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Abstract

Relaxed memory consistency models, such as release consis-

teracg, were introduced in order to reduce the impact of re-

mote memory access latency in both software and hardware

distributed shared memory (DSM). However, in a software

DSM, it is also important to reduce the number of mes-

sages and the amount of data exchanged for remote mem-

ory access. Lazy release consistenc~ is a new algorithm for

implementing release consistency that lazily pulls modifica-

tions across the interconnect only when necessary. Trace-

driven simulation using the SPLASH benchmarks indicates

that lazy release consistency reduces both the number of

messages and the amount of data transferred between pro-

cessors. These reductions are especially significant for pro-

grams that exhibit false sharing and make extensive use of

locks.

1 Introduction

Over the past few years, researchers in hardware distributed

shared memory (DSM) have proposed relaxed memory con-

sistency models to reduce the latenc~ associated with re-

mote memory accesses [1, 8, 9, 10, 14]. For instance, in

release consistency (RC) [9], writes to shared memory by

processor pl need to be performed (become visible) at an-

other processor pz only when a subsequent release of pl

performs at pz. This relaxation of the memory consistency

model allows the DASH implementation of RC [12] to conl-

bat memory latency by pipelining writes to shared memory

(see Figure 1). The processor is stalled only when execut-

ing a release, at which time it must wait for all its previous

writes to perform.

In software DSMS, it is also important to reduce the num-

ber of messages exchanged. Sending a message in a software

DSM is more expensive than in a hardware DSM, because

it may involve traps into the operating system kernel, inter-

rupts, context switches, and the execution of several layers
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Figure 1: Pipelining Remote Memory Accesses in DASH.

of networking software. Ideally, the number of messages

exchanged in a software DSM should equal the number of

messages exchanged in a message passing implementation of

the same application. Therefore, Munin’s write-shared pro-

tocol [6], a software implementation of RC, buffers writes

until a release, instead of pipelining them as in the DASH

implement ation. At the release, all writes going to the same

destination are merged into a single message (see Figure 2).

Even Munin’s write-shared protocol may send more mes-

sages than a message passing implementation of the same

application. Consider the example of Figure 3, where pro-

cessors PI through P1 repeatedly acquire the lock 1, write the

shared variable x, and then release 2. If an update policy

is used in conjunction with Munin’s write-shared protocol,

and z is present in all caches, then all of these cached copies

are updated at every release. Logically, however, it suffices

to update each processor’s copy only when it acquires 1.

This results in a single message exchange per acquire, as

in a message passing implementation. This problem is not

peculiar to the use of an update policy. Similar examples

can be constructed for an inwdidate policy.

Lazg reiease consistency (LRC) is a new algorithm for

implementing RC, aimed at reducing both the number of

messages and the amount of data exchanged. Unlike ea-

ger algorithms such as Munin’s write-shared protocol, Zazg

algorithms such as LRC do not make modifications glob-

ally visible at the time of a release. Instead, LRC guaran-
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Figure 2: Merging of Remote Memory Updates in Munin.
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Figure 3: Repeated Updates of Cached Copies in Eager RC.

tees only that a processor that acquires a lock will see all

modifications that “precede” the lock acquire. The term

“preceding” in this context is to be interpreted in the tran-

sitive sense: informally, a modification precedes an acquire,

if it occurs before any release such that there is a chain

of release-acquire operations on the same lock, ending with

the current acquire (see Section 4 for a precise definition).

For instance, in Figure 3, all modifications that occur in

program order before any of the releases in PI through PS

precede the lock acquisition in P4. With LRC, modifica-

tions are propagated at the time of an acquire. Only the

modifications that “precede” the acquire are sent to the ac-

quiring processor. The modifications can be piggybacked on

the message that grants the lock, further reducing message

traffic. Figure 4 shows the message traffic in LRC for the

same shared data accesses as in Figure 3. / and z are sent

in a single message at each acquire.

By not propagating modifications globally at the time of

the release, and by piggybacking data movement on lock

transfer messages, LRC reduces both the number of mes-

sages and the amount of dat a exchanged. We present the re-

sults of a simulation study, using the SPLASH benchmarks,

that confirms this intuition. LRC is, however, more complex

to implement than eager RC because it must keep track of

the “precedes” relation. We intend to implement LRC to

evaluate its runtime cost. The message and data reductions

seen in our simulations seem to indicate that LRC will out-

perform eager RC in a software DSM environment.

