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Abstract

Release consistency is a widely accepted memory model for distributed shared memory sys-
tems. Eager release consistency represents the state of the art in release consistent protocols
for hardware-coherent multiprocessors, while lazy release consistency has been shown to provide
better performance for software distributed shared memory (DSM). Several of the optimizations
performed by lazy protocols have the potential to improve the performance of hardware-coherent
multiprocessors as well, but their complexity has precluded a hardware implementation. With
the advent of programmable protocol processors it may become possible to use them after all.
We present and evaluate a lazy release-consistent protocol suitable for machines with dedicated
protocol processors. This protocol admits multiple concurrent writers, sends write notices con-
currently with computation, and delays invalidations until acquire operations. We also consider
a lazier protocol that delays sending write notices until release operations. Our results indicate
that the first protocol outperforms eager release consistency by as much as 20% across a variety
of applications. The lazier protocol, on the other hand, is unable to recoup its high synchroniza-
tion overhead. This represents a qualitative shift from the DSM world, where lazier protocols
always yield performance improvements. Based on our results, we conclude that machines with
flexible hardware support for coherence should use protocols based on lazy release consistency,
but in a less “aggressively lazy” form than is appropriate for DSM.

1 Introduction

Remote memory accesses experience long latencies in large shared-memory multiprocessors, and are
one of the most serious impediments to good parallel program performance. Relaxed consistency
models [6, 11] can help reduce the cost of memory accesses by masking the latency of write operations.
Relaxed consistency requires that memory be consistent only at certain synchronization events,
and thus allows a protocol to buffer, merge, and pipeline write requests as long as it respects the
consistency constraints specified in the model.

∗This work was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724, ONR research
grant no. N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology—High
Performance Computing, Software Science and Technology program, ARPA Order no. 8930), and Brazilian CAPES
and NUTES/UFRJ fellowships.
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Release consistency [10] is the most widely accepted relaxed consistency model. Under release
consistency each memory access is classified as an ordinary access, an acquire, or a release. A release
indicates that the processor is completing an operation on which other processors may depend; all
of the releasing processor’s previous writes must be made visible to any processor that performs a
subsequent acquire. An acquire indicates that the processor is beginning an operation that may
depend on some other processor; all other processors’ writes must now be made locally visible.

This definition of release consistency provides considerable flexibility to a coherence protocol
designer as to when to make writes by a processor visible to other processors. Hardware implemen-
tations of release consistency, as in the DASH multiprocessor [18], take an eager approach: write
operations trigger coherence transactions (e.g., invalidations) immediately, though the transactions
execute concurrently with continued execution of the application. The processor stalls only if its
write buffer overflows, or if it reaches a release operation and some of its previous transactions have
yet to be completed. This approach attempts to mask the latency of writes by allowing them to
take place in the background of regular computation.

The better software coherence protocols adopt a lazier approach for distributed shared memory
(DSM) emulation, delaying coherence transactions further, in an attempt to reduce the total number
of messages exchanged. A processor in Munin [4], for example, buffers all of the “write notices”
associated with a particular critical section and sends them when it reaches a release point. ParaNet
(Treadmarks) [14] goes further: rather than send write notices to all potentially interested processors
at the time of a release, it keeps records that allow it to inform an acquiring processor of all (and
only) those write notices that are in the logical past of the releaser but not (yet) in the logical past
of the acquirer.

Postponing coherence transactions allows a protocol to combine messages between a given pair
of processors and to avoid many of the useless invalidations caused by false sharing [8]. Keleher et
al. have shown these optimizations to be of significant benefit in their implementation of lazy release
consistency [13] for DSM systems. Ideally, one might hope to achieve similar benefits for hardware-
coherent systems. The sheer complexity of lazy protocols, however, has heretofore precluded their
implementation in hardware. Several research groups, however, are now developing programmable
protocol processors [16, 20] for which the complexity of lazy release consistency may be manageable.
What remains is to determine whether laziness will be profitable in these sorts of systems, and if so
to devise a protocol that provides the best possible performance.

