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Abstract

Background: Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used

to analyze the protein content of biological samples in large scale studies. The data resulting from

an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new

developments in Bioinformatics, especially in the fields of algorithm development, statistics and

software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are

the detection of peptide features in the mass spectra and the alignment of samples by correcting

for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for

these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no

data that represents a ground truth for the evaluation of feature detection, alignment and filtering

algorithms.

Results: We present LC-MSsim, a simulation software for LC-ESI-MS experiments. It simulates ESI

spectra on the MS level. It reads a list of proteins from a FASTA file and digests the protein mixture

using a user-defined enzyme. The software creates an LC-MS data set using a predictor for the

retention time of the peptides and a model for peak shapes and elution profiles of the mass spectral

peaks. Our software also offers the possibility to add contaminants, to change the background

noise level and includes a model for the detectability of peptides in mass spectra. After the

simulation, LC-MSsim writes the simulated data to mzData, a public XML format. The software also

stores the positions (monoisotopic m/z and retention time) and ion counts of the simulated ions

in separate files.

Conclusion: LC-MSsim generates simulated LC-MS data sets and incorporates models for peak

shapes and contaminations. Algorithm developers can match the results of feature detection and

alignment algorithms against the simulated ion lists and meaningful error rates can be computed.

We anticipate that LC-MSsim will be useful to the wider community to perform benchmark studies

and comparisons between computational tools.
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Background
In mass spectrometry (MS) based proteomics, proteins in
a sample are digested and the resulting peptides are sepa-
rated by high-performance liquid chromatography (LC)
before injecting them into the mass spectrometer [1]. In
this work, we focus on data from LC-MS experiments, as
opposed to LC-MS/MS experiments where a fragmenta-
tion of selected sample compounds is performed to
obtain ion ladders which can be used for the identifica-
tion of the compound [2]. Pure LC-MS experiments do
not directly give information about the sequences of the
peptides in a sample but we can still use the information
on the LC-MS level to perform a quantification of the sam-
ple proteins [3]. In this application, algorithms detect
peptide ion signals (features) in LC-MS spectra and esti-
mate their abundances by integrating the signal area. Dif-
ferent charge variants of the same peptide are summarized
(deconvoluted) and the peptides are mapped back to their
parent protein to obtain abundance estimates at the pro-
tein level.

Modern mass spectrometers can easily generate thousands
of mass spectra in a short time. This wealth of information
has sparked off the development of new, fully automated
methods to analyze and process it. Fig. 1 gives an example

of a generic data analysis workflow in a study using LC-
MS. Stages of mass spectrometry-based proteomics in
which algorithms can be applied are, among many others,
low-level preprocessing such as the abovementioned fea-
ture detection and quantification [4-6], alignment and
registration of LC-MS data sets [7-9] as well as the statisti-
cal evaluation [10] of the experiments. There also exist
some software tools that offer all (or most) of these steps
in one program [11-14]. For a recent review, we refer the
interested reader to Müller et al. [15].

This plethora of tools is often confusing for the user who
needs to decide which algorithms to apply for his data.
But also developers of new algorithms need standardized
benchmark data to compare their approach to existing
ones. This is a difficult task, since only few quality metrics
[16] and only limited benchmarks exist so far. Carefully
compiled databases of annotated test data are standard in
other fields such as DNA sequence [17-19] or RNA struc-
ture analysis [20]. But they are not yet available for mass
spectrometry based proteomics. Only few researchers
make their LC-MS data publicly available and all pro-
teomic databases so far focus on data for the identification
of peptides from MS/MS spectra [21-25] and not on
broader applications such as quantitative experiments.

LC-MS data analysisFigure 1
LC-MS data analysis. A generic workflow for LC-MS data analysis: This figure illustrates key steps in a typical workflow, 
which comprise feature detection, spectra alignment and statistical evaluation.
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An ideal LC-MS data set for the evaluation of feature
detection, alignment and quantification algorithms
would contain annotations with the positions of all pep-
tide ion signals, their charge states, monoisotopic masses
and abundances. Only this information would allow
meaningful comparisons between different methods and
fair benchmark studies. Of course, this information can be
partially obtained by peptide identifications using MS/MS
fragmentation. Unfortunately, only a few of the peptide
ions present in a sample are selected for fragmentation.
Furthermore, even of those fragmented, many cannot be
identified due to noise, mutations or posttranslational
modifications. For these reasons, annotations by MS/MS
will always be incomplete. Manual annotations by a
human expert have been performed for single data sets [6]
but are clearly infeasible if our aim is to generate larger
benchmarks. We believe that the simulation of LC-MS
spectra is a valid approach, to be supplanted by the accu-
mulation of annotated real-word spectral databases.