The outline of the rest of this paper is as follows. In

Section 2, we state the definition of RC. In Section 3, we

present an eager implementation of RC based on Munin’s

write-shared protocol. In Section 4, we define LRC and out-

line its implementation. In Section 5, we describe a compar-

ison through simulation of eager RC and LRC. We briefly

discuss related work in Section 6, and we draw conclusions

and explore avenues for further work in Section 7.
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Figure 4: Message Traffic in LRC.

2 Release Consistency

Release consistency (RC) [9] is a form of relaxed memory

consistency that allows the effects of shared memory ac-
cesses to be delayed until certain specially labeled accesses

occur. RC requires shared memory accesses to be labeled

as either ordinary or special. Within the special category,

accesses are divided into those labeled sync and nsync, and

sync accesses are further subdivided into acquires and re-

leases.

Definition 2.1 A system is release consistent it:

1.

2.

3.

Before an ordinary access is allowed to perform with re-

spect to any other processor, all previous acquires must

be performed.

Before a release is aIlowed to perform with respect to

any other processor, all previous ordinary reads and

writes must be performed.

Special accesses are sequentially consistent with respect

to one another.

A write is performed with respect to another processor when

reads by that processor return the new write’s (or a subse-

quent write’s) value. Reads are performed with respect to

another processor when a write issued by that processor can

no longer affect the value returned by the read. Accesses are

performed when they are performed with respect to all pro-

cessors in the system.

Properly iaheled programs [9] produce the same results

on RC memory as they would on sequentially consistent

memory [11]. Informally, a program is properly labeled if

there are “enough” accesses labeled as acquires or releases,

such that, for all legal interleavings of accesses, each pair

of conflicting ordinary accesses is separated by a release-

acquire chain. Two accesses conflict if they reference the

same memory location, and at least one of them is a write.

RC implementations can delay the effects of shared mem-

ory accesses as long as they meet the constraints of Defini-

tion 2.1.

3 Eager Release Consistency

We base our eager RC algorithm on Munin’s write-shared
protocol [6]. A processor delays propagating its modifica-
tions to shared data until it comes to a release. At that time,
it propagates the modifications to all other processors that
cache the modified pages. For an invalidate protocol, this
simply entails sending invalidations for all modified pages
to the other processors that cache these pages. In order
to limit the amount of data exchanged, an update proto-

col sends a difl of each modified page to other cachers. A

difl describes the modifications made to the page, which

are then merged in the other cached copies. In either case,

the release blocks until acknowledgments have been received

from all other cachers.

No consistency-related operations occur on an acquire.

The protocol locates the processor that last executed a re-

lease on the same variable, and the resulting value is sent

from the last releaser to the current acquirer.

On an access miss, a message is sent to the directory

manager for the page. The directory manager forwards the

request to the current owner, and the current owner sends

the page to the processor that incurred the access miss.
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4 Lazy Release Consistency

In LRC, the propagation of modifications is further post-

poned until the time of the acquire. At this time, the ac-

quiring processor determines which modifications it needs

to see according to the definition of RC. To do so, LRC

uses a representation of the happen ed-before-l partial or-

der introduced by Adve and Hill [2]. The happened-before-l

partial order is a formalization of the “preceding” relation

mentioned in Section 1.

4.1 The happened-before-l Partial Order

We summarize here the relevant aapects of the definitions

of happeraerf-bejore- 1 [2].

Definition 4.1 Shared memory accesses are partially or-

dered by happened-before-1, denoted ‘~’, defined as follows:

● If al and a2 are accesses on the same processor, and

al occurs before az in program order, then al ’21 a2.

● If al is a release on processor pl, and a2 w an acquire

on the same memory location on processor p2, and a2

returns the value written by al, then al ’11 a2.

hbl hbl
● If al ’31 a2 and a2 + a3, then al - a3

RC requires that before a processor may continue paat an

acquire, all shared accesses that precede the acquire accord-

ing to ’31 must be performed at the acquiring processor.

LRC guarantees that this property holds by propagating

write- notgces on the message that effects a release-acquire

pair. A write-notice is an indication that a page has been

modified in a particular interval, but it does not contain

the actual modifications. Write-notices and actual values

of modifications may be sent t different times in different

messages.

