs a naive Bayesian classifier
using all attributes on the entire training set, thus having the same accuracy as
NB.

In short, these results suggest that when NB suffers from the attribute inter-
dependence problem, given that the training sets are not too small, Lbr can effec-
tively alleviate this problem, thus reducing error. When NB does not suffer from
the attribute inter-dependence problem, Lbr usually maintains NB’s accuracy per-
formance.

Next, we use the Tic-Tac-Toe domain as an example to analyze, in greater detail,
the behavior of Lbr compared with NB as well as other algorithms. The learning
problem for Tic-Tac-Toe is to predict the class (either win for x or not) of an example
that is described using 9 attributes corresponding to 9 squares in the Tic-Tac-Toe
game board. The target concept of Tic-Tac-Toe is that the game is a win for x (the
class p) if three squares in one line or one column or one diagonal are occupied by x.
We know that attributes, especially the three attributes corresponding to squares
that make the game a win for x or not a win for x, are not independent for a given
class.

78 ZIJIAN ZHENG AND GEOFFREY I. WEBB

o o o
b b
b x x

x
T
M
B

L M R

Figure 5. The Tic-Tac-Toe game board corresponding to the test example 〈o, o, o, b, b, x, b, x, x〉.
The class of this example is n.

In this domain, NB has a significantly higher error rate than C4.5, indicating that
NB suffers from the attribute inter-dependence problem. All of Lbr, BT, Bsej,
and Bse significantly decrease the error rate of NB, with Lbr achieving the lowest
error rate among these four algorithms. Lbr also achieves a lower error rate than
C4.5. In this domain, Bsej is significantly more accurate than Bse, because some
attributes are highly inter-dependent but not completely redundant. It is worth
mentioning that in this domain, LazyTree achieves a very low error rate. The
reason is that when creating rules, Lbr only considers attribute-value pairs each
in the form of (A = v) where v is the test example’s value, while LazyTree also
allows attribute-value pairs each in the form of (A 6= v′) where v′ is a value of the
attribute A that is not equal to the test example’s value. This is important for this
domain. If Lbr also considers “not equal”, its error rate can be further reduced in
this domain.

One test example, 〈o, o, o, b, b, x, b, x, x〉, at one trial is chosen at random for ex-
amination in the Tic-Tac-Toe domain. The game board of this test example is
shown in Figure 5. This game is not a win for x, that is, the class of the example
is n.

Given V = 〈o, o, o, b, b, x, b, x, x〉, NB produces P (p |V) ∝ P (p) ×
∏

j P (vj | p) =
0.00001413 and P (n |V) ∝ P (n) ×

∏
j P (vj |n) = 0.00000996. Therefore, it in-

correctly classifies the test example as class p. To classify this test example, Lbr

builds a Bayesian rule with (T-L = o) AND (T-M = o) as its antecedent. The
local naive Bayesian classifier of this Bayesian rule is trained with all attributes
except T-L and T-M on those training examples that satisfy (T-L = o) AND (T-M
= o). Using this local naive Bayesian classifier, Lbr gives P (p |V) ∝ 0.00000263
and P (n |V) ∝ 0.00012125, thus predicting that the test example belongs to class
n. If, instead of using a Bayesian rule, the attributes T-L and T-M are deleted, the
naive Bayesian classifier trained on all training examples using all other attributes
produces P (p |V) ∝ 0.00013110 and P (n |V) ∝ 0.00007527. Consequently, unlike
Lbr, it incorrectly predicts p as the class of the test example.

LAZY LEARNING OF BAYESIAN RULES 79

In this example, NB cannot correctly classify this test example due to the high
inter-dependencies among the attributes within each class. Lbr makes a correct
classification by successfully creating a Bayesian rule, removing two damaging inter-
dependent attributes from the local naive Bayesian classifier and using them to
define an instance sub-space for the local naive Bayesian classifier. Simply deleting
these two damaging inter-dependent attributes cannot make the naive Bayesian
classifier correctly classify this test example as such deletion removes critical infor-
mation.

