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Abstract

This work develops a novel face-based matcher composed of a multi-resolution hierarchy of patch-based feature

descriptors for periocular recognition - recognition based on the soft tissue surrounding the eye orbit. The novel

patch-based framework for periocular recognition is compared against other feature descriptors and a commercial

full-face recognition system against a set of four uniquely challenging face corpora. The framework, hierarchical

three-patch local binary pattern, is compared against the three-patch local binary pattern and the uniform local binary

pattern on the soft tissue area around the eye orbit. Each challenge set was chosen for its particular non-ideal face

representations that may be summarized as matching against pose, illumination, expression, aging, and occlusions.

The MORPH corpora consists of two mug shot datasets labeled Album 1 and Album 2. The Album 1 corpus is the

more challenging of the two due to its incorporation of print photographs (legacy) captured with a variety of cameras

from the late 1960s to 1990s. The second challenge dataset is the FRGC still image set. Corpus three, Georgia Tech

face database, is a small corpus but one that contains faces under pose, illumination, expression, and eye region

occlusions. The final challenge dataset chosen is the Notre Dame Twins database, which is comprised of 100 sets of

identical twins and 1 set of triplets. The proposed framework reports top periocular performance against each dataset,

as measured by rank-1 accuracy: (1) MORPH Album 1, 33.2%; (2) FRGC, 97.51%; (3) Georgia Tech, 92.4%; and (4) Notre

Dame Twins, 98.03%. Furthermore, this work shows that the proposed periocular matcher (using only a small section

of the face, about the eyes) compares favorably to a commercial full-face matcher.

1 Introduction
The field of biometrics has made significant accomplish-

ments over the last 20 years. Biometric systems are now

deployed in dozens of countries for a host of purposes

from national identification to access, to amusement

parks, to automatic log in for computing devices. As the

technology matures, users demand better performance

against non-ideal (poor) biometric signals, e.g., border

crossing systems should be able to capture the biometric

signal of the iris or face while patrons are moving or com-

puters should be able to authenticate patron credentials

10 years or more after enrollment without the require-

ment of template updating. Deployers as well as end users

of biometric systems demand more flexibility in acquir-

ing the biometric signal and better performance against

matching to biometric templates that differ due to pose,

illumination, expression, and aging.
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Non-ideal biometrics, which is also known as uncon-

strained biometrics, are systems that do not force

(constrain) the user to submit their biometric signal (face,

iris, fingerprint, etc.) in a purposed manner. Further-

more, they are systems that can perform robust matching

against templates that have been acquired under non-ideal

or bad conditions. Non-ideal face recognition is recog-

nition systems that are capable of matching well against

probe images that may exhibit poor image quality, low

image resolution, poor lighting, occlusions and disguises,

heavy pose variation, and/or moderate to severe expres-

sion or face contortions. Non-ideal face must also contend

with aging and the challenges of matching under aging as

well as dealing with the case of matching in the presence

of extremely similar faces, i.e., discriminating between

identical twins.

Periocular-based recognition has gained increasing

attention from biometric researchers recently. Park et al.

[1] studied the use of the periocular region as a useful

© 2013 Mahalingam and Ricanek ; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Table 1 Rank-1match performance on challenging datasets

Datasets (rank-1 accuracy) Face recognition literature (%) COTS (%) Proposed (%)

Georgia Tech DB [12] 96.60 [16] 99.73 92.42

Twins Face DB [13] 96.24a [17] 98.04 98.03

MORPH Album1 [15] 50.4b [18] 51.60 33.20

FRGC [14] # 99.65 97.51

The table lists the rank-1 accuracies obtained for Georgia Tech face database, Twins face database, MORPH Album 1, and FRGC database against the literature, COTS

matcher used in this work, and the proposed algorithm. The number sign indicates that [14] performance measures against the FRGC are based on verification rate of

98 at 0.1% FAR. aThe results are from both identical and fraternal twins for [17], while our approach used only the identical twins. bAverage of rank-1 accuracies of all

age groups with an age gap of 0 to 5 years between the probe and gallery.

biometric when iris recognition fails. The authors pro-

posed a matching scheme with three descriptors: gradient

orientation, local binary pattern (LBP), and SIFT. Their

experimental comparison of periocular-based recognition

with that of face recognition under occlusion showed

superior performance of the periocular recognition sys-

tem. Similarly, [2] and [3] illustrated the effectiveness of

periocular-based features for recognition using images

focused on capturing the iris. Both the periocular skin

texture [4] and its appearance cues [5,6] were used for

recognition. Padole and Proenca [7] studied the perfor-

mance of a periocular-based recognition system under the

influence of scale, pose, occlusion, etc. and concluded that

the performance of the recognition system degrades with

the presence of such covariates. Xu et al. [8] proposed

an age-invariant recognition system based on periocular

features against a small dataset of longitudinal images.