4.2 Write-Notice Propagation

We divide the execution of each processor into distinct in-

teruak, a new interval beginning with each special access

executed by the processor. We define a happens-kfore-l
partial order between intervals in the obvious way: an in-

terval il precedes an interval 22 according to +‘bl, if aIl ac-

cesses in i] precede all accesses in iz according to ’11. An

interval is said to be performed at a processor if all modi-

fications made during that interval have been performed at

that processor.

Let VP(i) be the vector timestamp [15] for interval i of

processor p. The number of elements in the vector VP(i) is

equal to the number of processors. The entry for processor

p in Vp(i) is equal to i. The entry for processor g # p in

VP(i) denotes the most recent interval of processor g that

has performed at p.
On an acquire, the acquiring processor, p, sends its cur-

rent vector timestamp VP to the previous relesswr, q. Pro-

cessor q uses this information to send p the write-notices

for all intervals of all processors that have performed at g

but have not yet performed at p. Releases are purely local

operations in LRC!, no messages are exchanged.

4.3 Data Movement Protocols

4.3.1 Multiple Writer Protocols

Both Munin and LRC allow rrsuhiple-writer protocols. Mul-

tiple processors can write to different parts of the same page

concurrently, without intervening synchronization. This is

in cent rast to the exclusive-writer protocol used, for in-

st ante, in DASH [9], where a processor must obtain exclu-

sive access to a cache line before it can be modified. Experi-

ence with Munin [6] indicates that multiple-writer protocols

perform well in software DSMS, because they can handle

false sharing without generating large amounts of message

traffic. Given the large page sizes in software DSMS, false

sharing is an important problem. Exclusive-writer protocols

may cause falsely shared pages to “ping-pong” back and

forth between different processors. Multiple-writer proto-

cols allow each processor to write into a falsely shared page

without any message traffic. The modifications of the dif-

ferent processors are later merged using the difls described

in Section 3.

4.3.2 Invalidate vs. Update

In the case of an invalidate protocol, the acquiring processor

invalidates all pages in its cache for which it received write-

notices. In the caae of an update protocol, the acquiring

processor updates those pages. Let i be the current interval.

For each page in the cache, difls must be obtained from all

concurrent lust modifiers. These are all intervals j, such that

j ’31 i, the page waa modified in interval j, and there is no

intervid k, such that j ~21 k ‘S1 i, in which the modification

from interval j was overwritten.

4.3.3 Access Misses

On an access miss, a copy of the page may have to be re-

trieved, as well as a number of difls. The modifications sum-

marized by the difls are then merged into the page before

it is accessed.

On an access miss during interval i, dtfls must be obtained

for all intervals j, such that j ‘A i, the missing page was

modified in interval j, and there is no interval k, such that

J ’21 k ’21 i, in which the modification from intervaI j was
overwritten.

If the processor stiIl holds an (invalidated) copy of the

page, LRC does not send the entire page over the intercon-

nect. The write-notices cent ain all the information neces-

sary to determine which deffs need to be applied to this copy

of the page in order to bring it up-to-date. The happened-

before-1 partial order specifies the order in which the difls

need to be applied. This optimization reduces the amount

of data sent.

5 Simulation

We present the results of a simulation study baaed on multi-

processor traces of five shared-memory application programs

from the SPLASH suite [17]. We measured the number of

messages and the amount of data exchanged by each pro-

gram for an execution using each of four protocols: lazy

update (LU), lazy invalidate (LI), eager update (EU), and

eager invalidate (EI). We then relate the communication
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m = # concurrent last modifiers for the missing page

h = # other concurrent last modifiers for any local page

c = # other cachers of the page

n = # processors in system

p = # pages in system

u = ~~=1 (# other cachers of pages modified by i)

~ = ~~=1 (# excess invalidators of page i)

Table 1: Shared Memory Operation Message Costs

behavior to the shared memory access patterns of the ap-

plication programs.

5.1 Methodology

A trace was generated from a 32-processor execution of

each program using the Tango multiprocessor simulator [7].

These traces were then fed into our protocol simulator. We

simulated page sizes from 512 to 8192 bytes.

We assume infinite caches and reliable FIFO communica-

tion channels. We do not assnme any broadcast or multicast

capability of the network.

5.2 Message Counts

The SPLASH programs use barriers and exclusive locks for

synchronization. Communication occurs on barrier arrival

and departure, on lock and unlock, and on an access miss.

Table 1 shows the message count for each of these events

under each of the protocols.