In the following sections, we introduce our software LC-
MSsim and describe its implementation details. We would
like to emphasize that our aim was not to create a detailed
physical model of mass spectra generation as, for instance,
attempted in [26]. But we want to simulate data that is rea-
sonably close to reality and provides a fair testing ground
for data analysis methods. The idea of simulating ESI mass
spectra to assess the performance of MS feature detection
algorithms was pioneered by Wong et al. [27] who pre-
sented a straightforward model for the simulation of ESI
mass spectra. They simulate spectra as mass lists derived
from theoretical digests of protein sequences with nor-
malized intensities without prediction of ion intensities,
retention times or simulation of isotopic pattern. They
also restrict their comparison to their own algorithm
which implements a very specific task, the detection of
protein-ligands and other macromolecular complexes in
mass spectra. Of course, the applications of LC-MSsim are
not restricted to feature detection benchmarks. The next
obvious step would be to compare alignment algorithms,
but even the comparison of a full quantification workflow
is an interesting scenario.

To our knowledge, LC-MSsim is the first software that
models the whole LC-MS data acquisition process and
delivers an output (the simulated LC-MS map and the list
of peptides and contaminants with m/z and retention
time) that can directly be used for the assessment of pro-
teomics algorithms. There are, of course, some programs
that simulate individual parts of the LC-MS data acquisi-
tion process, such as the estimation of isotopic peak pat-
terns [28,29], the prediction of peptide retention times
[30-34] or detectability [35,36]. However, these tools are
written in different programming languages and they have
different output formats that cannot be easily combined.

Therefore, to simulate a full LC-MS run, it is clearly desir-
able to have all of these tools combined in a single appli-
cation.

Methods
LC-MSsim is written in C++ as an add-on for OpenMS
[37], our software library for computational mass spec-
trometry. LC-MSsim uses OpenMS data structures for file
reading, writing and the calculation of isotopic patterns. It
is also compatible with The OpenMS Proteomics Pipeline
(TOPP) [13] and can readily be integrated into its work-
flows. This makes it very easy to generate large numbers of
simulated data sets and to pipe them directly into a TOPP
data analysis pipeline. LC-MSsim is compatible with the
current OpenMS release version 1.1.

Furthermore, LC-MSsim supports the TOPP INI (configu-
ration) file format. This format is XML-based and can be
edited using common XML editors or the INIFileEditor
supplied with TOPP. LC-MSsim, OpenMS and TOPP are
all published under the Lesser GNU Public License. The
source code can be downloaded from http://source
forge.net/projects/lcms-sim.

An artificial LC-MS data set is generated by the following
steps: digestion of proteins, prediction of peptide detecta-
bility and retention time, relative abundances of charge
states, modeling of isotopic and elution profiles and addi-
tion of shot noise to spectra. Key parameters that influ-
ence the outcome of the simulation are the minimum
accepted peptide detectability which influences the
number of theoretical peptides appearing in the LC-MS
spectra, mass accuracy and resolution, as well as the Full-
Width-At-Half-Maximum (FWHM) of the peptide peaks
and the percentage of non-peptide contaminants added
by the simulation software. In the following sections, we
give an overview of all simulation steps and explain their
parameters in more detail.

Protein Digestion

The user can supply a list of protein sequences in a FASTA
file and define their relative abundances in the sequence
header. If no abundance is given, we assume that each
protein, and thus its peptides, will appear in equal abun-
dances in the mass spectra (apart from effects such as ion
suppression etc.). LC-MSsim supports only tryptic digests
in this version, but new proteases can be added easily by
extending the corresponding OpenMS classes by new reg-
ular expressions. We can also simulate missed cleavages
and self-digestion of the protease.

Detectability and Retention Time Prediction

After the enzymatic digest of all protein sequences, we
need to determine the retention time of each peptide.
Pfeifer et al. [34] recently introduced the paired oligo-border

http://sourceforge.net/projects/lcms-sim
http://sourceforge.net/projects/lcms-sim
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kernel (POBK) for machine learning problems in compu-
tational proteomics. Support vector regression [38] using
this kernel function yields very accurate retention time
predictions while requiring only a small number of train-
ing samples. We use the POBK for retention time predic-
tion in our simulator. We trained the SVM on the test set
of Petritis et al. [31] and determined the best parameters
using nested cross-validation. The data set consists of
1304 peptide identifications of capillary reversed-phase
liquid chromatography runs.

