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ABSTRACT
Newly emerging location-based and event-based social network ser-
vices provide us with a new platform to understand users’ prefer-
ences based on their activity history. A user can only visit a limited
number of venues/events and most of them are within a limited dis-
tance range, so the user-item matrix is very sparse, which creates
a big challenge for traditional collaborative filtering-based recom-
mender systems. The problem becomes more challenging when
people travel to a new city where they have no activity history.

In this paper, we propose LCARS, a location-content-aware rec-
ommender system that offers a particular user a set of venues (e.g.,
restaurants) or events (e.g., concerts and exhibitions) by giving con-
sideration to both personal interest and local preference. This rec-
ommender system can facilitate people’s travel not only near the
area in which they live, but also in a city that is new to them. Specif-
ically, LCARS consists of two components: offline modeling and
online recommendation. The offline modeling part, called LCA-
LDA, is designed to learn the interest of each individual user and
the local preference of each individual city by capturing item co-
occurrence patterns and exploiting item contents. The online rec-
ommendation part automatically combines the learnt interest of the
querying user and the local preference of the querying city to pro-
duce the top-k recommendations. To speed up this online process, a
scalable query processing technique is developed by extending the
classic Threshold Algorithm (TA). We evaluate the performance of
our recommender system on two large-scale real data sets, Douban-
Event and Foursquare. The results show the superiority of LCARS
in recommending spatial items for users, especially when traveling
to new cities, in terms of both effectiveness and efficiency.
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J.4 [Computer Applications]: Social and Behavior Sciences
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1. INTRODUCTION
Newly emerging event-based social network services (EBSNs),

such as Meetup (www.meetup.com) and DoubanEvent (www.
douban.com/events/), provide online platforms for users to
establish social events which will be held in physical places [16].
Given a created social event, users may express their intent to join
by replying “yes”, “no” or “maybe”. Meanwhile, the advances in
location-acquisition and wireless communication technologies en-
able users to add a location dimension to traditional social net-
works, fostering the growth of location-based social networking
services (LBSNs), such as Foursquare (foursquare.com) and
Gowalla (gowalla.com) which allow users to “check-in” at spa-
tial venues and rate their visit via mobile devices.

In this paper, we aim to mine more knowledge from the user
activity history data in LBSNs and EBSNs to answer two typical
types of questions that we often ask in our daily: (1) If we want to
visit venues in a city such as Beijing, where should we go? (2) If
we want to attend local events such as dramas and exhibitions in a
city, which events should we attend? In general, the first question
corresponds to venue recommendations, and the second question
corresponds to event recommendations. By answering these two
questions, we can satisfy the personalized information needs for
many users in their daily routines and trip planning. For simplic-
ity, we propose the notion of spatial items to denote both venues
and events in a unified way, so that we can define our problem as
follows: given a querying user u with a querying city lu, find k
interesting spatial items within lu, that match the preference of u.

However, inferring user preferences for spatial items is very chal-
lenging by using users’ activity history in an EBSN or LBSN. First,
a user can only visit a limited number of physical venues and attend
a limited number of social events. This leads to a sparse user-item
matrix for most existing location-based recommender systems [14,
10], which directly use collaborative filtering-based methods [20]
over spatial items. Second, the observation of travel locality [14]
makes the task more challenging considering that a user travels
to a new place where he/she does not have any activity history.
The observation of travel locality made on EBSNs and LBSNs
shows that users tend to travel a limited distance when visiting
venues and attending events. An investigation shows that the ac-
tivity records generated by users in their non-home cities are very
few and only take up 0.47% of the activity records they left in their
home cities. This observation of travel locality is quite common
in the real world [22], aggravating the data sparsity problem with
personalized spatial item recommendations (e.g., if we want to sug-
gest spatial items located in Los Angeles to people from New York
City). In this case, solely using a CF-based method is not feasible
any more, especially when coping with the new city problem, be-
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Figure 1: The Architecture Framework of LCARS

cause a querying user usually does not have enough activity history
of spatial items in a city that is new to him/her.