5.5. LBR’s performance relative to BT for avoiding the small disjunct problem

In Subsection 4.2, we argue that Lbr can avoid the small disjunct problem. This
subsection provides experimental evidence in support of this claim. We use two
measures: the average local training set size and the minimum local training set
size. When BT and Lbr classify a test example during a trial on a domain, we
count the local training examples used to train the local naive Bayesian classifier
at the leaf used by BT and those in the consequent of the Bayesian rule that Lbr

constructs. The average number of local training examples for all test examples
is the average local training set size at this trial. The minimum local training set
size at this trial is the minimum number of local training examples over all the test
examples. We report the average value over the 20 trials in a domain for each of
these two measures.

Across the 29 domains, the average value of the average local training set size
for Lbr is 414.7, while it is 290.5 for BT. The average ratio of this measure of
Lbr over BT in the 29 domains is 1.97. Lbr has significantly larger average local
training set sizes than BT in 22 out of the 29 domains. Only in one domain does
Lbr have a significantly smaller average local training set size than BT. A one-
tailed pairwise sign-test on the significant win/tie/loss records shows that Lbr is
significantly superior to BT in terms of larger average local training set size across
the 29 domains at a significance level better than 0.0001.

It is also interesting to consider the smallest training set size employed by each
algorithm during each test. The average value of the minimum local training set
size for Lbr is 238.6, while it is 193.4 for BT in the 29 domains. The average ratio
of this measure of Lbr over BT in the 29 domains is 7.97. Lbr has significantly
larger minimum local training set sizes than BT in 21 out of the 29 domains, and
a significantly smaller minimum local training set size than BT in one domain. A
one-tailed pairwise sign-test on the significant win/tie/loss records shows that Lbr

has significant advantage over BT in terms of larger minimum local training set
size across the 29 domains at a significance level better than 0.0001.

The only domain where Lbr has a significantly smaller average local training set
size and a significantly smaller minimum local training set size than BT is Splice
junction. These two measures are 1991.1 and 1251.2 respectively for Lbr. They are
2511.2 and 2335.8 respectively for BT. Given the magnitude of these values, it does
not appear that Lbr is suffering from the small disjunct problem in this domain.
Rather, these values suggest that Lbr can make better use of the large training

80 ZIJIAN ZHENG AND GEOFFREY I. WEBB

set in this domain than BT to identify and eliminate damaging inter-dependent
attributes for naive Bayesian classification. In the Splice junction domain, the
average size of the antecedents of Bayesian rules for Lbr is 0.7, while the average
path length used for classifying the test examples for BT is 0.2. The latter is much
shorter than the former. This contributes to the significantly lower error rate of
Lbr than BT in this domain.

The smallest mean minimum local training set size over the 29 domains for BT
is only 0.5 in the Soybean domain, where the minimum local training set size of
Lbr is 56.6. The average local training set size in the Soybean domain for BT is
230.2, much smaller than that for Lbr, 431.0. The smallest minimum local training
set size over the 29 domains for Lbr is 22.2 in the Tic-Tac-Toe domain, where the
minimum local training set size for BT is 3.6. The latter is much smaller than the
former. The average local training set size in the Tic-Tac-Toe domain for Lbr is
136.2, much larger than that for BT, 37.9. In both of these two domains, Lbr has
lower error rates than BT.

In summary, these experimental results suggest that BT suffers from the small
disjunct problem in some domains, while Lbr performs much better than BT in
this respect. It seems likely that the ability of Lbr to avoid the small disjunct
problem contributes to the higher average accuracy of Lbr over BT.

5.6. Computational requirements

Lazy learning defers computation until classification time. The manner in which
lazy learning delays computation contrasts with non-lazy learners that perform
most computation during training and have low computational requirements for
classification. Typically, constructing a single theory for non-lazy learning will
require more computation than lazy classification of a single case. The relative
desirability of these two types of computational profile will depend upon the oper-
ational context. If only a few classifications are performed for each training set (for
example, if the training set is regularly updated), then lazy learning is likely to have
an advantage. For any given domain and training set there will be a test set size
at which the total computation cost of a lazy learning system overtakes that of a
non-lazy system. Lbr’s classification process involves non-trivial computation. In
consequence, where a large number of cases are to be classified, Lbr will incur large
computational overheads. These overheads can be reduced somewhat by caching
useful information from one classification to the rest.