Periocular features have also been used to identify

other soft biometric cues such as gender [9], which

showed the use of shape-based features of the eye-

brow for biometric recognition and for gender classifi-

cation purposes. Studies indicate the usefulness of such

features for the task of verification by humans using

near-infrared periocular images [10,11]. Although prior

works have studied the performance of periocular-based

features under various scenarios, no work has focused

on recognition performance in challenging real-world

datasets that include images captured under extreme con-

ditions, e.g., occlusions, poor lighting, being scanned

from hard copy photographs, pose variations, aging,

or twins.

In this work, we present a multi-scale, center-

symmetric, patch-based LBP framework for recognition

using four distinctive and challenging datasets. The pro-

posed framework allows for effective description of the

periocular features and matching them. The framework is

evaluated on the Georgia Tech face database [12], Notre

Dame (ND) Twins face database [13], FRGC [14], and the

MORPH Album 1 database [15]. These datasets include

face images with variations in pose, illumination, expres-

sions, eyewear, and some motion blur. The images of

the Georgia Tech and the ND Twins database are digi-

tal photographs, while the images of MORPH Album 1

are scanned legacy photographs. MORPH Album 1 con-

tained images of heavy occlusions across the face, poor

(low) contrast and dynamic range, yellowing and cracking

of source photographs, and many more challenges. Of the

four datasets, MORPH Album 1 was the most difficult for

all the algorithms tested. Our work analyzes the effective-

ness of LBP-based feature descriptors on such datasets for
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Figure 1 Computation of three-patch LBP code for a pixel. The figure shows the computation of three-patch LBP code for a pixel.
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Figure 2 Computation of hierarchical 3P-LBP code for an image. The figure shows the computation of H-3P-LBP for an image. A Gaussian

pyramid is constructed, and the 3P-LBP is computed at each scale and used to form a ns × d representation.

periocular recognition. Our work differs from other ear-

lier works in both the framework and a detailed analysis

on a very difficult legacy dataset, MORPH Album 1. Our

detailed analysis on the performance of both commer-

cial and noncommercial recognition algorithms provide

an insight on possible improvements to existing algo-

rithms to better learn facial features in order to improve

recognition under non-ideal conditions. Table 1 lists the

rank-1 face recognition accuracies obtained in literature

for the images from these datasets and the rank-1 perioc-

ular recognition accuracies obtained from the proposed

framework on these datasets. The results indicate that the

proposed framework provides a performance comparable

to those of the commercial full-face recognition system

used in this work.

The rest of the paper is organized as follows: Section 2

provides a detailed explanation of the proposed periocular

recognition framework and the hierarchical three-patch

local binary pattern (H-3P-LBP). Section 3 addresses the

experiments conducted under covariates, including the

experimental setup, the datasets used, the preprocessing

steps, and the results. Section 4 provides the conclusions

drawn and future work.

2 Periocular biometrics
The task of recognition (face or periocular) generally

includes the following sequence of steps: preprocessing

(image alignment, noise removal, illumination correction,

etc.), feature extraction, and matching. For this study, we

compute the periocular feature descriptors using uniform

LBP [19], 3P-LBP [20], and its variant hierarchical three-

patch local binary pattern (H-3P-LBP) (proposed). The

uniform LBP follows a pixel-based approach with respect

to computing the LBP code of a pixel and its neighbor-

ing sampling points, while the other two descriptors are

patch-based approaches. Patch-based computation of tex-

ture patterns encodes the similarities between neighbor-

ing patches of pixels and thus captures information which

is complementary to that of pixel-based descriptors. The

patch-based textures treat colored regions, edges, lines,

and complex textures in a unified way unlike pixel-based

techniques.

2.1 Feature description using hierarchical 3P-LBP

The H-3P-LBP extends the 3P-LBP operator [20] by

computing over different scales (multi-resolutions) of an

image. The 3P-LBP of a pixel is computed by comparing

the values of three patches to produce a single bit value

in the code assigned to the pixel. 3P-LBP for each pixel

is computed by considering a window of region centered

on the pixel and considering m sampling points within a

radius of r pixels. Unlike LBP, the 3P-LBP approach con-

siders m patches around m neighboring pixels that are

distributed uniformly around the center patch. The patch-

based comparison in 3P-LBP is done by comparing the

value of the center patch with a pair of patches that are

α patches apart along the circle. The value of a single bit

is set according to the similarity of the two patches with

Figure 3 Sample images from the datasets. The figure shows the sample images from Georgia Tech, Twins, and MORPH Album 1 datasets,

respectively. The images show variations in pose, illumination, image artifacts, expressions, etc.
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Figure 4 Image alignment and extraction of the periocular region from the face image. The figure shows the image alignment process and

the extraction of the periocular region from the aligned face image.

the center patch. The resulting code has m bits per pixel.