Let us assume, for example, that querying user u is a Shopaholic
and often visits shopping mall v′ in his/her home city; v is a popular
local shopping mall in city lv that is new to u. Intuitively, a good
recommender system should recommend v to uwhen he/she travels
to lv . However, the pure CF-based methods fail to do so. For the
item-based CF [15, 21], there are few common users between v and
v′ according to the property of travel locality, resulting in the low
similarity between the two items’ user vectors. For the user-based
CF [1], it is most likely that all the k nearest neighbors of user u live
in the same city as u, and that few of them have visited v according
to the property of travel locality.

To this end, we propose a location-content-aware recommender
system (LCARS) that exploits both the location and content infor-
mation of spatial items to alleviate the data sparsity problem, es-
pecially the new city problem. As is shown in Figure 1, LCARS
consists of two main parts: offline modeling and online recom-
mendation. The offline model, LCA-LDA, is designed to model
user preferences to spatial items by simultaneously considering the
following two factors in a unified manner. 1) User Interest: Mu-
sic lovers may be more interested in concerts while Shopaholics
would pay more attention to shopping malls. 2) Local Preference:
When users visit a city, especially a city that is new to them, they
are more likely to see local attractions and attend events that are
popular in the city. Thus, the preferences of local people are a
valuable resource for making a recommendation, especially when
people travel to an unfamiliar area where they have little knowl-
edge about the neighborhood. LCA-LDA can automatically learn
both user interest and local preference from the user activity his-
tory. Exploiting local preference can address the issue of data spar-
sity to some extent. To further alleviate the data sparsity problem,
LCA-LDA exploits the content information (e.g., item tags or cate-
gory words) of spatial items to link content-similar spatial items to-
gether, facilitating people’s travel not only near their home regions
but also to cities that are new to them. It is worth mentioning that
LCA-LDA can also capture the item co-occurrence patterns to link
relevant items together, just like item-based collaborative filtering
methods. To our best knowledge, ideas for unifying the influence
of local preferences, collaborative filtering and content-based rec-
ommendation are unexplored and very challenging.

Given a querying user u with a querying city lu, the online rec-
ommendation part computes a ranking score for each spatial item
v within lu by automatically combining u’s interest and the local
preference of lu, which are learned offline by LCA-LDA. To speed
up the process of online recommendation, we propose a scalable
query processing technique for top-k recommendations which sep-

arates the offline scoring computation from online scoring compu-
tation to minimize the query time. Specifically, we partition all
spatial items into locations at a given level such as cities. For each
location, as is shown in Figure 1, we store K lists of spatial items
that fall into the location and each list is sorted by the items’ of-
fline score in the corresponding dimension z. At query time, we
retrieve all spatial items within lu, and then extend the Threshold
Algorithm (TA) to compute the top-k spatial items by combining
the score of each candidate item from K scorers.

The primary contributions of our research are summarized as fol-
lows.

• We argue that local preference and item content informa-
tion are important for modeling user preference and han-
dling the data sparsity problem, and propose LCA-LDA, a
novel location-content-aware probabilistic generative model
that quantifies and incorporates both local preference and
item content information in the spatial item recommendation
process.

• We design a scalable query processing technique to improve
the recommendation efficiency, enabling an online recom-
mendation scenario.

• We conduct extensive experiments to evaluate the perfor-
mance of our recommender system on two large-scale real
data sets. The results show the superiority of our propos-
als in recommending spatial items for users, especially when
traveling to new cities, in terms of both effectiveness and ef-
ficiency.

The remainder of the paper is organized as follows. Section 2
details the location-content-aware recommender system LCARS.
We report the experimental results in Section 3. Section 4 reviews
the related work and we conclude the paper in Section 5.