To give an idea of the computational requirements of Lbr, Table 6 shows the
execution time of Lbr in CPU seconds on a SUN UltraSPARC 2 server for a single
trial from the type of experiment reported before. The execution times of other
comparison algorithms are also included in the table as references. The execution
time of an algorithm in a domain reported in this subsection is the time used for
both training on the training set and classifying all test examples in the test set
at the first trial of a 10-fold cross-validation. That is, 90% of the data is used
for training and 10% for classification. It is worth mentioning that none of the
implementations of NB, BT, Bsej, Bse, LazyTree, and Lbr are optimized with

LAZY LEARNING OF BAYESIAN RULES 81

Table 6. Computational requirements in CPU seconds of NB, C4,5, BT, Bsej, Bse, LazyTree,
and Lbr. Times are rounded to the closest tenth of a second.

Domain NB C4.5 BT Bsej Bse LazyTree Lbr

Annealing 0.0 0.1 49.2 838.2 8.5 0.6 1.0
Audiology 0.0 0.1 116.5 12188.4 94.0 0.3 11.4
Breast (W) 0.0 0.0 0.1 0.5 0.1 8.4 0.1
Chess (KR-KP) 0.1 0.3 40.6 1719.6 43.9 15.6 146.5
Credit (A) 0.0 0.0 0.3 4.5 0.5 0.6 0.3
Echocardiogram 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Glass 0.0 0.0 0.1 0.9 0.1 0.3 0.0
Heart (C) 0.0 0.0 0.1 1.6 0.0 0.0 0.1
Hepatitis 0.0 0.0 0.1 2.8 0.2 0.0 0.0
Horse colic 0.0 0.0 1.2 21.2 0.5 0.1 0.6
House votes 84 0.0 0.0 0.8 5.7 0.7 0.2 0.5
Hypothyroid 0.1 0.2 18.6 230.3 6.9 17.8 31.2
Iris 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Labor 0.0 0.0 0.0 0.5 0.0 0.0 0.0
LED 24 0.0 0.0 1.0 55.5 2.6 0.1 0.5
Liver disorders 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Lung cancer 0.0 0.0 0.0 62.5 1.0 0.0 0.2
Lymphography 0.0 0.0 0.2 6.6 0.3 0.0 0.1
Pima 0.0 0.0 0.1 0.8 0.1 0.5 0.1
Postoperative 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Primary tumor 0.0 0.1 2.1 51.8 2.2 0.2 1.0
Promoters 0.0 0.0 0.9 172.8 1.0 0.0 0.1
Solar flare 0.0 0.1 0.6 4.1 0.6 1.9 1.8
Sonar 0.0 0.0 7.6 581.5 1.8 0.1 0.8
Soybean 0.0 0.2 44.3 1211.2 37.5 9.3 24.9
Splice junction 0.4 0.8 39.6 11694.5 118.0 761.5 103.2
Tic-Tac-Toe 0.0 0.0 0.5 1.3 0.2 0.6 0.9
Wine 0.0 0.0 0.1 0.5 0.0 0.1 0.0
Zoology 0.0 0.0 0.4 3.6 0.2 0.0 0.0

average 0.0 0.1 11.2 995.2 11.1 27.1 11.2

82 ZIJIAN ZHENG AND GEOFFREY I. WEBB

respect to computational efficiency, since this issue is not the focus of our current
research. As a result, these timing results should be taken as broadly indicative
only.

When collecting these timing results, only one trial for each algorithm in each do-
main was conducted in order to minimize the overall computational requirements
of the experiment. Note that timing results for the experiments presented in Sub-
section 5.3 are not useful, as the algorithms were run on four different types of
workstation, making computation times incommensurable.

