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Abstract

Mammogram tissue density has been found to be a strong indicator for breast cancer risk. Efforts in computer vision

of breast parenchymal pattern have been made in order to improve the diagnostic accuracy by radiologists.

Motivated by recent results in mammogram tissue density classification, a novel methodology for automatic

American College of Radiology Breast Imaging Reporting and Data System classification using local binary pattern

variance descriptor is presented in this article. The proposed approach characterizes the local density in different

types of breast tissue patterns information into the LBP histogram. The performance of macro-calcification detection

methods is developed using FARABI database. Performance results are given in terms of receiver operating

characteristic. The area under curve of the corresponding approach has been found to be 79%.

Keywords: Mammogram, Breast tissue, Texture, Classification, Feature extraction, Macro-calcification detection, LBP,

LBPV, ROC, ACR/BIRADS, CAD, ANN

1 Introduction
Female breast cancer is a common cause of cancer-

related deaths in women, especially in western countries

and where statistics are available. Mammographic images

are hard to interpret because of the textural morphol-

ogy information complexity of the breast and the num-

ber of image parameters that affect the acquisition of

mammograms [1].

In the evaluation of mammogram images, CAD

(Mammographic Computer-Aided Diagnosis) systems are

aimed at assisting radiologists [2,3]. Studies in CAD sys-

tems tend to concentrate on the detection and classifi-

cation of mammographic masses and micro-calcification

[4]. In addition, recent research has shown that the sensi-

tivity of these systems to detect masses in mammograms

is significantly decreased as the density of the tumors

increases [5]. These classification is based on both severity

for the disease and image properties.

Classification with textural mammogram information

can be based on a number of categories that might

not explain the same mammographic features [4-8].

ACR/BIRADS classification [7] is becoming a standard
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in the assessment of mammogram images, which are

classified in fourth categories according to their density

(Figure 1).

• ACR/BIRADS I: the breast is almost entirely fatty.
• ACR/BIRADS II: there is some fibro-glandular tissue.
• ACR/BIRADS III: the breast is heterogeneously dense.
• ACR/BIRADS IV: the breast is extremely dense.

It is well known that there is a strong correlation

between textural density in mammographic image and the

risk of developing tumors [8]. Figure 1 shows four samples

in the American College of Radiology’s Breast Imaging

Reporting and Data System (ACR/BIRADS) classes with

respect to density.

ACR/BIRADS classification will be beneficial, to char-

acterize what the mammogram density is since it is a

parameter criterion in Breast Imaging Reporting and

Data System classification, as well as to create an opti-

mal approach to follow if, for example, detecting masses

in mammographic image of tissue abnormality detection

(marcocalcification/microcalcification). An early step of

density classification will switch on for each class, this step

is more efficient for segmentation approach. For exam-

ple, detecting a macrocalcification in surrounding darker

pixels as in the first class could be done differently if

neighbors are brighter as in the third or four class.
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Figure 1 Four samples in the ACR/BIRADS classes with respect to density: (a) ACR/BIRADS I, (b) ACR/BIRADS II, (c) ACR/BIRADS III,

(d) ACR/BIRADS IV.

In this article, a novel approach to automatic breast tis-

sue classification is investigated. The first step of the pro-

posed approach is a pre-processing denoising module. In

the next step, texture features are extracted using a novel

descriptor named local binary pattern variance (LBPV).

Performance evaluation is based on testing the algo-

rithm on images from a new Tunisian database located

at the radiology center EL FARABI Sfax Tunisia. Then,

an artificial neural network (ANN) is used for classi-

fying the breast density tissue. To highlight the inter-

est of such classification, a brief summary on methods

in segmentation masses region for each density class is

provided.

In Section 2, we briefly describe our image processing

and classification system. Then, we present the proposed

textural feature extraction using LBPV descriptor and

we provide a brief summary of the breast segmentation

approaches. In Section 3, we present the performances

results followed by conclusion in Section 4.

2 Systemmodule description
The functionality of the proposed system is provided by

means of four modules: (a) the preprocessing module, (b)

the feature extraction module, (c) the ANN classification

module, and (d) the mass segmentation (Figure 2).

2.1 Preprocessing

In this module, input images are prepared for the process-

ing steps that will follow. The basic need for preprocessing

in mammographic images is to increase the contrast,

especially for dense breasts.

To remove the background noise [9], preserving the

local information of suspicious areas can enhance mam-

mograms. This approach was proposed by Lai et al.