In this paper we present a protocol that combines the most desirable aspects of lazy release
consistency (reducing memory latency by avoiding unnecessary invalidations) with those of eager
release consistency (reducing synchronization waits by executing coherence operations in the back-
ground). This protocol supports multiple concurrent writers, overlaps the transfer of write notices
with computation, and delays invalidations until acquire operations. It outperforms eager release
consistency by up to 20% on a variety of applications.

We also consider a lazier protocol that delays sending write notices until release operations.
Our results indicate, however, that this lazier protocol actually hurts overall program performance,
since its reduction of memory access latency does not compensate for an increased synchronization
overhead. This result reveals a qualitative difference between software and hardware distributed
shared-memory multiprocessors: delaying coherence operations as much as possible is appropriate
for DSM systems, but not for hardware-assisted coherence.

The rest of the paper is organized as follows. Section 2 describes our lazy protocol, together
with the lazier variant that delays the sending of write notices. Section 3 describes our experimental
methodology and application suite. Section 4 presents results. It begins with a discussion of the
sharing patterns exhibited by the applications, and proceeds to compare the performance of our
lazy protocols to that of an eager release consistency protocol similar to the one implemented in
the DASH multiprocessor. Finally, it describes the impact of architectural trends on the relative
performance of the protocols. We present related work in section 5 and conclude in section 6.
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2 A Lazy Protocol for Hardware-Supported Coherence

Our lazy protocol for hardware coherent multiprocessors resembles the software-based protocol de-
scribed in [15], but has been modified significantly to exploit the ability to overlap coherence man-
agement and computation and to deal with the fact that coherence blocks can now be evicted from
a processor’s cache due to capacity or conflict misses. The basic concept behind the protocol is to
allow processors to continue referencing cache blocks that have been written by other processors.
Although write notices are sent as soon as a processor writes a shared block, invalidations occur
only at acquire operations; this is sufficient to ensure that true sharing dependencies are observed.

The protocol employs a distributed directory to maintain caching information about cache blocks.
The directory entry for a block resides at the block’s home node—the node whose main memory
contains the block’s page. The directory entry contains a set of status bits that describe the state
of the block. This state can be one of the following.

Uncached – No processor has a copy of this block. This is the initial state of all cache blocks.

Shared – One or more processors are caching this block but none has attempted to write it.

Dirty – A single processor is caching this block and is also writing it.

Weak – Two or more processors are caching this block and at least one of them is writing it.

In addition to the block’s status bits, the directory entry contains a list of pointers to the proces-
sors that are sharing the block. Each pointer is augmented with two additional bits, one to indicate
whether the processor is also writing the block, and the other to indicate whether the processor
has been notified that the block has entered the weak state. To simplify directory operations two
additional counters are maintained in a directory entry: the number of processors sharing the block,
and the number of processors writing it. Figure 1 shows the directory state transition diagram for
the original version of the protocol. Text in italics indicates additional operations that accompany
the transition.

The state described above is a global property associated with a block, not a local property of
the copy of the block in some particular processor’s cache. There is also a notion of state associated
with each line in a local cache, but it plays a relatively minor role in the protocol. Specifically, this
latter, local state indicates whether a line is invalid, read-only, or read-write; it allows us to detect
the initial access by a processor that triggers a coherence transaction (i.e. read or write on an invalid
line, or a write on a read-only line). An additional local data structure is maintained by the protocol
processor; it describes the lines that should be invalidated at the next acquire operation. The size
of this data structure is upper bounded by the number of lines in the cache. There is no need to
maintain such information for lines that have been dropped from the cache.