Figure 1 shows the computation of 3P-LBP code for a

pixel.

The 3P-LBP is given by the following equation:

3P-LBPr,m,w,α(p)=

m
∑

i

(f (d(Ci,Cp)−d(Ci+α mod m,Cp))2
i

(1)

whereCi andCi+α are two patches along the ring andCp is

the central patch. The function d(., .) is any distance func-

tion between two patches (e.g., L2 norm of their gray level

differences), and f is defined as

f (x) =

{

1 if x ≥ τ

0 if x < τ
(2)

where τ is set to a value slightly larger than zero in order

to provide stability in uniform regions as indicated in [21].

For a given image I, a Gaussian pyramid with s levels is

constructed to form the multi-scale representation of the

image, with I being the finest scale in the Gaussian pyra-

mid. The H-3P-LBP descriptor is computed by applying

the 3P-LBP operator at each level of the image pyramid.

The final H-3P-LBP descriptor H(I) is obtained by com-

bining the 3P-LBP descriptors from each level into a final

feature matrix. The hierarchical 3P-LBP H(I) maps the

image I into a Rns×d representation, where d is the length

of the 3P-LBP code per pixel, and ns is the sum of the

number of codes obtained from each image scale. In our

experiments, we construct the image at three different

scales. Figure 2 shows the computation of H-3P-LBP for

an image.

The multi-scale 3P-LBP can be extracted either by vary-

ing the radii or by extracting 3P-LBP from different image

scales. However, the first approach has its own shortcom-

ings in the way the conventional 3P-LBP is applied to

the image. The conventional approach typically extracts

microstructures (edges, corners, spots, etc.) of the images,

while the hierarchy allows for the extraction of both

micro- and macro-structures [22], which are required for

effective texture extraction and discrimination. The stabil-

ity of 3P-LBP decreases with the increase in neighborhood

radii due to minimal correlation of the sampling points

with the center pixel. Also, the sparse sampling by 3P-LBP

from a large neighborhood radii may not result in an ade-

quate representation of the two-dimensional image signal.

Table 2 Rank-1 accuracies ND Twins effect of periocular image size and image scale

Pyramid levels (P), image size (S× S) Approach Left (%) Right (%) α-Fusion (%)

P = 4, S = 256 H-3P-LBP 96.60 98.62 98.11

LBP 52.83 56.23 66.79

P = 4, S = 128 H-3P-LBP 96.60 98.62 98.11

LBP 52.83 56.23 67.30

P = 3, S = 256 H-3P-LBP 88.72 84.85 90.49

LBP 55.56 51.01 65.32

P = 3, S = 128 H-3P-LBP 97.42 98.33 98.03

LBP 53.18 52.73 70.15

P = 3, S = 100 H-3P-LBP 86.95 85.52 89.8

LBP 56.31 51.94 64.90

P = 1, S = 256 3P-LBP 96.98 96.60 98.11

P = 1, S = 128 3P-LBP 96.98 96.60 98.11

The accuracies for LBP are achieved using the periocular image from the finest scale of the image pyramid. The 3P-LBP was achieved with P = 1 (the last two rows of

the table). Values in italics are the best achieved results.



Mahalingam and Ricanek EURASIP Journal on Image and Video Processing 2013, 2013:36 Page 5 of 13

http://jivp.eurasipjournals.com/content/2013/1/36

Table 3 Rank-1 accuracies for the left and right periocular

regions

Datasets Eye H-3P-LBP (%) 3P-LBP (%) LBP (%)

MORPH Album1 Left 22.77 20.62 2.22

Right 29.81 26.77 3.11

Georgia Tech Left 86.87 85.02 53.78

Right 90.74 88.13 56.98

ND Twins Left 97.42 96.36 53.18

Right 98.33 98.18 52.73

FRGC Left 97.44 97.23 82.99

Right 96.97 97.00 82.66

The table indicates the rank-1 accuracies for both the left and right periocular

regions for LBP, 3P-LBP, and H-3P-LBP descriptors. Values in italics are the best

achieved results.

These observations are verified from the experimental

results of various challenging datasets.

2.2 Match score generation

For this study, the Euclidean distance measure is used to

formulate the match score between a pair of features. In

addition, a score-level fusion is adapted to fuse the scores

from the left and the right periocular region. The final

score, α score, is used as the similarity measure between

the probe and target set. The fusion of the scores for the

left (Sl) and the right (Sr) periocular region is given by

S = α × Sl + (1 − α) × Sr (3)

where α denotes the weighting factor. The optimal value

of α was determined off-line using a grid search method

based upon randomly selected subset of the four datasets

used for this work. The α value used in this work is 0.7.