[10], who used modified median filtering and four selec-

tive averaging schemes called selective median filter. The

output of this filter within a windowW (n,m), centered at

image coordinates (n,m) [11] is given by

In,m = median

{

Ir,s : (r, s) ∈ N(n,m)

| Ir,s − In,m |< Ith
(2.1)

where In,m is the image intensity at (n,m), N(n,m) is the

area in the image covered by the windowW (i, j), and Ith is

the threshold.

The set of pixels, in computing the median, is restricted

to those with a difference in gray level not greater than a

some threshold Ith. Adjusting the parameter Ith allows to

control the amount of edge smearing and to remove the

background noise [12].

2.2 A novel textural feature extraction using LBPV

descriptor

LBP [13] is a gray scale operator which characterizes the

textural structure in the image. A pattern number is com-

puted by comparing a central pixel in the gray image value

with its neighborhoods:

LBPP,R =

P−1
∑

P=0

Sign(gp − gc)2
P (2.2)

Sign(x) =

{

1, x ≥ 0

0, x < 0
, (2.3)

where gc is the gray value of the central pixel, gp is the value

of its neighbors, P is the number of neighbors, and R is the

radius of the neighborhood.

If the coordinates of gc are (0,0), then the coordinates of

gp are given by
(

−R sin(
2πp
P ),R cos(

2πp
P )

)

. The gray val-

ues of neighbors which do not fall exactly in the center of

pixels are estimated by interpolation.
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Figure 2 The proposedmethod of macro-calcification detection.

Suppose the texture image isN∗M. After identifying the

LBP pattern of each pixel (i, j), the whole texture image is

represented by building a histogram:

H(k) =

N
∑

i=1

M
∑

j=1

f (LBPP,R(i, j), k), k ∈[ 0,K] (2.4)

f (x, y) =

{

1, x = y

0, otherwise
(2.5)

To remove the effect of rotation in local image the

LBPriP,R (rotation invariant local binary pattern) is defined

by:

LBPriP,R = min{ROR(LBPP,R, i)|i = 0, 1, . . . ,P − 1}

(2.6)

where ROR(x, i) is a circular bit-wise right shift on the

P-bit number.

The rotation invariance with uniform patterns LBPriu2P,R
is proposed by Ojala et al. [13].

LBPriu2P,R =

{

∑p−1
p=0 sign(gp − gc), if U(LBPP,R) ≤ 2

p + 1, otherwise

(2.7)

where superscript riu2 reflects the use of rotation

invariant uniform patterns, U introduces the uniformity

measure

U(LBPP,R) =

∣

∣

∣

∣

∣

sign(gp−1 − gc) − sign(g0 − gc)

+
∑p−1

p=1 sign(gp − gc) − sign(gp−1 − gc)

∣

∣

∣

∣

∣

.

(2.8)

A rotation invariant variance measures (VAR)of the

local image can be defined as follows:

VARP,R =
1

p

p−1
∑

p=0

sign(gp − µ)2 (2.9)

where

µ =
1

p

p−1
∑

p=0

sign(gp) (2.10)

LBPriu2P,R

VARP,R
is the powerful descriptor of local contrast infor-

mation because it exploits the complementary character-

istics of local spatial patterns and local contrast [13].

Usually high-frequency textural information regions

will have higher variances and contribute more to the dis-

crimination of images. Therefore, LBPV is proposed to

characterize the local contrast information into a one-

dimensional LBP histogram where VARP,R can be used

as an adaptive weight to adjust the contribution of LBP

descriptor in histogram calculation. The local binary vari-

ance code histogram is computed as follows:

LBPVP,R =

N
∑

i=1

M
∑

j=1

w(LBPriu2P,R (i, j), k), k ∈[ 0,K]

(2.11)

w(LBPriu2P,R (i, j), k) =

{

VARP,R(i, j), LBP
riu2
P,R (i, j) = k

0 otherwise

(2.12)

Though locally operated, LBPV operator has an excel-

lent ability to summarize the different global or local

densities in the image. Figure 3 illustrates that each den-

sity in the image can be illustrated by a respective peak

in the occurrence histogram. Therefore, LBPV can be

seen as a good descriptor candidate that could eventually



Masmoudi et al. EURASIP Journal on Image and Video Processing 2013, 2013:19 Page 4 of 9

http://jivp.eurasipjournals.com/content/2013/1/19

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10
x 10

5

0 10 20 30 40 50 60
0

1

2

3

4

5

6
x 10

5c d

a b

Figure 3 Perfect ability of LBPV operator to describe global density in the image: (a) Binary image, (b) Histogram LBPV of binary image,

(c) Gray level image, (d) Histogram LBPV of gray level image.

mirror and handle sensitively different densities in mam-

mographic images.