From Table 6, we can see that BT, Bsej, Bse, LazyTree, and Lbr are slower
than NB and C4.5. However, the execution time for Lbr is reasonably acceptable,
given that it is very close to that of BT even though Lbr uses lazy learning. The
two worst cases for Lbr are 146.6 seconds and 103.2 seconds in the Chess (KR-KP)
and Splice junction domains. These two domains have 3169 and 3177 examples
respectively. They have 73 and 240 different attribute values respectively.

In the current implementation of Lbr, a simple caching technique was incorpo-
rated. The evaluation function values of attribute-value pairs that have been exam-
ined are retained from one test item to the next. This can avoid the re-calculation
of evaluation function values of some attribute-value pairs when classifying unseen
examples that appear later, thus reducing the entire execution time of Lbr. Our
experiment shows that caching this information reduces the execution time of Lbr

by 96% on average in these 29 domains. This happens, because the evaluations
of attribute-value pairs for different test examples are often repeated, including
repeated generation of identical Bayesian rules for different test examples. Lbr

could be made even more efficient by caching further information such as local
naive Bayesian classifiers and indices for training examples at different stages of
the growth of Bayesian rules. Of course, this would increase memory requirements.

It is noticeable that Bsej requires long execution time in domains with a large
number of attribute values. Bse is faster than Bsej, since the search space of Bse

is much smaller than that of Bsej. The number of attribute values of a domain
also significantly affects the execution time of Lbr, since it determines the number
of possible attribute-value pairs that need to be evaluated. However, the length
of antecedents of Bayesian rules to be generated in a domain is a more important
factor for Lbr. For example, longer Bayesian rules are created by Lbr in the Chess
(KR-KP) domain than in the Splice junction domain. Lbr uses more time in the
former than in the latter, although the latter has more attribute values than the
former.

6. Conclusions and future work

We have proposed a novel lazy Bayesian rule learning algorithm, Lbr. It builds
for each test example a most appropriate Bayesian rule with a local naive Bayesian
classifier as its consequent. Compared with other existing approaches to improving
the naive Bayesian classifier, decision tree learning, and rule learning, the novelty
of Lbr is that it generates Bayesian rules using lazy learning. The antecedent of
a Bayesian rule defines an instance sub-space for its local naive Bayesian classifier.

LAZY LEARNING OF BAYESIAN RULES 83

We explained that, by doing so, damaging attribute inter-dependencies for naive
Bayesian classification can be factored out. In addition, the small disjunct problem
can be avoided. During the growth of a Bayesian rule, Lbr uses leave-1-out cross-
validation and a significance test to manage the trade-off between the degree to
which the attribute independence assumption of the naive Bayesian classifier is
violated and the number of training examples available for training the local naive
Bayesian classifier.

Lbr uses lazy learning. Although it does not create a single theory for a learning
problem, unlike some other lazy learning algorithms such as instance based learning,
Lbr still generates a Bayesian rule with a conjunction of attribute-value pairs as
the antecedent and a local naive Bayesian classifier as the consequent for each test
example. Both of these are comprehensible. Lbr is further distinguished from
previous lazy learners by the generic strategy used to select the training cases with
which a test case is to be classified. Whereas previous algorithms have sought
to identify and include relevant training cases without specific reference to the
classification technique which will utilize them, Lbr seeks to exclude only those
training cases for which there is clear evidence that the classification method (a
naive Bayesian classifier) will suffer from their inclusion. In addition, Lbr has a
natural method for dealing with missing values of test examples, not considering
attributes with missing values on test examples when generating antecedents of
Bayesian rules.

When generating the antecedent of a Bayesian rule, the current implementation
of Lbr only considers attribute-value pairs each in the form of (A = v), where v
is equal to the test example’s value. An alternative is considering (A 6= v), where
v is a value of A that is not equal to the test example’s value. A further step
is exploring (A ∈ vsubset), where vsubset is a subset of values of A to which the
test example’s value belongs. Currently, for numeric attributes, discretization is
carried out as a pre-process of Lbr. An alternative is the direct use of numeric
attributes when generating rules. The current implementation of Lbr with a simple
caching technique provides reasonable computational performance. Caching more
information could make it more efficient.