The match scores are fused using the weighted sum rule

without any score normalization. Earlier research work

[23] suggests that the recognition accuracy of the left

periocular region (left from the observers’ perspective)

is significantly higher than that of the right periocular

region. Although it has been shown that the left periocular

region is more discriminative than the right, the reason-

ing behind this observation needs further investigation.

The selected weighting factor is in accordance with this

observation, providing more weight to the left periocular

region.

3 Experiments
This section provides a detailed discussion on the datasets

used for the study, the recognition experiments, and their

results.

3.1 Database

The following databases were used in our experiments.

These databases include face images of subjects taken

under unconstrained conditions such as variations in

pose, expression, and illumination; presence of glasses;

facial hair; occlusions; etc. Also, these databases are

publicly available and, hence, are more suitable for the

research community to evaluate against and compare

their results to.

3.1.1 Georgia Tech face database

The Georgia Tech face database (DB) [12] includes images

of 50 subjects taken at multiple sessions. The database

consists of 750 images with 15 images per subject. The

images for each subject include the following variations:

frontal pose, titled face with different facial expressions,

illumination variations, and scale. The images are taken

at a resolution of 640 × 480 pixels. Figure 3 shows sam-

ple images of a subject showing the abovementioned

variations.

3.1.2 MORPH aging database

MORPH Album1 [15] consists of 1,690 scanned pho-

tographs of 515 individuals taken over an interval of time.

The age of the images range from 15 to 68 years with the

age gap between the first image and the last image rang-

ing from 46 days to 29 years. The face images of Album

1 are frontal or near-frontal images under many types

of illumination and eye region occlusions. This album

of the MORPH dataset has been used for several years

to evaluate the performance of recognition under aging

[24,25]. Figure 3 shows sample images from the MORPH

database illustrating the various challenges involved with

the images.

3.1.3 WVU/ND twins database

The Twins database [13] is comprised of multi-modal

biometric information from pairs of identical and frater-

nal twins who attended the 2010 Twins Day Festival in

Twinsburg, Ohio. The database consists of 6,863 2D color

Table 4 Rank-1 accuracies using fusion of scores from the left and right periocular regions

MORPH Album 1 (%) Georgia Tech (%) Twins DB (%) FRGC (%)

LBP 3.28 67.85 70.15 90.03

3P-LBP 30.74 91.41 98.48 97.44

H-3P-LBP 33.20 92.42 98.03 97.51

The table indicates the rank-1 accuracies obtained by fusion of scores from the left and right periocular regions for LBP and its variants. Values in italics are the best

achieved results.
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Figure 5 CMC curves for the descriptors on MORPH Album 1. The

figure shows the CMC curves with matching left-left and right-right

periocular regions for the descriptors on MORPH Album 1.

face images from 240 subjects and were collected under

varying lighting conditions (indoor/outdoor), expres-

sion (neutral/smile), and pose (frontal/non-frontal). Each

image is of resolution 600 × 400 pixels. For our experi-

ments, we used only the images of 100 pairs of identical

twins and a triplet. (The identical twins/triplet images

were used solely due to the very difficult nature of match-

ing against them.) The images with neutral expression and

with a frontal pose alone were included. Figure 3 shows

sample images from the Twins face database.

3.1.4 FRGC database

The FRGC database includes around 16,000 images of 466

subjects collected at the University of Notre Dame dur-

ing the academic years 2002 to 2003 and 2003 to 2004.

The images for a subject session include four controlled
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Figure 6 CMC curves for the descriptors on the Georgia Tech

face DB. The figure shows the CMC curves with matching left-left

and right-right periocular regions for the descriptors on Georgia Tech

Face DB.
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Figure 7 CMC curves for the descriptors on the Twins database.

The figure shows the CMC curves with matching left-left and

right-right periocular regions for the descriptors on Twins database.

still images, two uncontrolled still images, and a three-

dimensional image. The controlled images were taken

under studio lighting conditions and two facial expres-

sions (neutral and smile).

3.2 Image alignment

The periocular images can be aligned using certain key

points such as eye centers, eye corners, eyelids, etc., which

are some common components of the periocular region

that can be identified fairly easily. The eye centers are

good candidates as they can be identified with periocu-

lar images involving large pose variations, while the other

key points suffer from occlusion due to pose changes. The

motion of the iris and the eyelids are not significant in

the periocular images used in this research. Therefore, we

primarily used the eye centers for image alignment. The

eye centers were detected using the commercial software
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Figure 8 CMC curves for the descriptors on the FRGC database.