It was previously shown that not all peptides of a digested
protein actually appear in the LC-MS sample [35,36,39].
There are numerous reasons for that. Some peptides will
only poorly ionize in the electrospray and others are sim-
ply not soluble, just to name a few. To account for this
fact, we determine the likelihood of detectability of each
peptide using a support vector machine [40] and the
POBK as a kernel function. We performed a nested cross-

validation on balanced samples of the MUDPIT-ESI data
set of Mallick et al. [35]. This means that we selected all n
positive examples and chose n negative examples ran-
domly out of all negative examples. The whole process
was repeated ten times to minimize random effects. A
ROC curve of all predictions on the excluded test parti-
tions can be seen in Fig. 2. Mallick et al. [35] evaluated
their method in terms of 1 – positive predictive value
(PPV) against coverage. For the MUDPIT-ESI data set they
got a coverage of about 0.65 at 1 - PPV = 0.1 and a cover-
age of about 0.75 at 1 - PPV = 0.15. In our evaluation (data
not shown) we get a coverage of about 0.65 at 1 - PPV =
0.11 and a coverage of about 0.8 at 1 - PPV = 0.15. This
means that our method performs comparable to the
methods of Mallick et al. [35] although requiring just a
fraction of the negative data set for training (about 1000
instead of 25, 000), which drastically decreases the time
needed for training the classifier. We used the probability

ROC plot for peptide detectability predictionFigure 2
ROC plot for peptide detectability prediction. ROC plot for peptide detectability prediction: This plot shows the ROC-
curve for peptide detectability prediction on the excluded test partitions of the nested cross-validation runs on balanced sam-
ples of the MUDPIT-ESI data set of Mallick et al. [35].
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estimates [41] of the libsvm [42] to compute the likeli-
hood of a peptide to appear in the LC-MS spectra.

Charge Distribution Model

After protein digestion, peptide detectability and reten-
tion time prediction, we need to determine the relative
abundances of the ions created for each peptide. LC-
MSsim models an electrospray ionization (ESI) mass spec-
trometer. ESI ionizes peptides and other sample com-
pounds by applying a strong electric field to the sample.
This field induces a charge accumulation at the liquid sur-
face which will form highly charged droplets. As a result,
we expect to see one to four ions per peptide, but charge
states two or three are the most common. There are several
chemical models describing the charge distribution for
molecules after ESI and numerous factors influence this
distribution such as the pH, sample composition and con-
formation of the peptide [43,44]. However, our experi-
ments have shown that a simple model gives a good
approximation of real data.

For this reason, we decided to stick with a straightforward
model of an ESI mass spectrometer in positive ion mode.
We follow an approach by Schnier et al [45] and assume
that each basic amino acid in a peptide can receive at most
one charge unit (proton). Consequently, most tryptic pep-
tides have a maximum charge state of 2 – 3 which matches
observations of real data. We determine the relative abun-
dances of each charge state by sampling from a binomial
distribution. As a result, low charge states are much more
likely to occur than higher ones.

Ion Signal Model

The position of a peptide ion signal in the LC-MS map is
determined by three parameters: monoisotopic mass,
charge and retention time. We calculate the mass from the
amino acid sequence, charge is given by our binomial
charge distribution model and the retention time pre-
dicted by the SVM.

Usually, a peptide ion gives rise to several peaks in a mass

spectrum due to the fact that some of its atoms will occur

in heavier isotopic states. Given the sequence of the pep-

tide, we calculate its monoisotopic mass from its empiri-

cal formula. The relative heights of the isotopic peaks are

calculated using a simple but fast algorithm [46]. This

algorithm gives us the relative intensities of the isotopic

peaks. We model the peak shape using a Gaussian distri-

bution. The user can choose the peak width in terms of the

Full-Width-At-Half-Maximum (FWHM). The FWHM of a

peak in a mass spectrum is given by the difference of the

m/z values at which the ion count equals half of the max-

imum ion count of this peak. Note that we assume the

peak shape to be Gaussian and the FWHM of a Gaussian

function is given by , where σ is the standard

deviation of the Gaussian.

Whereas the shape of peaks in the m/z dimension is rela-
tively stable during one experiment, the peak shape in
retention time might vary considerably, but has often a
Gaussian-like shape. To account for this fact, we model
the elution profile of a peptide signal using different chro-
matographic functions: a simple Gaussian distribution
and an exponentially modified Gaussian distribution
(EMG) [47]. Whereas the Gaussian function represents a
perfect chromatographic condition, the EMG can model
different distortions of the elution peak. Its exponential
component introduces tailing and fronting effects. Several
studies have shown that it provides a good fit for chroma-
tographic peaks in reverse-phase chromatography
[48,49]. It is defined as

where b is the standard deviation of the Gaussian part, d is
the expected shift of the exponential modifier, a the
amplitude and c the center. For d < 0, we obtain a fronted
peak and for d > 0, the peak is tailed. Furthermore, we add
uniformly distributed noise to single sampling points of
the EMG but smooth the noisy elution profile afterwards
to obtain ragged chromatographic peaks. This allows us to
model more realistic chromatographic peaks as an elution
profile in a real LC-MS run is never entirely smooth. On
the other hand, this introduces several additional param-
eters into the simulation. To make the software more user-
friendly, we supply a set of pre-defined parameter sets for
the EMG, entitled poor,medium and good chromatographic
conditions. A choice of good conditions leads to almost
perfect Gaussian-shaped peaks, like they will almost never
appear in a real experiment. Accordingly, medium and
poor conditions lead to far more noisy elution peaks,
including tailing and fronting effects. The corresponding
peptide signals will be more difficult to trace across all
their scans since most algorithms have problems to trace
features with very rough elution peaks. Fig. 3 shows three
elution peaks from a reversed-phase column and as well
as three simulated elution profiles, one for each parameter
set. As we can see, the simulated peaks are close to real elu-
tion peaks and cover a sufficiently broad range of chroma-
tographic conditions.