2. LOCATION-CONTENT-AWARE RECOM-
MENDER SYSTEM

In this section, we first introduce the key data structures and no-
tations used in this paper, and then present the offline modeling part
and online recommendation part of our proposed location-content-
aware recommender system.

2.1 Preliminary
For ease of the following presentation, we define the key data

structures and notations used in this paper. Table 1 lists the relevant
notations used in this paper.

Definition 1. (Spatial Item) A spatial item v refers to either an
event or venue generated in various EBSNs or LBSNs.

Definition 2. (User Activity) A user activity is a triple (u, v, lv)
that means user u selects a spatial item v in location lv . Informa-
tion about the user activity history is given by S ⊆ U × V × L,
where user activities are positive observations in the past.

The dataset D used for our model learning consists of four el-
ements, and they are users, spatial items, locations and content
words, i.e., (u, v, lv, cv) ∈ D where u ∈ U , v ∈ V , lv ∈ L,
and cv ∈ Cv (i.e., Cv denotes the content word set associated
with spatial item v). Note that a spatial item may contain multi-
ple content words. For an activity history record of a user u se-
lecting a spatial item v in lv , we have a set of four-tuples, i.e.,
Duv = {(u, v, lv, cv) : cv ∈ Cv}.

Definition 3. (User Profile) For each user u in the dataset D,
we create a user profile Du, which is a set of four-tuples (i.e.,
(u, v, lv, cv)) associated with u. Clearly, Duv ⊆ Du.
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SYMBOL DESCRIPTION
N, V,M,C the number of users, spatial items, locations, content words
U,V,L, C the set of users, spatial items, locations, content words

Vl the set of spatial items located in location l
K the number of topics
Du the profile of user u
vui the spatial item of ith record in user profile Du

θu
the interest of user u, expressed by

a multinomial distribution over topics

θ′
l

the local preference of location l, expressed by
a multinomial distribution over topics

φz
a multinomial distribution over spatial items

specific to topic z

φ′
z

a multinomial distribution over content words
specific to topic z

zui the topic assigned to spatial item vui

lui the location of spatial item vui

lu the querying location of the querying user u
cui a content word describing spatial item vui

Cui the set of content words describing spatial item vui

sui if spatial item vui is generated by θu or θ′
lui

β, β′ Dirichlet priors to multinomial
distributions φz, φ

′
z

α, α′ Dirichlet priors to multinomial
distributions θu, θ

′
l

λu
the mixing weight specific to user u;

the parameter for sampling the binary variable s
γ, γ′ Beta priors to generate λu

Table 1: Notations used in the paper

Definition 4. (Topic) A topic z in a spatial item collection V is
represented by a topic model φz , which is a probability distribution
over spatial items, i.e., {P (v|φz) : v ∈ V} or {φzv : v ∈ V}. By
analogy, a topic in a content word collection C is represented by
a topic model φ′

z , which is a probability distribution over content
words, i.e., {P (c|φ′

z) : c ∈ C} or {φ′
zc : c ∈ C}.

It is worth mentioning that each topic z corresponds to two topic
models in our work, i.e., φz and φ′

z . This design enables φz and φ′
z

to be mutually influenced and enhanced during the topic discovery
process, facilitating the clustering of content-similar spatial items
into the same topic with high probability.

Definition 5. (User Interest) The intrinsic interest of user u is
represented by θu, a probability distribution over topics.

Definition 6. (Local Preference) The local preference of loca-
tion l is represented by θ′l, a probability distribution over topics.
This modeling method can capture local folk-customs.

2.2 Offline Modeling
In this subsection, we first describe the offline modeling part of

LCARS, a probabilistic generative model called LCA-LDA, and
then present its inference process.

Model Description. The proposed offline modeling part, LCA-
LDA, is a location-content-aware probabilistic mixture generative
model that aims to mimic the process of human decision making on
spatial items. This mixture model considers the user’s personal in-
terest and the influence of local preference in a unified manner, and
automatically leverages the effect of the two factors. Specifically,
given a querying user u with a querying city lu, the likelihood that
user u will prefer item v when traveling to city lu, is sampled from
the following LCA-LDA model.