The figure shows the CMC curves with matching left-left and

right-right periocular regions for the descriptors on FRGC database.
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Figure 9 Sample periocular images showing various challenges. The figure shows sample images from the Georgia Tech face database and the

MORPH Album 1. Each row shows examples of occlusions, pose variations, eyeglasses, and closed eyelids, respectively.

FaceVACS V8.5 [26]. The face region in the image is geo-

metrically normalized by aligning the images based on the

eye center coordinates. We follow a procedure similar to

that of [27] to align the images. The alignment process

involves scaling, rotation, and cropping the face region to

a specified size, such that the eye centers are horizontally

aligned and placed on standard pixel locations. Figure 4

shows the entire image alignment process for a sample

image.

Table 5 Rank-1 accuracies for neutral-neutral

(gallery-probe) matching for Georgia Tech face database

Left (%) Right (%) Fusion (%)

LBP 49.27 51.38 62.64

3P-LBP 80.92 85.32 86.30

H-3P-LBP 82.06 87.60 88.26

Values in italics are the best achieved results.

3.3 Periocular region segmentation

The periocular region is extracted from the aligned face

image prior to the feature descriptor computation. There

are no standard guidelines in existing literature that clearly

define the periocular region. Often, the periocular region

is defined as the skin region around the eyes, the eyes, and

the eyebrows. The eyebrows are generally included in the

periocular region since it helps in discrimination between

subjects. The region as defined above is more accurately

Table 6 Rank-1 accuracies for neutral-smile

(gallery-probe) matching for Georgia Tech database

Left (%) Right (%) Fusion (%)

LBP 46.72 54.09 64.75

3P-LBP 74.59 80.33 81.97

H-3P-LBP 77.05 82.79 82.79

Values in italics are the best achieved results.
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Table 7 Rank-1 accuracies for smile-smile (gallery-probe)

matching for Georgia Tech database

Left (%) Right (%) Fusion (%)

LBP 45.83 37.96 44.44

3P-LBP 60.65 57.87 61.57

H-3P-LBP 60.65 57.41 64.35

Values in italics are the best achieved results.

known as the periorbital region, which relates to the bony

structure of the eye orbit and the soft tissue around this

structure. Periocular correctly refers to the soft tissue of

the region internal to the eye orbit. However, for this work,

we adopt the periocular term currently used in the litera-

ture [1]. In this work, the segmentation of the periocular

region includes the eyes, eyebrows, and the skin region

around the eyes. We perform an automatic segmentation

using the coordinates of the eye centers in the aligned

image. The automatic segmentation is feasible due to the

placement of the eye centers on standard pixel locations

during the alignment process. A region of size 128 × 128

pixels centered by the eye center is extracted for both the

left and right eye region from the aligned image. It is to

be noted that the iris is not masked from the extracted

periocular images, which can have some effect on the

recognition performance. Some researchers have chosen

to mask the eyeball area and utilized information from

the shape of the eye and the eyebrow region. However,

the surface level texture of the iris can provide additional

cues and, hence, can help improve the recognition accu-

racy. Hence, in this work, we match against both open and

closed eyes.

3.4 Effect of periocular image size vs. the number of

image scale

This experiment was designed to analyze the effect of the

extracted periocular image size and the number of image

levels in the H-3P-LBP computation on the recognition

performance. The frontal and neutral expression images

from the ND Twins database were utilized for this exper-

iment. Choi et al. [28] have shown that an inter-pupillary

distance (IPD) of at least 60 pixels is required for suc-

cessful recognition. The IPD varies with the image size,

and hence, variations in the image size can significantly

Table 8 Rank-1 accuracies for frontal - non-frontal

(gallery-probe) matching for Georgia Tech database

Left (%) Right (%) Fusion (%)

LBP 36.65 44.34 51.36

3P-LBP 74.43 80.77 84.16

H-3P-LBP 76.47 83.94 87.78

Values in italics are the best achieved results.

Table 9 Rank-1 accuracies for non-frontal - frontal

(gallery-probe) matching for Georgia Tech database

Left (%) Right (%) Fusion (%)

LBP 44.92 51.15 56.72

3P-LBP 82.95 82.29 85.57

H-3P-LBP 83.93 87.21 89.51

Values in italics are the best achieved results.

affect the recognition performance. It is to be noted that

the IPD is varied in our experiments by varying the size

of the extracted periocular region individually rather than

resizing the aligned full-face image. In addition to the

periocular image size, the number of scales in the image

pyramid computed for the H-3P-LBP can have an impact

on the recognition performance as images of different

sizes are considered at each level of the pyramid.