On a read miss by a processor the node’s protocol processor allocates an “outstanding trans-
action” data structure that contains the line (block) number causing the miss. The outstanding
transaction data structure is the equivalent of a RAC entry in the DASH distributed directory pro-
tocol [17]. It then sends a message to this block’s home node asking for the data. When the request
reaches the home node, the protocol processor issues a memory read for the block, and then starts a
directory operation—reading the current state of the block and computing a new state. As soon as
the memory returns the requested block, the protocol processor sends a message to the requesting
node containing the data and the new state of the block. If the block has made the transition to the
weak state an additional message is sent to the current writer.1 It is worth noting that the protocol
never requires the home node to forward a read request. If the block is not currently being written,

1The only situation in which a block can move to the weak state as a result of a read request is if it is currently
in the dirty state (i.e. it has a single writer).
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Figure 1: Directory state diagram for a variant of lazy release consistency

then the memory module contains the most up-to-date version. If it is being written, then the fact
that the read occurred indicates that no synchronization operation separates the write from the
read. This in turn implies (in a correctly synchronized program) that true sharing is not occurring,
so the most recent version of the block is not required.

Writes are placed in the write buffer and the main processor continues execution, assuming the
write buffer is not full. If the write buffer accesses a missing cache line, the protocol processor
allocates an outstanding transaction data structure and sends a write request message to the home
node. If the block was not present in the processor’s cache (the local line state was invalid), then
the entry in the write buffer cannot be retired until the block’s data is returned by the home node.
If the block was read-only in the processor’s cache, however, we still need to contact the home node
and inform it of the write operation, but we do not need to wait for the home node’s response before
retiring the write buffer entry. This stems from the fact that we allow a block to have multiple
concurrent writers; we do not need to use the home node as a serializing point to choose a unique
processor as writer.

When the write request arrives at the home node, the home node’s protocol processor consults
the directory entry to decide what the new state of the block should be. If the new state does not
require additional coherence messages (i.e. the block was uncached, or cached only by the requesting
processor) then an acknowledgment can be sent to the requesting processor. However if the block is
going to make a transition to the weak state then notification messages must be sent to the other
sharing processors. A response is sent to the requesting processor, instructing it to wait for the
collection of acknowledgements. Acknowledgements could be directed to, and collected by, either
the requesting processor or the home node (which would then forward a single acknowledgement to
the requesting node). We opted for the second approach. It has lower complexity and it allows us
to collect acknowledgments only once when write requests for the same block arrive from multiple
processors. The home node keeps track of the write requests and acknowledges all of them when it
has received the individual acknowledgments from all of the sharing processors.

Lock releases need to make sure that all writes by the releasing processor have globally performed,
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i.e. that all processors with copies of written blocks have been informed of the writes, and that
written data has made its way back to main memory. We ensure this by stalling the processor
until (1) its write buffer has been flushed, (2) its outstanding requests have been serviced (i.e. all
outstanding request data structures have been deallocated), and (3) memory has acknowledged any
outstanding write-backs or write-throughs (see below).

Lock acquires need to invalidate all lines in the acquiring processor’s cache for which write notices
have been received. Much of the latency of this operation can be hidden behind the latency of the
lock acquisition itself. When a processor attempts to acquire a lock its protocol processor performs
invalidations for any write notices that have already been received. When it receives a message
granting ownership of the lock, the protocol processor performs invalidations for any additional
notices received in the intervening time. Invalidating a line involves notifying the home node that
the local processor is no longer caching the block. This way the home node can update the state of
the block in the directory entry appropriately. If a block no longer has any processors writing it, it
reverts to the shared state; if it has no processors sharing it at all, it reverts to the uncached state.
If a block is evicted from a cache due to a conflict or capacity miss, the home node must also be
informed.

One last issue that needs to be addressed is the mechanism whereby data makes its way back
into main memory. With a multiple-writer protocol, a write-back cache requires the ability to merge
writes to the same cache block by multiple processors. Assuming that there is no false sharing
within individual words, this could be achieved by including per-word dirty bits in every cache, and
by sending these bits in every write-back message. This approach complicates the design of the
cache, however, and introduces potentially large delays at release operations due to the cache flush
operations. A write-through cache can solve both these problem by providing word granularity for
the memory updates and by overlapping memory updates with computation. For most programs,
however, write-through leads to unacceptably large amounts of traffic, delaying critical operations
like cache fills. A coalescing fully associative buffer [12] placed after the write-through cache can
effectively combine the best attributes of both write strategies. It provides the simple design and
low release synchronization costs of the write-through cache, while maintaining data traffic levels
comparable to those of a write-back cache [15].