Putting all this together, we can model LC-MS experi-
ments with different mass resolutions and chromato-
graphic conditions. To exemplify this, the right part of Fig.
4 gives a bird's eye view of an LC-MS map created by LC-
MSsim. This map represents a tryptic digest of BSA (Bovine
Serum Albumin) with some contaminations (metabolites
etc., see below). The left part of Fig. 4 shows a simulated
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BSA peptide ion from this map. This peptide occurs in the
charge variant +1 and +2.

Noise and Contaminations

No real LC-MS data set consists only of true signals i.e. sig-
nals caused by sample compounds. There is always some
(and often a high amount of) noise in each spectrum. LC-
MSsim has several parameters that allow the user to intro-
duce noise of various forms into a data set. Users can sim-
ulate almost perfect LC-MS runs and runs with high
amount of noise posing severe challenges to data analysis
algorithms.

First, the user can define error bounds on the theoretically
predicted retention times. By doing so, we simulate reten-
tion time shifts between different experiments and, for
instance, can evaluate the performance of LC-MS align-
ment algorithms that are used to correct for these shifts as
illustrated in Fig. 1. LC-MSsim assumes these errors to be

Gaussian-distributed and the user can define medium and
standard deviation in each case.

Mass analyzers with different mass accuracies and resolu-
tions are simulated by changing the FWHM of the peptide
peaks as described above and by altering the sampling
step size of the peptide models. Furthermore, LC-MSsim
simulates inaccuracies in peak intensity measurements by
adding Gaussian-distributed noise to peptide peaks.
Finally, ESI mass spectra frequently contain high-fre-
quency noise signals of low to medium intensity, often
referred to as shot noise. This term stems from electronics
and physics [50] and describes statistical fluctuations
occurring if the number of particles measured by a detec-
tor is very small. Its strength increases with the average
intensity of the detected signal but is usually only detect-
able if the measured signal is very weak. The common
assumption is that shot noise is Poisson-distributed [51].

Comparison of real and simulated elution peaksFigure 3
Comparison of real and simulated elution peaks. Comparison of real and simulated elution peaks: (Left) Real elution 
peaks from a Reversed-phase HPLC experiment. (Right) Simulated elution profiles. They represent the three pre-defined col-
umn configurations LC-MSsim can simulate.
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To our knowledge, the notion of shot noise in mass spec-
trometry is much less well defined than in physics but
usually loosely refers to high-frequency noise of low
intensity in a mass spectrum. Noise models for mass spec-
tra have been the topic of several publications, but no
consensus on the most suitable model exists so far [52-
54]. However, recent publications suggests that noise in
both Q-TOF and Ion Trap spectra can be modeled using a
Poisson distribution [53] and therefore we decided to do
the same. We split each spectrum in our simulated LC-MS
map into segments of uniform size. We determine the
number of shot noise signals by sampling from a Poisson
distribution, though m/z and intensity of these particles
are given by a Gaussian and Exponential distribution,
respectively. Fig. 5 shows the peak intensity distribution
of a real MS scan. The distribution is approximately expo-
nential with some signals (true peptide peaks) having a
high intensity. This shows that our model with exponen-
tially distributed noise intensities well approximates real
signals.

Another typical phenomenon in mass spectra is a so-
called baseline signal which usually decays with increas-
ing m/z. This is usually a problem for MALDI instruments
but less in ESI mass spectrometry. LC-MSsim can simulate
baseline signals by adding an exponentially-decaying
baseline to each mass spectrum, but this feature is turned
off by default.

Shot noise and a baseline are both factors that hamper a
computational analysis. But of equal concern for feature
detection algorithms are non-peptidic contaminations in
an LC-MS experiment or peptide signals arising from
modified peptides. Hoopmann et al. [5] demonstrated
that the detection of modified peptides is difficult and
requires additional computational effort since the iso-
topic pattern of these peptides does not follow the typical
averagine pattern assumed by most algorithms. In short,
an averagine is an average amino acid with a composition
estimated from a large number of protein sequences.
Using the averagine, we can estimate the average isotopic
pattern for a peptide of a given mass. Furthermore, con-
taminations such as salt molecules or metabolites are of
lesser interest in proteomics studies and should not be
reported by peptide feature detection algorithms. For
these reasons, we decided to simulate these interferences
as well. LC-MSsim comes with a list of sample contami-
nants that can easily be extended by editing the corre-
sponding text file. The current list of available
contaminants comprises a snapshot of metabolites down-
loaded from the Human Metabolome Database [55]. The
user can set the percentage of added contaminants with
respect to the number of peptides.