The LBPV-based descriptor operator is a good con-

trast distribution method. Two occurrence histograms

are, respectively, generated. Taking R = 1 and P = 8,

the size of the vector is fixed to 512. This size is unique

and independent of minimum number or image size.

Such advantage overcomes limitations of direct matching

discrepancies. Figure 4 illustrates a mammogram sample

image with the corresponding histogram.

2.3 Breast tissue density classification module with ANN

Usually, ANNs can be considered as an information of

system which is composed of interconnected elements

constituting a network. Inspired by the biological nervous

system, ANN adjusts weights between neurons (Table 1).

Let x = (x1, x2, . . . , xd)
T be an input vector and w =

(w1,w2, . . . ,wd)
T the weight vector, the output is deter-

mined as follows:

y = g
(

wTxb

)

= g

(

d
∑

i=1

wixi − b

)

(2.13)

where g(.) is namely a sigmoidal activation function

defined by

g(x) = (1 + e−x)−1 (2.14)

For each mammogram samples, LBPV vectors are com-

puted. The description based on these features is used in

the recognition step as neural network inputs. The neural

network architecture is represented in Figure 5.

To be able to evaluate the effectiveness of the training,

one can measure the relative error as follows:

E =

∑n
i=1(IN − IT )

Number of samples
, (2.15)

where IN is the image resulting from ANN output and IT
is the target.

After training steps, generalization error was evaluated

for different features and network conditions. Figure 6

shows the evolution of training and generalization errors

by incrementing the number of hidden layers.
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Figure 4 Perfect ability of LBPV operator to describe global densities in the image.

2.4 Breast segmentation

In general, masses in low-density breasts are better

detected than masses in high-density breasts, although

each algorithm performs differently with regard to this.

2.4.1 Detection of concentric layers

In [14], the segmentation of masses by detection of con-

centric layers, using progressively lower average intensity,

is proposed. This approach with a region granulation (i.e.,

a grey-level transformation) reduces the large number of

intensity levels.

The grey-level transformation step starts by lin-

early normalizing the intensity between levels 0 and

1. Next, the pixels are assigned a grey level. This is

done by sequentially visiting each granule pixel and

examining its local neighborhood. If all neighbors are

within 98% of the granularity, they are assigned to the

same grey level, else they will be assigned to a dif-

ferent granulation. After this transformation, a mor-

phological opening is performed to decrease scattered

grey levels.

The segmentation of suspicious masses regions is based

on the inspection of the granularity. Thus, all the regions

with similar or higher levels are grouped. For each

level, a set of features, including area, eccentricity, solid-

ity, and dispersion, are computed. This procedure is

repeated for the brightest levels. Therefore, the region

Table 1 Output of ANN classifier

Output y3 y2 y1

ACR/BIRADS I 0 0 1

ACR/BIRADS II 0 1 0

ACR/BIRADS III 0 1 1

ACR/BIRADS VI 1 0 0

growing is established, and the suspicious regions are

those containing at least three developing concentric

layers. All the parameters used have empirically been

adjusted to FARABI database. One of these parameters is

related to the minimum distance between possible macro-

calcifications. This distance will be used later to obtain

probability images.

2.4.2 Thresholding approach

This approach is proposed by Kom et al. [15]. The

corresponding algorithm is based on the thresholding

mammographic image obtained by subtracting from the

mammogram a linear filtered representation of itself.

The enhanced image IEN is given for each coordinates

(x, y) by:

IEN(x, y) = a × log(1 + m × Im(x, y)), Im(x, y) < α (2.16)

Figure 5 The applied network architecture.
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Figure 6 Evolution of training and generalization errors by increasing the number of hidden layers.

IEN(x, y) =
exp(

Im(x,y)
a ) − 1

b
, Im(x, y) > α (2.17)

where Im(x, y) is the original mammogram, m is its maxi-

mum grey level, b =
1−exp(ma )

m , a and α are two parameters

fixed experimentally; in this study, a = 10 and α = 0.3.

Consequently, the subtracted image ISub is given for

each pixel (x, y) by:

ISub(x, y) = Im(x, y) − IEN(x, y) (2.18)

At last, the subtracted image is thresholded by using

an adaptive local threshold to obtain suspicious macro-

calcifications.