P (v|θu, θ′lu , φ, φ′) = λuP (v|θu, φ, φ′)+(1−λu)P (v|θ′lu , φ, φ′) (1)

where P (v|θu, φ, φ′) is the probability that spatial item v is gen-
erated according to the personal interest of user u, denoted as θu,
and P (v|θ′lu , φ, φ′) denotes the probability that spatial item v is
generated according to the local preference of lu, denoted as θ′lu .
The parameter λu is the mixing weight which controls the moti-
vation choice. That is, when deciding individual preference on v,
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Figure 2: The Graphical Representation of LCA-LDA

user u is influenced by personal interest with probability λu, and
is influenced by the local preference of lu with probability 1− λu.
It is worth mentioning that LCA-LDA holds personalized mixing
weights for individual users, considering the differences between
users in personality (e.g. openness, agreeableness).

To further alleviate the data sparsity problem, LCA-LDA incor-
porates the content information of spatial items. Thus, we reformu-
late Equation 1 as follows:

P (v|θu, θ′lu , φ, φ′) =
∑
c∈Cv

P (v, c|θu, θ′lu , φ, φ′) (2)

P (v|θu, φ, φ′) =
∑
c∈Cv

P (v, c|θu, φ, φ′) (3)

P (v|θ′lu , φ, φ′) =
∑
c∈Cv

P (v, c|θ′lu , φ, φ′) (4)

where Cv is a set of content words describing spatial item v. In
LCA-LDA, both user interest θu and local preference θ′lu are mod-
eled by a multinomial distribution over latent topics. Each spatial
item v is generated from a sample topic z. LCA-LDA also pa-
rameterizes a distribution over content words associated with each
topic z, and thus topics are responsible for simultaneously generat-
ing both spatial items and their content words. Note that here we
assume that items and their content words are independently con-
ditioned on the topics. So, P (v, c|θu, φ, φ′) and P (v, c|θ′lu , φ, φ′)
can be computed according to Equations 5 and 6. Parameter esti-
mation in LCA-LDA is thus driven to discover topics that capture
both item co-occurrence and content word co-occurrence patterns.
This encodes our prior knowledge that spatial items having many
common users or similar content should be clustered into the same
topic with high probability. Figure 2 illustrates the generative pro-
cess with a graph model. The generative process is also summa-
rized in Algorithm 1 where beta(.) is a Beta distribution, and γ
and γ′ are two parameters.

P (v, c|θu, φ, φ′) =
∑
z

P (v, c|z, φz , φ
′
z)P (z|θu)

=
∑
z

P (v|z, φz)P (c|z, φ′
z)P (z|θu)

(5)

P (v, c|θ′lu , φ, φ′) =
∑
z

P (v, c|z, φz , φ
′
z)P (z|θ′lu )

=
∑
z

P (v|z, φz)P (c|z, φ′
z)P (z|θ′lu )

(6)

Model Inference. Following the studies [26, 25], we use col-
lapsed Gibbs sampling to obtain samples of the hidden variable
assignment and to estimate unknown parameters {θ, θ′, φ, φ′, λ}
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Algorithm 1: Probabilistic generative process in LCA-LDA

for each topic z do
Draw φz ∼ Dirichlet(·|β);
Draw φ′

z ∼ Dirichlet(·|β′);
end
for each Du in D do

for each record (u, vui, lui, cui) ∈ Du do
Toss a coin sui according to bernoulli(sui) ∼ beta(γ, γ′);
if sui = 1 then

Draw θu ∼ Dirichlet(·|α);
Draw a topic zui ∼ multi(θu) according to the interest
of user u;

end
if sui = 0 then

Draw θ′lui
∼ Dirichlet(·|α′);