LC-MSsim also includes a list of typical modifications
such as oxidations or demethylations together with a list
of affected amino acid residues. For each peptide contain-
ing a matching amino acid, LC-MSsim determines at ran-
dom whether the amino acid is modified or not. The user

A simulated LC-MS runFigure 4
A simulated LC-MS run. Bird's eye view of a simulated LC-MS map: A simulated BSA peptide ion signal (left) and a bird's eye 
view of an LC-MS map of the whole digest (right). The blue signals are the tryptic peptides, red and yellow is shot noise and 
contaminants.



BMC Bioinformatics 2008, 9:423 http://www.biomedcentral.com/1471-2105/9/423

Page 8 of 18

(page number not for citation purposes)

can set the corresponding probabilities and desired rela-
tive frequencies of modified peptides. Fig. 6 shows an MS
scan from a simulated BSA digest with added metabolic
contaminants and shot noise. It is only a single scan from
an LC-MS experiment, therefore not all BSA peptides are
visible.

Results
In this section, we present exemplary applications of LC-
MSsim. The advantage of our simulator is that we can gen-
erate LC-MS maps for which the exact mass, charge, reten-
tion time and bounding box of all compounds are known.
The bounding box is the smallest axis-parallel rectangle
that fully encloses the raw data points constituting the

Intensity distribution of a real mass spectrumFigure 5
Intensity distribution of a real mass spectrum. The intensity distribution (histogram and density plot) of raw data point 
intensities in a real mass spectrum. The plot shows that the true intensities match closely our Poisson-distributed intensity 
model.
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peptide feature. We can also deliberately introduce noise
or change instrument parameters such as resolution or
chromatographic behavior. This allows scientists to per-
form fine grained comparisons of LC-MS data analysis
algorithms.

We decided to focus on peptide feature detection algo-
rithms and compare the algorithms msInspect [11],
Superhirn [15], SpecArray [56], MZmine [12] and
Decon2LS [57]. Decon2LS is an implementation of the
THRASH algorithm [58]. We also report on results for the
algorithm implemented in OpenMS [4]. This is for refer-

A simulated mass spectrumFigure 6
A simulated mass spectrum. A simulated mass spectrum of a BSA digest with shot noise added. The inset shows an iso-
topic pattern from the same scan.
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ence only, since we use some of the simulation models in
our feature detection algorithm as well, which would
make benchmarking of the OpenMS algorithm biased.

The algorithms we compared differ heavily in the type and
number of parameters they accept. Some require only m/
z and retention time range in which to search for features,
others require lots of parameters such as confidence cut-
offs, bin width or minimum signal-to-noise levels, to
name just a few. Parameters are also not always well doc-
umented. To achieve a comparison as fair and unbiased as
possible, we chose for each algorithms settings that
seemed suitable for each simulation run (such as mass res-
olution and m/z range), but apart from that we decided to
stick with the standard parameters and not to further opti-
mize.

Quality of Simulation

Performing simulations always raises the question
whether the simulated data is sufficiently close to reality.
In this section, we will demonstrate that our simulations
are realistic.

We already showed that our model of elution peaks and
shot noise match real data well (see Fig. 3 and Fig. 5,
respectively). To illustrate the quality of our isotopic peak
model, we simulated a mixture of standard proteins and
generated a real LC-MS run of the same mixture on an ESI-
TOF mass spectrometer (microTOF, Bruker Daltonics).
Details of the sample preparation are given in [59]. We
manually extracted peptide feature signals from the real
data set and the simulated LC-MS run and computed
Spearman's rank correlation coefficient for three simu-
lated isotopic peak patterns. The correlation coefficients
were high, namely 0.91, 0.90 and 0.84. Fig. 7 gives an
example. We repeated this experiment with a low resolu-
tion LC-MS run. We recorded a mixture of human serum
on an ESI iontrap instrument and simulated an LC-MS
map of similar resolution. Details of the sample prepara-
tion are given in Mayr et al. [60]. The correlation between
real and simulated isotopic pattern was high (between
0.92 to 0.98). This shows that our isotope distribution
model based on the algorithm by Kubinyi [46] and a
Gaussian peak shape generates realistic signals.