2.4.3 Laplacian edge detector approach

This method is proposed by Petrick et al. [16] who

used an optimal Laplacian Gaussian edge detector

(LGED) with the aim of finding closed regions in the

enhanced version of the mammographic image. This

approach begins by preprocessing the mammogram using

a density-weighted contrast enhancement (DWCE) fil-

ter, which is based on two filtered mammograms of the

original image Im(x, y): the first is the density image

IFD(x, y), which is a smoothed version of the image,

obtained by using a Gaussian filter. The next is the con-

trast image IFC (x, y), obtained by subtracting the orig-

inal mammogram from a second smoothed version of

the image.

The density of mammograms is filtered all over again

with a nonlinear filter KM and used to define a mul-

tiplication factor which adjusts the related pixel in the

contrast image. Thus, the density parameter of each pixel

is weighted by local contrast. The intermediate image IFKC
can be expressed by

IFKC (x, y) = KM(IFD(x, y)) ∗ IFC (x, y) (2.19)

where IFKC (x, y) is used to define a next multiplication

value using another nonlinear filter KNL, which is multi-

plied by the weighted contrast of the related pixels

IFE (x, y) = KNL(IFKC (x, y)) ∗ IFKC (x, y) (2.20)

where IFE (x, y) is the output of the DWCE filter. The out-

put of this filtering process is a mammogram where the

potential masses are highlighted.

To detect macro-calcifications, an edge detector is used.

An LGED was applied. It is defined by

LGED(x, y) = ∇2G(x, y) ∗ IFE (x, y), (2.21)

where G(x, y) is a two-dimensional Gaussian smoothing

function.

2.4.4 Classifier approach

This method is proposed by Karssemeijer and te Brake

[17,18]. The classification approach makes possible the

detection of macro-calcifications using second-order

Gaussian derivative operators. If a line-like structure is

present at a given site, this algorithm provides an esti-

mation of the orientation of textural mammogram tissue.

With this information, two new features are built. The

first one characterizes the total number of pixels point-

ing the center, while the next feature estimates whether
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these directions are circularly oriented. With both fea-

tures, and a set of classified mammograms, this approach

trains a binary decision tree. Afterward, the decision

tree can be used for macro-calcification detection in

medical image.

3 System performances
In order to test the proposed method, images from

EL FARABI database are used. Images in this database

have their density classified according to ACR/BIRADS

categories.

3.1 EL FARABI database

The mammograms used in this study were collected from

EL FARABI radiologic center. They are acquired using dif-

ferent mammographic screen/film system and settings (all

with molybdenum anode) and in the framework of dif-

ferent applications. The obtained images including both

clinical routine carried out on symptomatic women and

screening programs addressed to asymptomatic women.

All the images were digitized with a CCD scanner at a

pixel size of 85 × 85µm2 with a 12-bit resolution. Each

image is thus 3560 × 4640 pixels with G = 212 = 4096

gray-level tones. No normalization was applied to images.

The database consists of 2052 mammograms from 342

analyzed subjects. Some of the mammograms show dif-

ferent views (craniocaudal, lateral, oblique) of the same

subject and are considered as different samples in our

analysis. The diagrams reported in Figure 7 show the par-

tition of the database in left/right breast images (left) and

craniocaudal/oblique/ lateral views (right).

3.2 Receiver operating characteristics (ROC)

ROCs are usually used in many fields for decision mak-

ing to validate a given classification method. In this study,

we use it for a validation of ACR/BIRADS mammogram

density classification.

3.2.1 ROC curves

An ROC curve is a graphical visualization of the TPR

(True Positive Rate) as a function of the FPR (False Posi-

tive Rate) of mammogram classifier systems.

3.2.2 The ROC convex hull method

The ROCCH (ROC convex hull) method accommodates

both binary and continuous ROC curve. Binary recogni-

tions are represented by individual points in ROC space.

Continuous ROC produces numeric outputs of thresh-

olds that can be applied, yielding a series of (FPR,TPR)

pairs forming an ROC curve. Each point may or may not

contribute to the ROC convex hull.