The periocular images of a subject from the ND Twins

database are equally split into gallery and probe by ran-

dom bootstrap sampling and are used in the recognition

process. This process is repeated three times for each

combination of image size and number of image scales.

Table 2 lists the rank-1 recognition accuracies for vari-

ous image scales and image sizes. First, it is to be noted

that there is an insignificant effect of the number of lev-

els in the hierarchy when the image is either in its original

dimensions or enlarged. However, the performance sig-

nificantly reduces with the reduction of the image size to

a lower dimension than the original size. This indicates

that texture information is lost during the reduction. This

in turn suggests that the recognition rate improves for

images with an IPD of at least 60 pixels when compared

with images with an IPD of less than 60 pixels.

3.5 Recognition accuracy

The periocular recognition performance was studied

using the datasets described in Section 3.1. A closed

set identification was performed for all the experiments;

hence, no subject was considered an impostor during

recognition. Each dataset was divided equally into gallery

and probe, where the images for the gallery and probe

for a subject were randomly selected. Every probe image

was compared against all the gallery images using uniform

LBP, 3P-LBP, and H-3P-LBP matching techniques. The

Table 10 Rank-1 accuracies for non-frontal - non-frontal

(gallery-probe) matching for Georgia Tech database

Left (%) Right (%) Fusion (%)

LBP 47.48 39.54 50.22

3P-LBP 70.56 69.41 77.06

H-3P-LBP 74.03 72.29 77.49

Values in italics are the best achieved results.
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Table 11 Rank-1 accuracies obtained with age-varying

data fromMORPH Album 1

Left (%) Right (%) Fusion (%)

LBP 2.32 2.89 3.96

3P-LBP 19.21 24.04 26.93

H-3P-LBP 21.04 27.51 28.96

The table indicates the rank-1 accuracies obtained with age gap (up to 20 years)

between the gallery and probe (fromMORPH Album 1) for both the left and

right periocular regions for LBP, 3P-LBP, and H-3P-LBP descriptors. Values in

italics are the best achieved results.

results of the experiments are provided in terms of cumu-

lative match characteristic (CMC) curves and in terms of

the rank-1 recognition accuracy. Matching was performed

for the left-left and right-right gallery-probe periocular

image pair as previous research has indicated that the left

and right regions are sufficiently different. The left and

right periocular regions were determined based on the

location of the nose with respect to the inner corner of the

eye. In other words, the left and right periocular regions

were defined from the subject’s perspective.

It is to be noted that the gallery and the probe include

images containing variations in pose, expressions, and

illumination, besides neutral expression and frontal pose.

All the datasets include images with the presence of

facial hair and glasses, with the exception of the Twins

database. The aforementioned experiment can be under-

stood as a baseline for matching under non-ideal condi-

tions. Table 3 indicates the rank-1 accuracies obtained for

various descriptors on all the datasets. Table 4 lists the

rank-1 accuracies from the score-level fusion approach.

Figures 5, 6, 7, and 8 show the CMC curves for all

the descriptors on MORPH, Georgia Tech, the Twins

database, and FRGC, respectively.

From these results, it can be noticed that patch-based

approaches perform better when compared with the pixel-

based computation of LBP. The performance of all the

Table 12 Rank-1 accuracies obtained using eyelid closed

images fromGeorgia Tech database

Left (%) Right (%) Fusion (%)

LBP 62.16 65.76 71.17

3P-LBP 86.49 85.59 87.39

H-3P-LBP 87.39 84.69 86.49

Values in italics are the best achieved results.

descriptors on MORPH Album 1 indicates the signifi-

cance of effects such as template aging, pose variations,

expression changes, etc. in periocular recognition. Also,

the images of MORPH are scanned photographs in con-

trast with the other two datasets. This indicates the need

for better-matching algorithms in case of recognizing sub-

jects using scanned low-resolution images. It is also to

be noted that there is a significant difference with the

recognition accuracies for the left and right periocular

regions, which indicates the profile-specific features that

are extracted by the descriptors. The matching accuracies

indicate that the performance was improved by comput-

ing the 3P-LBP in a hierarchical fashion. This is due to the

extraction of micro- and macro-patterns, both of which

are required for better texture discrimination. The best

recognition performance was achieved when the left and

right periocular scores are fused together, which indicates

the use of side information and side-specific features for

better recognition.

3.6 Recognition under non-ideal conditions

Generally, variations in pose, illumination, and expres-

sions are considered as challenges by the face recognition

community. Figure 9 contains sample periocular images

under various challenges. In this section, we present a

discussion on the effect of these challenges in periocular-

based recognition.