A miss costs either two or three messa~es for the eager

protocols, depending on whether or not the directory man-

ager has a valid copy of the page (see Section 3). For the

lazy protocols, a miss requires collecting cfifls from the con-

current last modifiers of the page (see Section 4.3.2).

For a lock operation, three messages are used by all four

protocols for finding and transferring the lock. In addition,

in LU, the new lock holder collects all the d~fls necessary

to bring its cached pages up-to-date, causing 211 additional

messages. No extra messages are required at this time for

LI, because the invalidations are piggybacked on the lock

transfer message. Also, no additional messages are required

for EU and EI.

On unlocks, the eager protocols send write-notices to all

cachers of locally modified pages, using 2C messages. The

lazy protocols do not communicate on unlocks.

Barriers are implemented by sending an arrival message

to the barrier master and waiting for the return of an exit

message. Consequently, 2(n — 1) messages are used to imple-

ment a barrier. In addition, both update protocols require

2U messages to send updates to all processors caching modi-

fied pages. The LI protocol requires no additional messages,

because invalidations are piggybacked on the messages used

for implementing the barrier. The EI protocol may require

“1
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Figure 5: LocusRoute Messages.

a small number of additional messages v to resolve multiple

invalidations of a single page.

5.3 SPLASH Program Suite

5.3.1 LocusRoute

LocusRoute is a VLSI cell router. The major data structure

is a cost grid for the cell, a cell’s cost being the number

of wires already running through it. Work is allocated to

processors a wire at a time. Synchronization is accomplished

almost entirely through locks that protect access to a central

task queue.

Data movement in LocusRoute is largely migratory [18]:

locks dominate the synchronization, and data moves accord-

ing to lock accesses. As page size increases, false sharing

also becomes important. Both of these factors favor lazy

protocols.

Figures 5 and 6 show LocusRoute’s performance. The

lazy protocols reduce the number of messages and the

amount of data exchanged, for all page sizes.

5.3.2 Cholesky Factorization

Cholesky performs the symbolic and numeric portions of a

Cholesky factorization of a sparse positive definite matrix.

Locks are used to control access to a gIobal taak queue and

to arbitrate access when simultaneous supernodal modifica-

tions attempt to modify the same column. No barriers are

used.

Data motion in Cholesky is largely migratory, as in

LocusRout e. The resulting performance of Cholesky is

therefore also similar to that of Locus Rout e: Figures 7 and 8

show that the lazy protocols reduce the number of messages

and the amount of data exchanged, for all page sizes.
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5.3.3 MP3D

MP3D simulates rarefied hypersonic airflow over an object us-

ing a Monte Carlo algorithm. Each timestep involves several

barriers, with locks used to control access to global event

counters.

The message traffic for MP3D is dominated by access

misses. Figures 9 and 10 show MP3D’S performance. The

lazy protocols exchange less data than the eager ones, be-

cause they only need to send difls on an access miss and not

full pages, as do the eager protocols. The update protocols

exchange fewer messages, because they incur fewer access

misses.

5.3.4 Water

‘dater performs an N-body molecular dynamics simula-

tion, evaluating forces and potentials in a system of wa-

ter molecules in the liquid state. At each timestep, every

molecule’s velocity and potential is computed from the in-

fluences of other molecules within a spherical cutoff range.

Several barriers are used to synchronize each timestep, while

locks are used to control access to a global running sum and

to each molecule’s force sum.

Of the five benchmark programs, Hater has the least com-

munication. Figures 11 and 12 show the message and data

traffic for Water. While the lazy protocols use only slightly

fewer messages than eager protocols for large page sizes,

their data totals are significantly lower because they can of-

ten avoid bringing an entire page across the network on an

access miss.

Figure 7: Cholesky Messages.
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5.3.5 Pthor

Pthor is a parallel logic simulator. The major data struc-

tures represent logic elements, wires between elements, and

per-processor work queues. Locks are used to protect access

to all three types of data structures, Barriers are used only

when deadlock occurs and all task queues are empty.

In Pthor, each processor has a set of pages that it mod-

ifies. However, these pages are also frequently read by the

other processors. Under an invalhlation protocol, this causes

a large number of invalidations and later reloads.

Figures 13 and 14 show Pthor’s performance. Data totals

for EI are particularly high, because frequent reloads cause

the entire page to be sent. The message count for LI is

higher than for LU, because LI has more access misses.