3.2.3 Area under ROC curve

The area under the ROC curve (AUC) is common metric

that can be used for performance evaluation of a decision-

making system. It constitutes an efficient way to com-

pare different tests (indicator variables). For performance

evaluation, it is convenient to reduce the ROC curve

to a single scalar value representing expected perfor-

mance. The easiest possibility is to calculate the AUC

which is a part of the area of the unit square. Con-

sequently, the value of AUC will always satisfy the

following inequalities

0 ≤ AUC ≤ 1 (3.1)

It is clear that if the AUC is close to 1 (area of unit square),

AUC indicates very good diagnostic test. However, as the

random guessing produces the diagonal line between the

points [0,0] and [1,1], which has an area of 0.5, reasonable

tests should have

0.5 ≤ AUC ≤ 1 (3.2)

TheAUChas an important statistical property: the AUC

of an ROC relative to a recognition system is equivalent to

Figure 7 Database partition. Left: number of left/right breast images. Right: number of craniocaudal/oblique/lateral views.
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Figure 8 ROC curve for ACR/BIRADS automatic classification.

the probability that the recognition will evaluate randomly

chosen positive instance higher than a randomly chosen

negative instance.

3.3 ACR/BIRADS automatic classification results

The method was applied to a set of 400 image mammo-

graphic taken from the FARABI Digital Database. This

database provides for each mammogram additional infor-

mation, including the density of the breast determined

by an expert according to BIRADS categories. In order

to simulate the real world, our database is formed by 50

mammograms with ACR/BIRADS I, II, III, and IV, so

200 images are used for training. However, 200 mammo-

graphic image are used for generation test.

Figure 8 shows that the AUC of this approach has a value

of 0.97.

3.4 Breast tissue influence

The breast density evaluation experiment is related to the

ability of each method to detect macro-calcification in

all FARABI database images. This evaluation mimics the

radiologist in identifying the presence of tumors.

The accuracy of the approach is depending on

breast tissue density classification and is summarized

in Table 2. This table shows the AUC for each method

detailed for each ACR/BIRADS density. Generally, macro-

calcification are detected in low-density images than in

high-density images.

For instance, looking at experimental results, algo-

rithms for detection of concentric layers have better

performance on fatty breasts tissues on ACR/BIRADS

I compared to other density classes. Therefore, thresh-

olding and Laplacian edge detector approaches get the

best accuracy for mammographic images belonging to

ACR/BIRADS II and ACR/BIRADS III, respectively. Clas-

sifier approach performs better for the most dense tissue

(ACR/BIRADS IV).

The reason for such different behaviors is related to

different factors. For example, macro-calcifications in

fatty mammograms frequently have a more delineated

boundary than in denser medical images. Moreover,

one can see a set of circumscribed layers around the

macro-calcifications that are exploited in the granularity

algorithm (i.e., detection of concentric layers). Thresh-

olding and Laplacian edge detector approaches seem

beneficial for medical images belonging to intermedi-

ate ACR/BIRADS II and ACR/BIRADS III classes, where

macro-calcifications are highlighted with respect to the

normal tissue. To end with classifier approach which per-

forms better for the dense tissues (ACR/BIRADS IV). In

fact, it uses the contour information for masse detec-

tion and it has better performances for increased intensity

changes in mammograms.

4 Conclusion
A novel automatic ACR/BIRADS classification for seg-

mentation of mammographic masses is presented. To

exploit the local and global textural information in mam-

mographic images, the LBPV was proposed. This descrip-

tor characterizes globally rotation invariantmatching with

locally variant LBP features for mammogram texture clas-

sification. This approach is tested on 342 pairs of patient

mammograms.

Table 2 Influence of the breast density based on AUC

Detection of Thresholding Laplacian edge Classifier

concentric layers approach detector approach approach

ACR/BIRADS I 0.81 0.71 0.70 0.72

ACR/BIRADS II 0.64 0.79 0.69 0.65

ACR/BIRADS III 0.59 0.61 0.74 0.63

ACR/BIRADS VI 0.52 0.58 0.59 0.78
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As performances metric, we get for the EL FARABI

database an AUC which has value of 0.79.

A segmentation technique has also been done, describ-

ing several methods and pointing out their specific fea-

tures. These approaches have fully been evaluated using

ROC curve analysis and tested using a digitized database.

Annotations used as the gold standard were provided by

expert radiologists who read mammograms routinely.

Segmentation results depend on the breast den-

sity. Based on our testing of these algorithms on

the FARABI database, abnormal mammograms belong-

ing to ACR/BIRADS I tend to show improved detec-

tion over abnormal mammograms belonging to other

ACR/BIRADS category. This is related to the increase of

the contrast in parenchymal tissue, which is mistaken for

abnormal regions.
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