We also consider a lazier version of the protocol that attempts to delay the point at which write
notices are sent to other processors. Under this protocol, the node’s protocol processor will re-
frain from sending a write request to a block’s home node as long as possible. Notification is sent
either when a written block is replaced in a processor’s cache, or when the processor performs a
release operation. Writes are buffered in a local data structure maintained by the protocol proces-
sor. Processing writes for replaced blocks allows us to place an upper bound on the size of this
data structure (proportional to the size of the processor’s cache) and to avoid complications in di-
rectory processing that arise from having to process writes from processor’s that may no longer be
caching a block. Delaying notices has been shown to improve the performance of software coherent
systems [4, 15]. In a hardware implementation, however, delayed notices do not take full advantage
of the asynchrony in computation and coherence management and can cause significant delays at
synchronization operations.

3 Experimental Methodology

We use execution-driven simulation to simulate a mesh connected multiprocessor with up to 64
nodes. Our simulator consists of two parts: a front end, Mint [23], that simulates the execution of
the processors, and a back end that simulates the memory system. The front end is the same in all
our experiments. It implements the MIPS II instruction set. Our back end is quite detailed, with
finite-size caches, full protocol emulation, distance-dependent network delays, and memory access
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System Constant Name Default Value
Cache line size 128 bytes
Cache size 128 Kbytes direct-mapped
Memory setup time 20 cycles
Memory bandwidth 2 bytes/cycle
Bus bandwidth 2 bytes/cycle
Network bandwidth 2bytes/cycle (bidirectional)
Switch node latency 2 cycles
Wire latency 1 cycle
Write Notice Processing 4 cycles
LRC Directory access cost 25 cycles
ERC Directory access cost 15 cycles

Table 1: Default values for system parameters

costs (including memory contention). Our simulator is capable of capturing contention within the
network, but only at a substantial cost in execution time; the results reported here model network
contention at the sending and receiving nodes of a message, but not at the nodes in-between. We
have also simplified our simulation of the programmable protocol processor, abstracting away such
details as the instruction and data cache misses that it may suffer when processing protocol requests.
We believe that this inaccuracy does not detract from our conclusions. Current designs for protocol
processors incorporate very large caches with a negligible miss rate for all but a few pathological
cases [16]. In our simulations we simply charge fixed costs for all operations. The one exception is a
write request to a shared line, where the cost is the sum of the directory access, and the dispatch of
messages to the sharing processors. Since in most cases directory processing can be hidden behind
the memory access cost, the increased directory processing cost of the lazy protocol does not affect
performance. Table 1 summarizes the default parameters used in our simulations.

Using these parameters and ignoring any contention effects that may be seen at the network
or memory modules, a cache fill would incur the cost of a) sending the request message to the
home node through the network, b) waiting for memory to respond with the data, c) sending
the data back to the requesting node through the network, and d) satisfying the fill through the
node’s local bus. Assuming a distance of 10 hops in the network the cost of sending the request is
(2 + 1) ∗ 10 = 30 cycles, the cost of memory is 20 + 128/2 = 84 cycles, the cost of sending the data
back is (2 + 1) ∗ 10 + 128/2 = 94 cycles, and the cost of the local cache fill via the node’s bus is
128/2 = 64. The aggregate cost for the cache fill is then (a + b + c + d) = 30 + 84 + 94 + 64 = 272
processor cycles.

We report results for 7 parallel programs. We have run each program on the largest input size
that could be simulated in a reasonable amount of time and that provided good load-balancing for
a 64-processor configuration. Three of the programs are best described as computational kernels:
Gauss, fft, and blu. The rest are complete applications: barnes-hut, cholesky, locusroute, and
mp3d.