Draw a topic zui ∼ multi(θ′lui
) according to the local

preference of lui;
end
Draw an item vui ∼ multi(φzui ) from zui-specific spatial
item distribution;
Draw a content word cui ∼ multi(φ′

zui
) from zui-specific

content word distribution;
end

end

in the LCA-LDA. As for the hyperparameters α, α′, β, β′, γ and
γ′, for simplicity, we take a fixed value (i.e., α = α′ = 50/K,
β = β′ = 0.01, γ = γ′ = 0.5). In the sampling procedure, we
begin with the joint probability of all user profiles in the data set.
Next, using the chain rule, we obtain the posterior probability of
sampling topics for each four-tuple (u, v, lv, cv). Specifically,
we employ a two-step Gibbs sampling procedure. Due to space
constraints, we show only the derived Gibbs sampling formulas,
omitting the detailed derivation process. We first sample the coin s
according to the posterior probability:

P (sui = 1|s¬ui, z, u, .)

∝ n¬ui
uzui

+ αzui∑
z(n

¬ui
uz + αz)

× n¬ui
us1

+ γ

n¬ui
us0

+ n¬ui
us1

+ γ + γ′
(7)

P (sui = 0|s¬ui,z, u, .)

∝
n¬ui
luizui

+ α′
zui∑

z(n
¬ui
luiz

+ α′
z)

× n¬ui
us0

+ γ′

n¬ui
us0

+ n¬ui
us1

+ γ + γ′
(8)

where nus1 is the number of times that s = 1 has been sampled
in the user profile Du; nus0 is the number of times that s = 0 has
been sampled in the user profile Du; nuz is the number of times
that topic z has been sampled from the multinomial distribution
specific to user u; nux is the number of times that latent region
z has been sampled from the multinomial distribution specific to
user u; the number n¬ui with superscript ¬ui denotes a quantity,
excluding the current instance.

Then, we sample topic z according to the following posterior
probability, when sui = 1:

P (zui|sui = 1, z¬ui,v, c, u, .)

∝ n¬ui
uzui

+ αzui∑
z(n

¬ui
uz + αz)

n¬ui
zuivui

+ βvui∑
v(n

¬ui
zuiv

+ βv)

n¬ui
zuicui

+ β′
cui∑

c(n
¬ui
zuic

+ β′
c)

(9)

when sui = 0:

P (zui|sui = 0, z¬ui,v, c, u, .)

∝
n¬ui
luizui

+ α′
zui∑

z(n
¬ui
luiz

+ α′
z)

n¬ui
zuivui

+ βvui∑
v(n

¬ui
zuiv

+ βv)

n¬ui
zuicui

+ β′
cui∑

c(n
¬ui
zuic

+ β′
c)

(10)

where nzv is the number of times that spatial item v has been gen-
erated by topic z, and nzc denotes the number of times that content
word c has been sampled from topic z.

After a sufficient number of sampling iterations, we can estimate
the parameters θ, θ′, φ, φ′ and λ as follows:

θ̂uz =
nuz + αz∑

z′ (nuz′ + αz′ )
(11)

θ̂′lz =
nlz + α′

z∑
z′ (nlz′ + α′

z′ )
(12)

φ̂zv =
nzv + βv∑

v′ (nzv′ + βv′ )
(13)

φ̂′
zc =

nzc + β′
c∑

c′ (nzc′ + β′
c′ )

(14)

λ̂u =
nus1 + γ

nus1 + nus0 + γ + γ′ (15)

2.3 Online Recommendation
A query in our recommendation task takes two arguments (u, lu):

a querying user u with a querying city lu to which u is going to
travel. The result of a query is a ranked list of spatial items located
at the querying city that match the querying user’s preference. Once
we have inferred LCA-LDA model parameters such as user inter-
est θ, local preference θ′, topics φ and φ′, mixing weights λ, in the
offline modeling phase, the online recommendation part computes
a ranking score for each spatial item v within querying city lu, and
then returns top-k ranked spatial items as the recommendations.