Influence of Mass Resolution on Feature Detection

We downloaded the Mouse IPI protein sequence set
(08.04.2008) and randomly selected 100 protein
sequences from this set. A tryptic digest and filtering for
detectability at a threshold of 0.8 resulted in 820 peptides.
The chosen threshold corresponds to a False Discovery
Rate of 10%. We opted for this mixture of moderate com-
plexity to avoid a high number of overlapping peptides.
Still, manual annotations of all these data sets would be
tedious. In our first experiment, our goal was to determine

to what extent the performance of current feature detec-
tion algorithms depends on the mass resolution of the
instrument. We simulated different mass resolutions by
changing the FWHM of the peptide isotopic pattern. We
generated data sets for FWHM values of 0.05, 0.2, 0.5 and
0.8. A peak FWHM of 0.05 roughly corresponds to an
Orbitrap instrument whereas the 0.8 results in spectra
similar to typical ion trap measurements. To each data set,
we added shot noise with a mean intensity of 150 and a
Poisson rate of 450. This noise level was chosen such that
all peptide signals would be well above the noise level.
The challenge of this benchmark was to detect poorly
resolved and possibly overlapping peptide signals. The
full result lists are contained in the supplemental material
[see Additional file 2] as well as the settings for each fea-
ture detection algorithm [see Additional file 3]. We also
described our strategy to find suitable parameters for each
algorithm [see Additional file 1]. Fig. 8 and Fig. 9 show the
simulated LC-MS run for FWHM 0.05 and the spectrum at
retention time 2504.98, respectively. All simulated LC-MS
maps were uploaded to the PRIDE database http://
www.ebi.ac.uk/pride/ and are available under the acces-
sion numbers 8161 to 8168 inclusive.

We noticed early on that each algorithm follows a differ-
ent strategy. Some algorithms report a lot of potential
peptide features even for simple data sets, rather than
missing an important signal. The rationale seems to be
that it is better to obtains many false positives than to miss
a potentially crucial signal. Of course, spurious noise sig-
nals can be removed during later stages of the workflow.
For instance, by removing signals that do not appear at
consistent positions during alignment. Nevertheless, this
makes matters unnecessary difficult. In contrast, some
algorithms are highly specific but tend to miss poorly
resolved signals. Which strategy is best might depend on
the specific task to be performed and the complexity of the
data.

Furthermore, not every algorithm associates a quality or
confidence measure with a feature that could be used as a
cutoff. It is therefore not possible to give the classical
Receiver Operating Characteristic curves frequently used
when comparing signal detection methods. Conse-
quently, we decided to give the results in terms of the False
Discovery Rate (FDR) and True Positive Rate (TPR). We
approximate the FDR by

and compute the TPR as

FDR =
+

FalsePositives

TruePositives FalsePositives

TPR =
+

TruePositives

TruePositives FalseNagative
.

http://www.ebi.ac.uk/pride/
http://www.ebi.ac.uk/pride/
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We count a peptide signal as detected correctly if the algo-
rithm found a feature with the correct monoisotopic m/z
(with a tolerance of 0.8 m/z) and an estimated bounding
box within the true signal bounding box. It happens fre-
quently that an algorithm splits a feature eluting over a
longer period of time into several parts, i.e., loses track of
the elution peak. In this case, we counted only one true

positive hit for this feature but did not count the remain-
ing features as incorrect hits. Table 1 shows the results of
this experiment. All algorithms recover most of the pep-
tide signals at high mass resolutions but the True Positive
Rate decreases for all algorithms with the resolution. Spe-
cArray performs best on the high resolution data but with
decreasing performance at lower resolutions. We would

Assessment of simulation qualityFigure 7
Assessment of simulation quality. Comparison of a simulated and a real isotopic pattern. The Pearson correlation 
between these pattern is high: 0.91.
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like to emphasize that SpecArray performs very well out-
of-the-box, i.e., without parameter tuning, whereas other
algorithms required a filtering of signals. Our algorithm,
implemented using OpenMS, seems to be less affected by
a poor mass resolution but fails to detect some signals
even at high resolutions.

We also note that some algorithms, especially msInspect
and Decon2LS, compute huge numbers of false positives
and consequently, their False Discovery Rates are poor.

On the other hand, both algorithms find almost all true
signals, especially on the high resolution data set.

Fig. 10 displays the running times of all algorithms on
each data set. The time measurements were performed on
a 3.2 GHz Intel Xeon CPU with 3 GB memory running
Debian or Windows Server 2003 R2 (in the case of
Decon2LS, mzMine and msInspect). Note that the run-
ning times of Decon2LS and MZmine are approximate
results only, since both tools are GUI-based and therefore
do not allow direct time measurements. Superhirn stands

Simulated LC-MS run of Mouse (Mus musculus) proteinsFigure 8
Simulated LC-MS run of Mouse (Mus musculus) proteins. The simulated digest of 100 Mouse proteins, for FWHM 
0.05. The plot shows the the simulated LC-MS map. Shot noise is yellow and orange/red. The peptide signals are drawn in pink 
(monoisotopic mass) and with their bounding box in black.
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out as the fastest algorithm, whereas all other tools yield
similar running times. Decon2LS is a bit slower than the
rest, but not significantly. To summarize, different algo-
rithms have different strengths: some recover nearly all
true signals even under poor conditions but at the expense
of large numbers of false positive hits. One might argue
that many of this false positive signals could be removed

by removing features of low intensity or of unlikely
masses. But this clearly has its disadvantages if we exam-
ine complex mixtures with large dynamic ranges and
many compounds at low intensities.