Gauss performs Gaussian elimination without pivoting on a 448 × 448 matrix. Fft computes a
one-dimensional FFT on a 65536-element array of complex numbers, using the algorithm described.
Blu is an implementation of the blocked right-looking LU decomposition algorithm presented in
[5] on a 448 × 448 matrix. Barnes-Hut is an N-body application that simulates the evolution of
4K bodies under the influence of gravitational forces for 4 time steps. Cholesky performs Cholesky
factorization on a sparse matrix using the bcsstk15matrix as input. Locusroute is a VLSI standard
cell router using the circuit Primary2.grin containing 3029 wires. Mp3d is a wind-tunnel airflow
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simulation of 40000 particles for 10 steps. All of these applications are part of the Splash suite [21].
Due to simulation constraints our input data sizes for all programs are smaller than what would
be run on a real machine. As a consequence we have also chosen smaller caches than are common
on real machines, in order to capture the effect of capacity and conflict misses. Experiments with
larger cache sizes overestimate the advantages of lazy release consistency, by eliminating a significant
fraction of the misses common to both eager and lazy protocols.

4 Results

Our principal goal is to determine the performance advantage that can be derived on hardware
systems with a lazy release consistent protocol. To that end we begin in section 4.1 by categorizing
the misses suffered by the various applications under eager release consistency. If false sharing is an
important part of an application’s miss rate then we can expect a lazy protocol to realize substantial
performance gains. We continue in section 4.2 by comparing the performance of our lazy protocol
to that of eager release consistency. Section 4.3 then evaluates the performance implications of the
lazier variant of our protocol. This section provides intuition on the qualitative differences between
software and hardware implementations of lazy release consistency.

4.1 Application Characteristics

As mentioned in section 2, the main benefits of the lazy protocols stem from reductions in false
sharing, and elimination of write buffer stall time when data is already cached read-only. In an
attempt to identify the extent to which these benefits might be realized in our application programs,
we have run a set of simulations to classify their misses under eager release consistency. Applications
that have a high percentage of false sharing, or that frequently write miss on read-only blocks will
provide the best candidates for performance improvements under lazy consistency.

Table 2 presents the classification of the eager protocol’s miss rate into the following components:
Cold misses, True-sharing misses, False-sharing misses, Eviction misses, and Write misses. The
individual categories are presented as percentages of the total number of misses. The classification
scheme used is described in detail in [3]. Write misses are of a slightly different flavor from the other
categories: they do not result in data transfers, since they occur when a block is already present in
the cache but the processor does not have permission to write it. As can be seen from the table,
the applications with a significant false miss rate component and the ones that we would expect
to see performance improvements for the lazy protocol are barnes-hut, blocked-lu, locus-route,
and mp3d. The remaining applications (cholesky, fft, and gauss) should realize no gains in the
lazy protocol since they have almost no false sharing. We have decided to evaluate them to examine
whether the lazy protocol is detrimental to performance for applications without false sharing.

4.2 Lazy v. Eager Release Consistency

This section compares our lazy release consistency protocol (presented in section 2) to an eager re-
lease consistency protocol like the one implemented in DASH [17]. The performance of a sequentially
consistent directory-based protocol is also presented for comparison purposes. The relaxed consis-
tency protocols use a 4-entry write buffer which allows reads to bypass writes and coalesces writes
to the same cache line. The eager protocol uses a write-back policy while the lazy protocol uses
write-through with a 16-entry coalescing buffer placed between the cache and the memory system.

Table 3 presents the miss rates of our applications under the different protocols. In all cases
the lazy variants exhibit the same or lower miss rate than the eager implementation of release
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Application Cold True False Eviction Write

Barnes-Hut 6.9% 9.0% 11.4% 62.9% 9.7%
Blocked-LU 8.6% 24.7% 24.1% 12.7% 29.8%
Cholesky 26.1% 5.9% 1.6% 28.0% 38.2%
Fft 13.3% 1.0% 0.0% 54.0% 31.7%
Gauss 7.5% 0.2% 0.1% 75% 17.1%
Locusroute 6.1% 13.0% 33.0% 15.6% 32.3%
Mp3d 3.1% 31.1% 5.7% 13.5% 46.5%

Figure 2: Classification of misses under eager release consistency

Application Miss Rate
Eager Lazy Lazy-ext

Barnes-Hut 0.43% 0.41% 0.40%
Blocked-LU 2.08% 1.94% 1.45%
Cholesky 1.24% 1.24% 1.24%
Fft 0.47% 0.47% 0.47%
Gauss 2.72% 2.72% 2.33%
Locusroute 1.86% 1.24% 1.02%
Mp3d 4.81% 3.78% 2.57%

Figure 3: Miss rates for the different implementations of release consistency

consistency. For the applications with an important false sharing miss rate component, miss rates
are reduced, while for the remaining applications miss rate remains the same.