Lbr has been compared experimentally with a naive Bayesian classifier, a state-
of-the-art decision tree learner, a Bayesian tree learning algorithm, a constructive
Bayesian classifier, a selective naive Bayesian classifier (i.e., Bse), and a lazy deci-
sion tree learning algorithm in a wide variety of natural domains. This extensive ex-
perimental comparison of key existing techniques for improving the naive Bayesian
classifier is another contribution of this paper. In our experiments, Lbr obtained
lower error than the alternative algorithm significantly more often than the reverse
against all the other algorithms but one. The one algorithm against which Lbr did
not achieve a significant advantage on this metric is the selective naive Bayesian
classifier (i.e., Bse). However, Lbr still achieved lower error more often than the
reverse in comparison to this algorithm. Further, Lbr achieved lower mean error
and mean error ratios against all alternatives across the 29 domains in the study.
Lbr has been demonstrated to alleviate the attribute inter-dependence problem
of naive Bayesian classification, although it rarely alters the error performance of

84 ZIJIAN ZHENG AND GEOFFREY I. WEBB

the naive Bayesian classifier when applied to small training sets. Investigation of
appropriate extensions of the technique for small datasets remains an interesting
direction for future research. Our experimental results indicate that in typical
domains where the error performance of the naive Bayesian classifier does not suf-
fer from the attribute inter-dependence problem, Lbr usually maintains the naive
Bayesian classifier’s level of prediction accuracy. All these results suggest that
Lbr provides a very competitive learning technique where error minimization is an
important criterion.

Acknowledgments

The authors are grateful to J. Ross Quinlan for providing C4.5, and Kai Ming Ting
for supplying the discretization program. Thanks to Douglas Newlands for his
helpful comments on earlier drafts of the paper. This paper has benefited greatly
from the anonymous reviewers’ suggestions and Douglas Fisher’s suggestions and
editorial comments.

Notes

1. While it would also be difficult to estimate P (V) accurately, P (Ci) × P (V |Ci) ∝ P (Ci) ×
P (V |Ci)/P (V), and hence it is not necessary to estimate P (V).

2. We, here, use vj ∈ V to denote that vj appears in the conjunction V .

3. We found, in our experiments, that the error rate of the naive Bayesian classifier can be reduced
in about a half of the domains by using techniques for alleviating the attribute inter-dependence
problem.

4. These are referred to as paths by Friedman et al. (1996).

5. Since different attribute-value pairs cover different subsets of the local training examples, es-
timated errors for different attribute-value pairs on their corresponding subsets of training
examples are not comparable. We assume that each temporary naive Bayesian classifier has
the same errors as the local naive Bayesian classifier of the current Bayesian rule on those
local training examples that are not covered by the corresponding attribute-value pair. In this
manner, we can measure each attribute-value pair on the whole local training set.

6. The sign-test is a distribution free test for testing the null hypothesis that, for example, it occurs
by chance that one method gives higher results than the other method. It is appropriate for
the situation where no assumption can be made about the distribution of the observations
(Chatfield, 1978). Note that the t-test assumes that the observations are normally distributed.
Since we cannot assume that the error rates of an algorithm across domains are normally
distributed, and indeed, there is cause to doubt whether error rates in two different domains
are even commensurable, we use the sign-test to compare the performance of two algorithms
across the 29 domains. In most cases, we apply the sign-test to the win/tie/loss records. Ties
are disregarded. The resulting p value is the probability that the observed number of wins or
greater would occur if wins and losses were equiprobable random events. As this test considers
the possibility of some wins or losses occurring by chance, there is no need to pre-filter the
win/tie/loss records, for example by applying a t-test.

7. LazyDT was reported to have an error rate 1.9 percentage points lower than C4.5 on average
in a set of domains (Friedman et al., 1996). Some of these domains are different from those
used in this paper. However, 15 domains are used in both of these two studies. The average
error rates of LazyTree and those reported for LazyDT in these 15 domains are very similar.
They are 15.8% and 15.6% respectively. This suggests that the performance of LazyTree, our
implementation of LazyDT, is very close to that of LazyDT in terms of prediction accuracy.