Simulated mass spectrum taken from Mouse LC-MS mapFigure 9
Simulated mass spectrum taken from Mouse LC-MS map. A mass spectrum (retention time 2504.98) from the LC-MS 
map of Mouse proteins.
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Table 1: False Discovery and True Positive Rates for changing mass resolutions

FWHM Superhirn msInspect OpenMS MZmine SpecArray Decon2LS

0.05 TPR/FDR 0.88/0.57 0.96/0.46 0.92/0.27 0.78/0.87 0.99/0.05 0.80/0.64

0.2 TPR/FDR 0.68/0.50 0.32/0.97 0.96/0.05 0.71/0.83 0.97/0.41 0.82/0.78

0.5 TPR/FDR 0.10/0.72 0.80/0.98 0.95/0.02 0.33/0.68 0.94/0.54 0.68/0.49

0.8 TPR/FDR 0.003/0.50 0.87/0.98 0.84/0.12 0.03/0.31 0.92/0.36 0.49/0.34

False Discovery and True Positive Rates on four data sets with changing mass resolutions.

Running times of the peptide feature detection algorithmsFigure 10
Running times of the peptide feature detection algorithms. Running times of all feature detection algorithms on the 
four data sets with different mass resolutions. Although the running times are comparable, the software Superhirn is the fast-
est.
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Influence of Chromatographic Conditions

In this experiment, we tested if the algorithms could deal
with noisy elution profiles. We simulated three LC-MS
runs, one for each predefined chromatographic condition
(good, medium and poor) but kept the mass resolution in
terms of the FWHM constant at 0.05. If a peak elution pro-
file gets noisy, we expected most algorithms to lose track
of the isotopic pattern over time or maybe even not to
detect it at all. Table 2 shows the results of this experi-
ment, again in terms of False Discovery and True Positive
Rate.

The performance of most algorithms remains stable across
chromatographic conditions. There are only two algo-
rithms whose performance lags behind if the elution
peaks become noisier, OpenMS and MZmine. The first
simulated run with good column conditions contains
many overlapping isotopic pattern, and OpenMS is not
able to separate strongly overlapping signals. Further-
more, OpenMS uses a Gaussian model to fit the elution
curve of a feature and discards features having a poor
probability under this model. Obviously, this dampens
the performance of OpenMS in this experiment. MZmine
does not perform well on high resolution data, as shown
in the previous section. This might be due to unfavorable
parameter settings. The False Discovery Rate of SpecArray
increases slightly at poorer chromatography conditions.
All other algorithms are not affected. Note that Decon2LS
is not affected by changes in the chromatographic condi-
tion since this tool detects isotopic patterns in a scanwise
matter and does not take the elution profile into consid-
eration.

Metabolites

Finally, we tested to what extent current peptide feature
detection algorithms can discriminate between peptide
signals and signals of other sample compounds. To this
end, we generated an LC-MS map consisting of 360
metabolites, but no peptides. These metabolites represent
a random subset of compounds from the Human Metab-
olome Database (accessed 11 March 2008). For each
metabolite, we computed its isotopic distribution and
placed it at a randomly-determined retention time in the
LC-MS map. We modeled the elution profile using a Gaus-
sian function.

Table 3 shows the results of this experiment. The row
labelled with PF indicates the percentage of metabolite
compounds declared as peptide feature by the algorithm.
The second row gives the total number of features
reported. As we can see, most algorithms are not able to
distinguish between peptide isotopic pattern and metabo-
lite signals. This is probably not surprising as peptides and
metabolites exhibit similar isotopic patterns. To illustrate
this fact, we drew 2875 metabolites at random from the
Human Metabolome Database and computed their iso-
topic peak profile. After this, we estimated the isotopic
peak profile for a peptide of the same mass using the
method of averagines [61]. This method is used by most
feature detection algorithms developed so far.

We computed the Pearson correlation coefficient for both,
metabolite and peptide isotopic profiles. The lowest cor-
relation is 0.95, which is still high. But this means that
current algorithms that try to detect peptide signals using
the averagine method will only poorly be able to distin-
guish peptides from other biomolecules.