Figure 4 presents the normalized execution time of the different protocols on our application
suite. Execution time is normalized with respect to the execution time of the sequentially consistent
protocol (the unit line in the graph). The lazy protocol provides a performance advantage on the
expected applications, with the advantage ranging from 5% to 17%. The application with the largest
performance improvement is mp3d. Mp3d has the highest overall miss rate, with false sharing and
write misses being important components of it. Barnes-hut’s performance also improves by 9%
when using a lazy protocol, but unlike all the remaining programs the performance benefits are
derived from a decrease in synchronization wait time. Closer study reveals that this decrease stems
from better handling of migratory data in the lazy protocol.

Blocked LU and Locusroute suffer from false sharing and the lazy nature of the protocol allows
them to tolerate it much better than eager release consistency, resulting in performance benefits of
5% and 13% respectively. Gauss on the other hand has no false sharing, no migratory data, and still
realizes performance improvements of 9% under lazy consistency. We have studied the program and
have found that the performance advantage of lazy consistency stems from the elimination of 3-hop
transactions in the coherence protocol. Sharing in gauss occurs when processors attempt to access a
newly produced pivot row which is in the dirty state. Furthermore this access is tightly synchronized
and has the potential to generate large amounts of contention. The lazy protocol eliminates the need
for the extra hop and reduces the observed contention, thus improving performance. One could
argue that the eager protocol could also use the write-through policy and realize the same benefits.
However this would be detrimental to the performance of other applications. For the lazy protocol,
write-through is necessary for correctness purposes.
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Cholesky and fft have a very small amount of false sharing. Their performance changes little
under the lazy protocol: fft runs a little faster; cholesky runs a little slower.

Figure 5 presents a breakdown of aggregate cycles (over all processors) into four categories: cycles
spent in cpu processing, cycles spent waiting for read requests to return from main memory, cycles
lost due to write-buffer stalls, and cycles lost to synchronization delays. Costs for each category
in each protocol are presented as a percentage of the total costs experienced by the sequentially
consistent protocol. Results indicate that the lazy consistency protocol reduces read latency and
write buffer stalls, but has increased synchronization overhead. For all but one of the programs the
decrease in read latency is sufficient to offset the increase in synchronization time, resulting in net
performance gains.

Two of our application mp3d and locus-route do not obey the release consistency model (they
have unsynchronized references). It is possible that the additional time before a line is invalidated
may hurt the quality of solution in the lazy protocol. To qualify this effect we have experimented
with two versions of mp3d running natively on our SGI. One version uses software caching to capture
the behavior of the lazy protocol in data propagation while the other version captures the behavior
of a sequentially consistent protocol (that of our SGI). We have compared the cumulative (over all
particles) velocity vector after 10 time steps for the two programs. We found that the Y and Z
coordinates of the velocity vector were less than one tenth of a percent apart while the X coordinate
was 6.7% apart between the two versions.

We believe that for properly synchronized programs with false sharing the lazy protocol will
provide an important performance advantage. The same is true for programs with data races whose
quality of solution is not affected by the additional delay in invalidations. For the remaining programs
(which may not be suitable for relaxed consistency models in the first place) the lazy protocol can
match the performance of the eager protocol simply by adding fence operations in the code that
would force the protocol processor to process invalidations at regular intervals.