LAZY LEARNING OF BAYESIAN RULES 85

References

Aha, D.W., Kibler, D., & Albert, M.K. (1991). Instance-based learning algorithms. Machine
Learning, 6, 37-66.

Aha, D.W. (ed.), (1997). Lazy Learning. Dordrecht: Kluwer Academic.
Blake, C., Keogh, E., & Merz, C.J. (1998). UCI Repository of Machine Learning Databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, De-
partment of Information and Computer Science.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression
Trees. Belmont, CA: Wadsworth.

Briand, L.C., & Thomas, W.M. (1992). A pattern recognition approach for software engineering
data analysis. IEEE Transactions on Software Engineering, 18, 931-942.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. Proceedings of
the European Conference on Artificial Intelligence (pp. 147-149).

Cestnik, B., Kononenko, I., & Bratko, I. (1987). Assistant 86: A knowledge-elicitation tool for
sophisticated users. In I. Bratko & N. Lavrač (Eds.), Progress in Machine Learning – Proceedings
of the Second European Working Session on Learning (EWSL87) (pp. 31-45). Wilmslow, UK:
Sigma Press.

Chatfield, C. (1978). Statistics for Technology: A Course in Applied Statistics. London: Chap-
man and Hall.

Chow, C.K., & Liu, C.N. (1968). Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14, 462-467.

Cover, T.M., & Hart, P.E. (1967). Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13, 21-27.

Dasarathy, B.V. (1980). Noising around the neighborhood: A new system structure and classi-
fication rule for recognition in partially exposed environments. Pattern Analysis and Machine
Intelligence, 2, 67-71.

Domingos, P., & Pazzani, M. (1996). Beyond independence: Conditions for the optimality of the
simple Bayesian classifier. Proceedings of the Thirteenth International Conference on Machine
Learning (pp. 105-112). San Francisco, CA: Morgan Kaufmann.

Duda, R.O., & Hart, P.E. (1973). Pattern Classification and Scene Analysis. New York: John
Wiley.

Fayyad, U.M., & Irani, K.B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence (pp. 1022-1027). San Mateo, CA: Morgan Kaufmann.

Friedman, J., Kohavi, R., & Yun, Y. (1996). Lazy decision trees. Proceedings of the Thirteenth
National Conference on Artificial Intelligence (pp. 717-724). Menlo Park, CA: The AAAI Press.

Friedman, N., & Goldszmidt, M. (1996). Building classifiers using Bayesian networks. Proceedings
of the Thirteenth National Conference on Artificial Intelligence (pp. 1277-1284). Menlo Park,
CA: The AAAI Press.

Fulton, T., Kasif, S., Salzberg, S., & Waltz, D. (1996). Local induction of decision trees: Towards
interactive data mining. Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (pp. 14-19). Menlo Park, CA: AAAI Press.

Gates, G.W. (1972). The reduced nearest neighbor rule. IEEE Transactions on Information
Theory, 18, 431-433.

Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. Proceed-
ings of the Eighth Conference on Uncertainty in Artificial Intelligence (pp. 92-97). Morgan
Kaufmann.

Hart, P.E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 14, 515-516.

Holte, R.C., Acker, L.E., & Porter, B.W. (1989). Concept learning and the problem of small
disjuncts. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(pp. 813-818). San Mateo, CA: Morgan Kaufmann.

John, G.H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem.
Proceedings of the Eleventh International Conference on Machine Learning (pp. 121-129). San
Francisco, CA: Morgan Kaufmann.

86 ZIJIAN ZHENG AND GEOFFREY I. WEBB

Kittler, J. (1986). Feature selection and extraction. In T.Y. Young & K. Fu (Eds.), Handbook of
Pattern Recognition and Image Processing (pp. 59-81). San Diego, CA: Academic Press.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(pp. 1137-1143). San Mateo, CA: Morgan Kaufmann.

Kohavi, R. (1996). Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid.
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
(pp. 202-207). Menlo Park, CA: The AAAI Press.