In this part, we propose a ranking framework in Equation 16
which separates the offline scoring computation from the online
scoring computation. Specifically, F (lu, v, z) represents the of-
fline part of the scoring, denoting the score of spatial item v with
respect to location lu on dimension z that corresponds to topic z
in the LCA-LDA model. Note that F (lu, v, z) is independent of
querying users. The weight score W (u, lu, z) is computed in the
online part, denoting the expected weight of the query (u, lu) on
dimension z. It is worth mentioning that the main time-consuming
components of W (u, lu, z) are also computed offline, and the on-
line computation is just a simple combination process, as is shown
in Equation 17. This design enables maximum precomputation
for the problem considered, and in turn minimizes the query time.
At query time, the offline scores F (lu, v, z) only need to be ag-
gregated over K dimensions by a simple weighted sum function,
in which the weight is W (u, lu, z). From Equations 17 and 18,
we can see that W (u, lu, z) consists of two components, designed
to model user interest and local preference respectively, and each
component is associated with a kind of user motivation. F (lu, v, z)
takes into account both the item co-occurrence information and the
similarity of item contents to produce recommendations.

S(u, lu, v) =
∑
z

F (lu, v, z)W (u, lu, z) (16)

W (u, lu, z) = λ̂uθ̂uz + (1− λ̂u)θ̂
′
luz (17)

F (lu, v, z) =

⎧⎨
⎩

φ̂zv
∑

cv∈Cv
φ̂′
zcv v ∈ Vlu

0 v /∈ Vlu

(18)

2.3.1 Threshold-Based Algorithm
For the online recommendation phase, we have to compute the

preference scores of a querying user to all spatial items within the
querying city and subsequently select the best k among them to
recommend to the user. When the number of spatial items becomes
larger (e.g., millions), computing the top-k spatial items for each
query requires millions of vector operations. To speed up the online

224



process of producing recommendations, we extend the threshold-
based algorithm [8] that is capable of correctly finding top-k results
by examining the minimum number of spatial items.

We first partition all spatial items into locations at a predefined
level such as cities. For each location, we precompute sorted lists
of spatial items. This sorting is done offline according to F (l, v, z)
defined in Equation 18. Given K dimensions, we carry out this
procedure for each dimension z (i.e., having spatial items on the
same dimension in each sorted list). When receiving a query q =
(u, lu), we first obtain K ranked list Lz , z ∈ {1, 2, ...,K}, of
spatial items in location lu. Algorithm 2 computes the top-k spa-
tial items from these K lists and returns them in priority queue
L. The algorithm maintains a priority queue PQ of the lists Lz

where the priority of a list is the ranking score of the first spatial
item in the list. This number is easily computed from the weight
score W (u, lu, z) and the offline score F (lu, v, z) for the first spa-
tial item v in the list. In each iteration, we pick the most promising
spatial item from the list that is the head of PQ that we have not
yet examined and add it to the results (L). The algorithm terminates
early when the score of the k-th element of the results L is higher
than the threshold ranking score which is computed in Algorithm 3.

3. EXPERIMENTS
In this section, we first describe the settings of experiments in-

cluding the data sets, comparative approaches, and the evaluation
method. We then report major experimental results on both the
recommendation effectiveness and efficiency of our recommender
system, followed by discussions.

3.1 Experimental Settings

3.1.1 Data sets
DoubanEvent is China’s largest event-based social networking

site where users can publish and participate in social events. On
DoubanEvent, a social event is created by a user by specifying
what, when and where the event is. Other users can express their
intent to join events by replying online. This data set consists
of 100,000 users, 300,000 events and 3,500,000 positive definite
RSVPs. The following information is recorded when collecting
the data: 1) user information, including user-id, user-name and
user-home city; 2) event information, consisting of event-id, event-
name, event-latitude, event-longitude, event-summary and its cate-
gory; 3) user feedback information, including user-id and event-id.
We make the dataset publicly available1.