4.3 How Much Laziness is Required?

Unlike the basic lazy protocol we have evaluated so far, software-coherent systems implementing
lazy release consistency attempt to further postpone the processing of writes to shared data, by
combining writes and processing them at synchronization release points. This “aggressive laziness”
allows unrelated acquire synchronization operations to proceed without having to invalidate cache
lines that have been modified by the releasing processor. As a result programs experience reduced
miss rates and reduced miss latencies. However, moving the processing of write operations to release
points has the side effect of increasing the amount of time a processor spends waiting for the release
to complete. For software systems this is not usually a problem, since write notices cannot be
processed in parallel with computation, and the same penalty has to be paid regardless of when they
are processed. On systems with hardware support for coherence, however, the coherence overhead
associated with writes can be overlapped with the program’s computation, so long as the program
has something productive to do. The aggressively lazy protocol effectively eliminates this overlap,
and can end up hurting performance due to increased synchronization costs.

Figure 6 shows the normalized execution times of our original lazy protocol and its lazier variant.
We will refer to the lazier protocol from now on as lazy-ext. The analysis of overheads for the two
versions of the protocols is shown in figure 7. As in the previous section normalization is done with
respect to the run time and the overheads experienced by a sequentially consistent protocol.

For all but one of the applications the lazier version of the protocol has poorer overall perfor-
mance. This finding stands in contrast to previously-reported results for DSM systems [13], and
is explained by the ability to overlap the processing of non-delayed write notices. As can be seen
from figure 7, the lazy-ext protocol improves the miss latency experienced by the programs, but
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increases the amount of time spent waiting for synchronization. The former is insufficient to offset
the latter, resulting in program performance degradation. The exception to this observation is fft.
Fft computes a 1-D FFT in phases, separated by a barrier. Delaying the processing of writes allows
home nodes to combine the processing of write requests to the same block, since these requests arrive
more-or-less simultaneously at the time of the barrier. There is no increase in synchronization time,
and processors experience shorter delays between barriers since all events between barriers are local.
The observed miss rate for the applications also agrees with the observed miss latency, and is lowest
under the lazy-ext protocol.

We have also run experiment varying the latency, bandwidth, and cache line size parameters for
our systems. We have found that as latency and bandwidth increase the performance gap between
the lazy and eager protocols decreases, with the lazy protocol maintaining a modest performance
advantage over all latency/bandwidth combinations. Varying the cache line size results in predictable
behavior. Longer cache lines increase the performance gap between the lazy and eager protocols
since the induce higher degrees of false sharing. While the trend toward increasing block sizes is
unlikely to go on forever [2], 256-byte cache blocks seem plausible for the near-term future, suggesting
that lazy protocols will become increasingly important. A performance comparison among the lazy
and eager protocols for a future hypothetical machine with high latency (40 cycles memory startup),
high bandwidth (4bytes/cycle), and long cache lines (256 bytes) can be seen in figure 8. Lazy release
consistency can be seen to outperform the eager alternative for all applications. In the applications
where lazy release consistency was important in our earlier experiments, the performance gap has
increased even further. In mp3d the performance gap has widened by an additional 6% over the
original experiment; lazy consistency outperforms the eager variant by 23%. Similar gains were
achieved by the other applications as well. The performance gap between lazy and eager release
consistency has increased by 2 to 4 percentage points when compared with the performance difference
seen in the original experiments. The observations made for the earlier overhead breakdown graphs
continue to apply. As can be seen in figure 9 the lazy protocols trade increased synchronization time
for decreased read latency and write buffer stall time. The additional advantage of laziness for this
future machine stems from increases in cache line size and memory startup latency (as measured in
processor cycles): longer lines increase the potential for false sharing, and increased memory startup
costs increase the cost of servicing read misses.

5 Related Work

Our work builds on the research in programmable protocol processors being pioneered by the Stan-
ford FLASH [16] and Wisconsin Typhoon [20] projects. In comparison to silicon implementations,
dedicated but programmable protocol processors offer the opportunity to obtain significant perfor-
mance improvements with no appreciable increase in hardware cost.