Figure 10 Examples of failure cases fromMORPH Album 1. The figure shows sample gallery-probe image pairs from the MORPH Album 1 that

were incorrectly recognized by the recognition framework.
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Table 13 Rank-1 accuracies obtained with images fromGeorgia Tech database and ND Twins database with eyeglasses

Approaches Georgia Tech ND Twins

Left (%) Right (%) Fusion (%) Left (%) Right (%) Fusion (%)

LBP 26.58 24.68 31.65 13.33 10.00 16.67

3P-LBP 72.15 63.92 79.75 46.67 20.00 40.00

H-3P-LBP 77.22 70.25 81.01 53.33 30.00 56.67

Values in italics are the best achieved results.

The performance of all the descriptors was analyzed

from the perspective of matching gallery and probe

images with the following scenarios: (1) neutral-neutral

(expressions), (2) neutral-smile, (3) smile-smile, (4) frontal

pose - non-frontal pose, (5) non-frontal pose - frontal

pose, (6) non-frontal pose - non-frontal pose, (7) no

glasses-with glasses, and (8) eyes open-eyes closed. In

addition, the effect of template aging on periocular

recognition was also studied. The Georgia Tech face

database and the MORPH Album 1 were utilized for this

study. Recognition experiments were conducted using the

images that were categorized based on the presence of the

above mentioned factors.

For the neutral-neutral gallery-probe scenario, one

image from each subject was used in the gallery, and the

remaining images were used as probe. The experiment

studying the effect of template aging utilized the youngest

images as gallery and the older images as probe. This

can be correlated with the real-world scenario of verifying

passports or in security, where an already-enrolled young-

aged image is compared against the later aged one. For the

remaining experiments, all the images from the respective

subsets were used as gallery and probe for each scenario.

3.6.1 Expression variations

Images from the Georgia Tech face database were used

for these experiments. The effect of change in expres-

sions in the periocular region was analyzed by comparing

the neutral expression image with those having a smil-

ing expression. The database included 613 images from 50

subjects with neutral expression and 122 images from 39

subjects with a smiling expression.

Tables 5, 6, and 7 show the rank-1 accuracies for the

scenarios neutral-neutral, neutral-smile, and smile-smile.

It can be noticed that change in facial expression results

in degradation of the recognition performance for patch-

based LBP approaches when compared with matching

against images with neutral expression. The generation of

wrinkles near the eye and the rising or lowering of the

eyebrows while exhibiting the expression causes changes

to the periocular region. Also, it is to be noted that there

is a performance degradation for the smile-smile scenario

when compared with the neutral-neutral and neutral-

smile scenarios. This is due to the insufficient set of

gallery images that could span the entire set of expres-

sion changes. This suggests the use of images with neutral

expressions for recognition task. Also, it is evident that

the eyebrows act as a discriminative cue between individ-

uals. In contrast, LBP shows an improved performance

for the right periocular region and the score-level fusion

approach. One reasoning could be that the pixel-based

computation of LBP captures these variations minimally

when compared with the patch-based computation of

LBP.

3.6.2 Pose variations

In real-world scenarios such as video surveillance, the

pose of the facial images is not always frontal. This also

introduces a pose variation with the periocular region of

the face and occlusions depending on the pose of the face.

We collected 305 frontal pose images and 442 images with

non-frontal pose from the Georgia Tech database. Both

subsets include images from each subject in the database,

and each subset plays the role of gallery as well as probe.

Tables 8, 9, and 10 show the rank-1 recognition accuracy

for (1) frontal to non-frontal, (2) non-frontal to frontal,

and (3) non-frontal to non-frontal scenarios. It can be

seen that large variations in pose of the face significantly

affects performance. This is particularly evident from the

performance on the non-frontal to non-frontal scenario,

where the left and right periocular regions achieve differ-

ent recognition rates due to variation in the pose between

them. This performance degradation is similar to the per-

formance decline that is seen with traditional face recog-

nition and can be viewed as occlusion and skew. As the

face is turned, out-of-plane rotation with the image sen-

sor, parts of the periocular region towards the direction of

rotation becomes occluded while the other side of the face

undergoes skew (elongation and perspective change).

3.6.3 Template aging

To study the effect of time lapse between the gallery

and the probe in the recognition performance, an

experiment utilizing the images from MORPH Album

1 was performed. The images of a subject was near

equally divided into gallery and probe, where the gallery

included relatively younger images of the subject and the

probe included the more recent images of the subject.
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Figure 11 Examples of failure cases from Georgia Tech database. The figure shows sample gallery-probe image pairs from Georgia Tech DB

that were incorrectly recognized by the recognition framework.