A publicly available LBSNs dataset, Foursquare [9], is also used
in our experiment. It contains 11326 users and 1385223 check-ins.
Note that this dataset does not contain item content information.

To utilize these two datasets in our proposed models, we pre-
process them as follows: 1) we first employ Google Maps API2 to
partition all the spatial items into cities according to their latitudes
and longitudes; 2) for the DoubanEvent dataset, we then use NLP
toolkits3 to extract a set of content words for each event from its
summary and category description.

3.1.2 Comparative Approaches
We compare our proposed LCARS with the following six com-

petitor methods, where the first four approaches are the existing
recommender systems, and the last two recommender models cor-
respond to the two main components of our proposed LCA-LDA.

• User interest, social and geographical influences (USG):
Following recent location-based recommendation work [31],

1http://net.pku.edu.cn/daim/yinhongzhi/index.html
2https://developers.google.com/maps/
3http://nlp.stanford.edu/software/index.shtml

Algorithm 2: Threshold-based algorithm

Input: A query q = (u, lu); ranked lists (L1, ..., LK) for location

lu; inferred model parameters θ̂u, θ̂′lu and λ̂u;

Output: List L with all the k highest ranked spatial items according
to query q;

{/*Priority queues (PQ and L) have five operations: get() returns the
head element from the queue; remove() removes the head element
from the queue; get(k) returns the k-th element; remove(k) removes
the k-th element; insert(element, priority) inserts an element
into the queue with a specific priority. */}
PQ = ∅;
L = ∅;
{/* lists Lz have three operations: get() returns the head element
from the list; remove() removes the head element from the list;
hasMore() returns true if the list is non-empty. */}
STa = max;
{/* variable STa records the threshold score. */}
for z = 1 to K do

v = Lz .get();
PQ.insert(z, S(u, lu, v));

end
STa = ComputeTA();
while true do

nextListToCheck = PQ.get();
PQ.remove();
v = LnextListToCheck.get();
LnextListToCheck.remove();
if v /∈ L then

if L.size() < k then
L.insert(v, S(u, lu, v));

end
else

v′ = L.get(k);
if S(u, lu, v′) > STa then

break;
end
if S(u, lu, v′) < S(u, lu, v) then

L.remove(k);
L.insert(v, S(u, lu, v));

end
end

end
if LnextListToCheck.hasMore() then

v = LnextListToCheck.get();
PQ.insert(nextListToCheck, S(u, lu, v));
STa = ComputeTA();

end
else

break;
end

end

Algorithm 3: Function ComputeTA()

Input: A priority queue PQ; A query q = (u, lu); ranked lists

(L1, ..., LK) for location lu; inferred model parameters θ̂u,

θ̂′lu and λ̂u;

Output: The threshold score STa;

STa = 0;
for i = 1 to K do

z = PQ.get(i);
v = Lz .get();
STa = STa +W (u, lu, z)F (lu, v, z);

end

a unified location recommendation framework is implemented
which linearly fuses user interest, along with the social and
geographical influences. The user interest component of USG
is implemented by a traditional collaborative filtering tech-
nique, and the geographical influence is computed by a power-
law probabilistic model that aims to capture the geographical
clustering phenomenon that points of interest visited by the
same user tend to be clustered geographically.
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• Category-based k-Nearest Neighbors Algorithm (CKNN):
CKNN [3] projects a user’s activity history into the category
space and models user preference using a weighted category
hierarchy. When receiving a query, CKNN retrieves all the
users and items located in the querying city, formulates a
user-item matrix online, and then applies a user-based CF
method to predict the querying user rating of an unvisited
item. Note that the similarity between two users in CKNN is
computed according to their weights in the category hierar-
chy, making CKNN a hybrid recommendation method.