5.4 Summary

The SPLASH programs can be divided into two categories

based on their synchronization and sharing behavior. The

first category is characterized by heavy nse of barrier syn-

chronization. This category includes the MP3D and Water

programs. These programs performed poorly with invali-

date protocols and large page sizes. Although barriers re-

sult in nearly the same number of messages under both eager

and lazy protocols, even these programs have enough lock

synchronization for the lazy protocols to reduce the number

of messages and the amount of data exchanged.

The second category is characterized by migratory access

to data that is controlled by locks. This category includes

LocusRoute, Cholesky and Pthor. In Cholesky and Pthor,

the locks protect centralized work queues, while the locks

in LocusRoute protect access to individual cost array ele-

ments. The use of locks tends to cause the sharing patterns

to closely follow synchronization. Since the lazy protocols

Figure 14: Pthor Data.

move data according to synchronization, they handle this

type of synchronization much better than eager protocols.

LU performed well for both categories of programs. In

contrast, EU often performed worse than the invalidate pro-

tocols, because it does not handle migratory data very well.

LU sends fewer messages than EU for migratory data be-

cause updates are only sent to the next processor to acquire

the lock that controls access to the data.

In all of the programs, the number of processors sharing

a page is increased by false sharing. Multiple-writer RC

protocols reduce the impact of false sharing by permitting

ordinary accesses to a page by different processors to be

performed concurrently. However, the eager protocols still

perform communication at synchronization points between

processors sharing a page, but not the data within the page.

Lazy protocols eliminate this communication, because pro-

cessors that falsely share data are unlikely to be causally

related. This observation is consistent with the results of

our simulations.

6 Related Work

Ivy [13] was the first page-based distributed shared memory
system. The shared memory implemented by Ivy is sequen-
tially consistent, and does not allow multiple writers.

Clouds [16] uses program-based segments rather than

pages as the granularity of consistency. In addition, Clouds

permits segments to be locked down at a single processor to

prevent “ping-ponging”.

Release consistency was introduced by Gharachorloo et
al. [~]. It is a refinement of weak consistency, defined by

Dubois and Schenrich [8]. The DASH multiprocessor takes

advantage of release consistency by pipelining remote mem-

ory accesses [12]. Pipelining reduces the impact of remote

19



memory access latency on the processor.

Munin [6] was the first software distributed shared mem-

ory system to use release consistency. Munin’s inlplementa-

tion of release consistency merges updates at release time,

rather than pipelining them, in order to reduce the num-

ber of messages transferred between processors. Munin uses

multiple consistency protocols to further reduce the number

of messages.

Ahamad et al. defined a relaxed memory model called

causal memory [3]. Causal memory differs from RC be-

cause conflict ing pairs of ordinary memory accesses est ab-

lish causal relationships. In contrast, under RC, only special

memory accesses establish causal relationships.

Entry consistency, defined by Bershad and Zekauskas [5],

is another related relaxed memory model. EC differs from

RC because it requires all shared data to be explicitly associ-

ated with some synchronization variabIe. As a resuIt, when

a processor acquires a synchronization variable, an EC im-

plementation only needs to propagate the shared data asso-

ciated with the synchronization variable. EC, however, re-

quires the programmer to insert additional synchronization

in shared memory programs, such as the SPLASH bench-

marks, to execute correctly on an EC memory. Typically,

RC does not require additional synchronization.

7 Conclusions

The performance of software DSMS is very sensitive to the

number of messages and the amount of data exchanged to

create the shared memory abstraction. We have described

a new algorithm for implementing release consistency, laz~

release consistency, aimed at reducing both the number of

messages and the amount of data exchanged. Lazy release

consistency tracks the causal dependencies between writes,

acquires, and releases, allowing it to propagate writes lazily,

only when they are needed.

We have used trace-driven simulation to compare lazy re-

lease consistency to an eager algorithm for implementing re-

lease consistency, based on Munin’s write-shared protocol.

Traces were collected from the programs in the SPLASH

benchmark suite, and both update and invalidate protocols

were simulated for lazy and eager RC. The simulations con-

firm that the number of messages and the amount of data

exchanged are generally smaller for the lazy algorithm, es-

pecially for programs that exhibit false sharing and make

extensive use of locks. Further work will include an imple-

mentation of lazy release consistency to assess the runtime

cost of the algorithm.
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