
2010 International Conference on Service Sciences © IEEE

LBVS:A Load Balancing Strategy for Virtual Storage

Hao Liu, Shijun Liu, Xiangxu Meng, Chengwei Yang, Yong Zhang

School of Computer Science & Technology

Shandong University

Shandong, Jinan, 250101

2010 International Conference on Service Sciences © IEEE 2

Outline

 Introduction

 Load Balancing Based Virtual Storage Architecture

 Storage Virtualization Model (SVM)

 Virtual Storage Architecture (VSA)

 Virtual Storage Implementing

 Replica Balancing Module

 Writing Balancing Module

 Use Case

 Conclusion

2010 International Conference on Service Sciences © IEEE 3

Introduction

 The exponential growth of data needs higher

performance data storage. But local storage strategy

still has some lack of capability.

 Cloud Storage is an important part of Cloud

Computing, and it provides a way to achieve large

scale and cheaper storage architecture.

 This paper proposed a load balancing virtual storage

strategy (LBVS) and use Fair-Share Replication

(FSR) and a writing balancing algorithm to archive

it.

2010 International Conference on Service Sciences © IEEE 4

Load Balancing Based Virtual Storage
Architecture (1/2)

 Storage Virtualization Model (SVM)

 Resource virtualization

 Maps physical devices to

uniform virtual resource

 Logical space virtualization

 Maps uniform resource to

basic nodes (collections)

 Storage network virtualization

 Assembles collections in

logical space into global space

2010 International Conference on Service Sciences © IEEE 5

Load Balancing Based Virtual Storage
Architecture (2/2)

 Virtual Storage Architecture (VSA)

 Based on SVM

 Interface Layer

 icommands

 Client

 Web Browser

 Sharing Folder

 Rule and Metadata Management
Layer

 Upper layer:

 Client and Admin

 Under layer:

 Resource and Metadata

 Virtual Storage Management Layer

2010 International Conference on Service Sciences © IEEE 6

Virtual Storage Implementing (1/10)

 Replica Balancing Module (1/7)

 Uses the algorithm: Fair-Share Replication (FSR)

 Reference: Rasool Q, Li J, Oreku GS, Munir EU (2008)

Fair-share Replication in Data Grid

2010 International Conference on Service Sciences © IEEE 7

Virtual Storage Implementing (2/10)

 Replica Balancing Module (2/7)

 To satisfy the latency constraints, there are two ways:

 Vary the speed of data transfer

 Shorten the transfer distance

 Since bandwidth and CPU speed are usually expensive to

change, the second way by placing replicas of data

objects closer to clients is the cheapest way.

 The main idea of FSR is to identify best candidate nodes

for replica placement primarily based on access load.

2010 International Conference on Service Sciences © IEEE 8

Virtual Storage Implementing (3/10)

 Replica Balancing Module (3/7)

 Grid Replication Scheduler (GRS)

 The central managing entity for FSR scheme.

 Replica Catalog

 Used to register replicas when they are

created and placed at the selected nodes.

 Stores the mapping from the logical file

name to the physical file name.

 Replica Manager

 Stores information about requested files and the time when

requests were made.

 This information is accumulated and communicated to GRS

into a global workload table G(arrival time, clientid, field).

2010 International Conference on Service Sciences © IEEE 9

Virtual Storage Implementing (4/10)

2010 International Conference on Service Sciences © IEEE 10

Virtual Storage Implementing (5/10)

 Replica Balancing Module (5/7)

 Replica Placement

 If replica of file i exists:

 Just update its creation time

 Determine the best node:

 Order by freq Desc: Pk … P1

 If Pk doesn't have siblings,

just select Pk as place node.

 Else compare Pk with siblings.

See which one is better.

(Access load, Storage load)

 If best node's available space

is not enough, evacuate it.

 Replicate the file to this node.

B C

A

12

freq=18

5
D

15

2010 International Conference on Service Sciences © IEEE 11

Virtual Storage Implementing (6/10)

 Replica Balancing Module (6/7)

 Replica Selection

 We use closest policy (Benoit et al., 2007) for replica selection

 Replica Selector is responsible to implement this service:

 On receiving a request for a specific data file,

the replica selector query replica catalog to get information about all the

available replicas.

 Return the location of the replica that offers the highest transfer speed

and is least number of hops away from the requesting client.

2010 International Conference on Service Sciences © IEEE 12

Virtual Storage Implementing (7/10)

 Replica Balancing Module (7/7)

 Replica Replacement Policy

 Which of the stored replicas should be replaced with the new

replica if available space of selected node isn't enough.

 For a given selected node:

1.Check the creation times of all present replicas.

2.Replicas which were created earlier than current time session and currently

not being active or referenced will be moved to the upper node. Because it's

fast to replica if they become popular in future.

3.Replicas will be deleted permanently from system if it has not been referenced

since last two sessions.

 Writing Balancing Module (1/3)

 Uses weight-computing method to get the best node

 First sets a initial weight IW(Ni) for every node Ni.

 Module will adjust IW(Ni) dynamically by gathering the

following parameters periodically form storage nodes.

 CPU % Utilization: CPU(Ni)%

 Memory % Utilization: Memory(Ni)%

 NetFLow: T(Ni)

 Disk I/O Frequency: IO(Ni)

 Response Time: Rt(Ni)

 Process Sum: Pr(Ni)

 Adds weight parameter πi to adjust the proportion of

parameters.

2010 International Conference on Service Sciences © IEEE 13

Virtual Storage Implementing (8/10)

2010 International Conference on Service Sciences © IEEE 14

Virtual Storage Implementing (9/10)

 Writing Balancing Module (2/3)

 Σ πi = 1

 Load(Ni) = π1 * CPU(Ni)% + π2 * Memory(Ni)% + π3 * T(Ni) +

π4 * IO(Ni) + π5 * Rt(Ni) + π6 * Pr(Ni)

 Refresh Cycle T(i) is bout 5-10 seconds.

2010 International Conference on Service Sciences © IEEE 15

Virtual Storage Implementing (10/10)

 Writing Balancing Module (3/3)

 When data/file is writing,

Writing Routing Module will select best

logic node from IW(Ni)

 IW contains two tables:

 LW: Logic Space Weight Table

 RW: Resource Weight Table

 Determine the routing

 Find the best node of Logic Space

 If more than one, select the best T one

 Find the best node of Resource

 Routing finished, write

NetFLow?
Resp. Time?

2010 International Conference on Service Sciences © IEEE 16

Use Case

 Implementation Model

 GridSphere Portal Framework (http://www.gridsphere.org)

 iRODS Data grid system (https://www.irods.org/)

 User View

 Web browser

 Command line

 Application

 Sharing file folders

2010 International Conference on Service Sciences © IEEE 17

Conclusion

 Compared with former distribute storage system,

concurrent access efficiency and use rate of storage

resource improve obviously after using LBVS

having load balancing control.

 In the foreseeable future, cloud storage will get more

and more support. And virtual storage will be

applied in much larger scale.