Kononenko, I. (1990). Comparison of inductive and naive Bayesian learning approaches to au-
tomatic knowledge acquisition. In B. Wielinga et al. (eds.), Current Trends in Knowledge
Acquisition. Amsterdam: IOS Press.

Kononenko, I. (1991). Semi-naive Bayesian classifier. Proceedings of European Conference on
Artificial Intelligence (pp. 206-219).

Kononenko, I. (1993). Inductive and Bayesian learning in medical diagnosis. Applied Artificial
Intelligence, 7, 317-337.

Kubat, M., Flotzinger, D., & Pfurtscheller, G. (1993). Discovering patterns in EEG-signals:
Comparative study of a few methods. Proceedings of European Conference on Machine Learning
(pp. 366-371). Berlin: Springer-Verlag.

Langley, P., Iba, W.F., & Thompson, K. (1992). An analysis of Bayesian classifiers. Proceedings
of the Tenth National Conference on Artificial Intelligence (pp. 223-228). Menlo Park, CA: The
AAAI Press.

Langley, P. (1993). Induction of recursive Bayesian classifiers. Proceedings of the European Con-
ference on Machine Learning (pp. 153-164). Berlin: Springer-Verlag.

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classifiers. Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence (pp. 339-406). Seattle, WA: Morgan
Kaufmann.

Pazzani, M.J. (1996). Constructive induction of Cartesian product attributes. Proceedings of the
Conference, ISIS’96: Information, Statistics and Induction in Science (pp. 66-77). Singapore:
World Scientific.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Mateo, CA: Morgan Kaufmann.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Quinlan, J.R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intel-
ligence Research, 4, 77-90.

Rao, R.B., Gordon, D., & Spears, W. (1995). For every generalization action, is there really an
equal and opposite reaction? Analysis of the conservation law for generalization performance.
Proceedings of the Twelfth International Conference on Machine Learning (pp. 471-479). San
Francisco, CA: Morgan Kaufmann.

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (pp. 334-338). Menlo Park,
CA: The AAAI Press.

Schaffer, C. (1994). A conservation law for generalization performance. Proceedings of the
Eleventh International Conference on Machine Learning (pp. 259-265). San Francisco, CA:
Morgan Kaufmann.

Singh, M., & Provan, G.M. (1995). A comparison of induction algorithms for selective and non-
selective Bayesian classifiers. Proceedings of the Twelfth International Conference on Machine
Learning (pp. 497-505). San Francisco, CA: Morgan Kaufmann.

Singh, M., & Provan, G.M. (1996). Efficient learning of selective Bayesian network classifiers.
Proceedings of the Thirteenth International Conference on Machine Learning (pp. 453-461).
San Francisco, CA: Morgan Kaufmann.

Ting, K.M. (1994a) The problem of small disjuncts: Its remedy in decision trees. Proceedings
of the Tenth Canadian Conference on Artificial Intelligence (pp. 91-97). Canadian Society for
Computational studies of Intelligence.

Ting, K.M. (1994b). Discretization of continuous-valued attributes and instance-based learning
(Technical Report 491). Sydney, Australia: University of Sydney, Basser Department of Com-
puter Science.

LAZY LEARNING OF BAYESIAN RULES 87

Viswanathan, M., & Webb, G.I. (1998). Classification learning using all rules. Proceedings of the
Tenth European Conference on Machine Learning (pp. 149-159). Berlin: Springer-Verlag.

Webb, G.I., & Pazzani, M.J. (1998). Adjusted probability naive Bayesian induction. Proceedings
of the Eleventh Australian Joint Conference on Artificial Intelligence (pp. 285-295). Berlin:
Springer-Verlag.

Webb, G.I. (1996). A heuristic covering algorithm outperforms learning all rules. Proceedings of
the Conference, ISIS’96: Information, Statistics and Induction in Science (pp. 20-30). Singa-
pore: World Scientific.

Wolpert, D.H. (1994). The relationship between PAC, the statistical physics framework, the
Bayesian framework, and the VC framework. In D.H. Wolpert (ed.), The Mathematics of Gen-
eralization, Addison Wesley.