This problem might not be grave. If we simply search for
signals that discriminate between two conditions e.g. con-
trol and disease, it might at first not be that important
whether this signal is caused by a peptide or a metabolite.
But it is a fact that users have to keep in mind: most feature
detection algorithms detect a lot of features in a real world
data set, many more than are sequenced. This has usually
been attributed to the fact that the data dependent acqui-
sition process is a semi-random sampling of sample com-
pounds and many peptides will never be identified. But
users need to be aware that not all detected features will
be caused by peptides, but also by other biomaterials
including metabolites.

Discussion
LC-MSsim simulates mass spectrometry experiments with
a wide range of instrument settings and column perform-
ances. There are some ways this software could be
improved. To give an example, we trained our SVM pre-
dictor for the detectability of peptides on data obtained
from MS/MS identifications. That is, our model actually
predicts whether a peptide is detected and identified using
MS/MS. But we use it to predict whether a peptide occurs
at all in an LC-MS data set or not. This is clearly a less strin-

Table 2: False Discovery and True Positive Rates under changing chromatography conditions

condition Superhirn msInspect OpenMS MZmine SpecArray Decon2LS

good TPR/FDR 0.98/0.87 0.97/0.85 0.85/0.20 0.85/0.19 0.98/0.05 0.72/0.38

medium TPR/FDR 0.99/0.87 0.98/0.84 0.92/0.23 0.92/0.28 0.99/0.05 0.81/0.64

poor TPR/FDR 0.98/0.86 0.98/0.84 0.92/0.16 0.91/0.20 0.99/0.05 0.79/0.48

False Discovery and True Positive Rates on three data sets under changing chromatography conditions.
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gent criterion since not all peptides visible in a mass spec-
trum will be identified by MS/MS.

It would also be interesting to test another important class
of LC-MS data analysis algorithms, namely alignment
methods. There is a similar diversity of approaches [62] as
for feature detection algorithms and it would be highly
beneficial to the computational proteomics community
to know about their individual strengths and weaknesses.
The next step, as already mentioned in the introduction,
would be to test full data analysis pipelines for accuracy of
quantification, robustness in the presence of noise and
contaminants, etc. Obviously, finding good parameters
for each and every pipeline will become even more diffi-
cult than it was already in this smaller study. It might be a
good idea to compile a benchmark data set consisting of
some real and manually annotated LC-MS runs, comple-
mented by a large number of simulated runs. This would
be an ideal testing ground for the proteomics community
to compare and assess different analysis methods.

To summarize, our aim was not to develop a simulation
capturing all physical aspects of an LC-MS experiment.
This is hard since not all these aspects are entirely under-
stood. But our aim was to develop a tool which yields
benchmark data that are sufficiently close to reality. Fur-
thermore, we tried to keep the source code as modular as
possible such that the community can adopt it or add new
ideas and simulation models.

Conclusion
We presented LC-MSsim, a simulation software for LC-
ESI-MS spectra. Our software contains predictors for pep-
tide retention time and detectability as well as models for
charge distribution, peak shapes and isotopic intensity
distributions. It has already proved to be valuable for in-
house studies and we make it publicly available in the
hope that it will be useful to the wider community.

LC-MSsim is implemented as an add-on to the OpenMS
C++ software library and available for free under an open
source license (LGPL). Both OpenMS and LC-MSsim can
be downloaded from the sourceforge software repository.
From a software engineering point of view, LC-MSsim is
an example how mass spectrometry-related software can
easily be built using the OpenMS library.

In this work, we demonstrated the versatility of LC-MSsim
for the benchmarking of peptide feature detection algo-
rithms. This is a difficult task on real LC-MS data since
there is no clearly defined ground truth in this case. We
were able to probe the capabilities of currently available
algorithms to a deeper extent than previously possible.

Availability and Requirements
LC-MSsim runs under Linux and Windows (using the
MingGW compiler). Sourcecode is available from http://
sourceforge.net/projects/lcms-sim. Installation instruc-
tions can be found at http://lcms-sim.sourceforge.net/.
The software depends on several data structures in the
OpenMS software library which can be downloaded at
http://www.openms.de.

List of abbreviations used
FDR: False-Discovery-Rate; FWHM: Full-Width-At-Half-
Maximum; LC-MS: Liquid Chromatography coupled to
Mass Spectrometry; LGPL: Lesser GNU Public License.
Available at http://www.gnu.org/licenses/lgpl.html; lib-
SVM: An integrated software for support vector classifica-
tion, available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm/; MudPIT: Multidimensional Protein Identifica-
tion Technology, it combines 2D chromatography, i.e.
two coupled columns, with a mass spectrometer; POBK:
Paired Oligo-Border Kernel; SVM: Support Vector
Machine; TPR: True Positive Rate.
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Table 3: Percentage of metabolites declared as features

Superhirn msInspect OpenMS MZmine SpecArray Decon2LS

PF (%) 98.07 99.17 92.56 80.44 98.90 99.17

# features 655 5885 813 283 719 3722

Percentage of metabolites declared as features. We also report the number of features detected in total.
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