On the algorithmic side, our work bears resemblance to a number of systems that provide shared
memory and coherence in software using a variant of lazy release consistency. Munin [4] collects all
write notices from a processor and posts them when the processor reaches a synchronization release
point. ParaNet (Treadmarks) [14] relaxes the Munin protocol further by postponing the posting
of write notices until the subsequent acquire. Both Munin and ParaNet are designed to run on
networks of workstations, with no hardware support for coherence.

Petersen and Li [19] have presented a lazy release consistent protocol for small scale multipro-
cessors with caches but without cache coherence. Their approach posts notices eagerly, using a
centralized list of weak pages, but only processes notices at synchronization acquire points. The
protocol presented in this paper is most closely related to a protocol developed for software coher-
ence on large-scale NUMA multiprocessors [15]. Both protocols use the concept of write notices
and of a distributed directory. Unlike the software protocol, however, the one presented here works
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better when it does not postpone posting notices. It has also been modified to execute coherence
operations and application code in parallel, and to deal with the fact that a processor can lose a
block due to capacity and conflict evictions.

Our work is also similar to the delayed consistency protocol and invalidation scheduling work
of Dubois et al. [7, 8]. Both protocols (ours and theirs) attempt to reduce the impact of false
sharing in applications. Their work however assumes a single owner and requires a processor to
obtain a new copy on write hits to a stale block.2 Their protocol incurs longer delays for write
accesses to falsely-shared blocks and increases the application’s miss rate. Their experiments also
assume infinite caches, which exaggerate the importance of coherence misses, and they use miss
rate as the measure of performance. As we have shown in section 4.3, miss rate is only indicative
of program performance and can sometimes be misleading. Excessively lazy protocols can actually
hurt performance, even though they improve the application’s miss rate.

The formalization of data-race-free-1 by Adve and Hill [1] allows the same optimizations as used
in our protocol. We focus however on the hardware design and performance evaluation aspects of
the protocol, while they concentrate in formally defining the behavior of the consistency model for
different access patterns.

False sharing can be dealt with in software using compiler techniques [9]. Similarly, the latency of
write misses on blocks that are already cached read-only can be reduced by a compiler that requests
writable copies when appropriate [22]. These techniques are not always successful, however. The
former must also be tuned to the architecture’s block size, and the latter requires a load-exclusive
instruction. We view our protocol as complementary to the work a compiler would do. If the compiler
is successful then our protocol will incur little or no additional overhead over eager release consistency.
If, however, the application still suffers from false sharing, or from a significant number of write-
after-read delays, then lazy release consistency will yield significant performance improvements.

6 Conclusions

We have shown that adopting a lazy consistency protocol on hardware-coherent multiprocessors can
provide substantial performance gains over the eager alternative on a variety of applications. For
systems with programmable protocol processors, the lazy protocol requires only minimal additional
hardware cost (basically storage space) with respect to eager release consistency. We have intro-
duced two variants of lazy release consistency and have shown that on hardware-based systems,
delaying coherence transactions helps only up to a point. Delaying invalidations until a synchro-
nization acquire point is almost always beneficial, but delaying the posting of write notices until a
synchronization release point tends to move background coherence operations into the critical path
of the application, resulting in unacceptable synchronization overhead.

We have also conducted experiments in an attempt to evaluate the importance of lazy release
consistency on future architectures. We find that as miss latencies and cache line sizes increase,
the performance gap between lazy and eager release consistency increases as well. We are currently
investigating the interaction of lazy hardware consistency with software techniques that reduce the
amount of false sharing in applications. As program locality increases the performance advantage
of lazy protocols will decrease, as a direct result of the decrease in coherence transactions required.
Our results indicate, however, that lazy protocols can improve application performance even in
the absence of false sharing, e.g. by replacing 3-hop transactions with 2-hop transactions, as in
Gauss, or by eliminating write-buffer stalls due to write-after-read operations, as in Barnes-Hut.
Moreover, since most parallel applications favor small cache lines while the current architectural

2Stale blocks are similar to weak blocks in our protocol.
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trend is towards longer lines, we believe that lazy consistency will provide significant performance
gains over eager release consistency for the foreseeable future.
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