Table 11 shows the rank-1 recognition accuracies

obtained from this experiment. As expected, the results

show a significant effect of template aging in recogni-

tion performance. Comparing the results with the base-

line performance in Table 3, it can be seen that larger

age gaps between the probe and the gallery result in

larger dissimilarities in facial features and hence the fail-

ure of the LBP and its variants to effectively capture the

intra-class similarities and the inter-class dissimilarities.

Figure 10 shows some examples of mismatches from the

experiment. It is to be noted that the difficulty arises

with the presence of image artifacts, presence of glasses,

pose variations, and nonetheless, age gap between probe

and gallery.

3.6.4 Effect of closed eyelids

The iris and the eye region are a soft texture that can pro-

vide additional information on the periocular region and

thus can improve the recognition performance. However,

real-world images are captured under non-ideal condi-

tions where motion of the iris and the eyelid is possi-

ble, which causes masking of the eye region. Although,

closing of the eyelid can be considered as masking of

the eye region, it also provides some additional texture

information, which can aid the recognition process. To

study the effect of the presence of this additional tex-

ture and the masking of the eye region, we conducted

experiments where the gallery involved images with the

eyes open, and the probe involved images with the eye-

lid closed. We collected 111 images with the eyelid

closed from the Georgia Tech database as the probe.

The remaining images from the database were included

in the gallery. Table 12 shows the rank-1 recognition

accuracies for the left, right, and the score-level fusion.

Although, we observed degradation in performance for

the patch-based approaches, there is an improvement

in the performance for the pixel-based computation of

LBP. This possibly indicates the advantage of using pixel-

based computation of local features under such non-ideal

conditions.

3.6.5 Effect of eyeglasses

The presence of eyeglasses on the face of a subject could

hide a significant portion of the periocular region. Eye-

glasses have been shown as discriminative cues in the

face verification task [29,30]. To validate prior work for

periocular recognition, recognition was performed using

images with eyeglasses as probe and the images without

eyeglasses as the gallery. Table 13 shows the rank-1 recog-

nition accuracies obtained from uniform LBP and its vari-

ants on the Georgia Tech and the ND Twins datasets. It

is to be noted that the recognition performance for all the

approaches degrades when compared with the baseline.

Since the eyeglasses can be treated as occlusions/disguise

of the periocular region, it can be deduced that eyeglasses

may not be a suitable feature for effective discrimination

between subjects. Figure 11 shows examples of incorrectly

recognized gallery-probe image pairs by the proposed

framework. It can be seen that the presence of glasses

and large pose variations affect the performance of the

system.

4 Conclusions and future work
In this paper, we investigated the performance of LBP and

its variants in periocular-based recognition using uncon-

strained face images. We proposed the multi-scale, hier-

archical three-patch LBP framework, which is a variant

of the three-patch LBP. The matching performance was

evaluated using the uniform LBP, three-patch LBP, and

the hierarchical three-patch LBP. The effects of covari-

ates such as pose variations, facial expression, template

aging, and occlusions on periocular recognition perfor-

mance were discussed. Experiments on four challenging

datasets yield the best recognition results for the proposed



Mahalingam and Ricanek EURASIP Journal on Image and Video Processing 2013, 2013:36 Page 12 of 13

http://jivp.eurasipjournals.com/content/2013/1/36

method when compared with LBP and its variants. Exper-

iments indicate that the best results were achieved when

matching was performed for both the left and right peri-

ocular regions individually and then fusing their scores.

The results also indicate that there is significant discrim-

ination between the left and right periocular region of

the same subject. The performance of the patch-based

LBPs can be improved when images with neutral expres-

sions are used. However, the uniform LBP is signifi-

cantly robust for both neutral and varied expressions on

the face.

There is a significant effect on the recognition per-

formance due to large pose variations, while the effects

of minimal pose variations are insignificant due to the

pose-invariant nature of the LBP operator. Aging effects

are prominent in the periocular region of a face, which

increases the intra-class dissimilarities as the age gap

between the gallery and probe increases. Our experiments

also indicate that conventional LBP and its variants fail to

capture these age-based differences.

Masking of the iris and the eye region has an impact

on the performance of patch-based descriptors, while it

improves the performance of pixel-based LBP. While the

presence of eyeglasses help face recognition systems, they

degrade the performance of a periocular recognition sys-

tem. The performance of periocular recognition could be

further improved with the consideration of cues such as

eyelashes, eye shape, and size.

In future work, we will explore the use of different dis-

tancemeasures for matching as the Euclidean distance has

been proven to not be the most robust in the face domain.

Furthermore, we will explore developing texture-based

features that are resilient to aging changes. Developing a

texture-based age-invariant texture technique would have

far-reaching and sweeping impacts on face-based biomet-

ric techniques.
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