• Item-based k-Nearest Neighbors Algorithm (IKNN): This
method utilizes the user activity history to create a user-item
matrix. When receiving a query, IKNN retrieves all users to
find k nearest neighbors by computing the Cosine similarity
between two users’ item vectors. Finally, the spatial items
in the user-specific querying city that have a relatively high
ranking score will be recommended.

• LDA: Following previous works [11, 5], a standard LDA-
based method is implemented as one of our baselines. Com-
pared with our proposed LCA-LDA, this method neither con-
siders the content information of spatial items, nor their lo-
cation information. For online recommendation, the rank-
ing score is computed using our ranking framework in Equa-
tion 16 where F (lu, v, z) = φ̂zv , W (u, lu, z) = θ̂uz .

• Location-Aware LDA (LA-LDA): As a component of the
proposed LCA-LDA model, LA-LDA means our method with-
out considering the content information of spatial items. For
online recommendation, the ranking score is computed us-
ing our proposed ranking framework in Equation 16 where
F (lu, v, z) = φ̂zv andW (u, lu, z) = λ̂uθ̂uz+(1−λ̂u)θ̂

′
luz .

• Content-Aware LDA (CA-LDA): As another component of
the LCA-LDA model, CA-LDA means our method without
exploiting the location information of spatial items, i.e., local
preference. It can capture the prior knowledge that spatial
items with the same or similar contents are more likely to
belong to the same topic. This model is similar to the ACT
model [26] in the methodology. For online recommendation,
the ranking score is computed using our ranking framework
in Equation 16 where F (lu, v, z) = φ̂zv

∑
cv∈Cv

φ̂′
zcv and

W (u, lu, z) = θ̂uz .

3.1.3 Evaluation methods
We evaluate both the effectiveness of the suggested recommen-

dations and the efficiency for generating online recommendations.
Recommendation Effectiveness. To make an overall evaluation

of the recommendation effectiveness of our proposed LCA-LDA,
we first design the following two real settings: 1) querying cities
are new cities to querying users; 2) querying cities are the home
cities of querying users. We then divide a user’s activity history
into a test set and a training set. We adopt two different dividing
strategies with respect to the two settings. For the first setting, we
select all spatial items visited by the user in a non-home city as the
test set and use the rest of the user’s activity history in other cities
as the training set. For the second setting, we randomly select 20%
of spatial items visited by the user in personal home city as the test
set, and use the rest of personal activity history as the training set.

According to the above designed dividing strategies, we split the
user activity history S into the training data set Straining and the
test set Stest. To evaluate the recommender models, we adopt the
testing methodology and the measurement Recall@k applied in [7,
5, 13, 32]. For each test case (u, v, lv) in Stest:

1. We randomly select 1000 additional spatial items located at
lv and unrated by user u. We assume that most of them will
not be of interest to user u.

2. We compute the ranking score for the test item v as well as
the additional 1000 spatial items.

3. We form a ranked list by ordering all the 1001 spatial items
according to their ranking scores. Let p denote the rank of
the test item v within this list. The best result corresponds to
the case where v precedes all the random items (i.e., p = 0).

4. We form a top-k recommendation list by picking the k top
ranked items from the list. If p < k we have a hit (i.e., the
test item v is recommended to the user). Otherwise we have
a miss. The probability of a hit increases with the increasing
value of k. When k = 1001 we always have a hit.

The computation of Recall@k proceeds as follows. We define
hit@k for a single test case as either the value 1 if the test spatial
item v appears in the top-k results, or else the value 0. The overall
Recall@k are defined by averaging all test cases:

Recall@k =
#hit@k

|Stest|
(19)

where#hit@k denotes the number of hits in the test set, and |Stest|
is the number of all test cases.

Recommendation Efficiency. The efficiency of the online rec-
ommendation mainly depends on 1) the number of all spatial items
in the user-specific querying city and 2) the number of spatial items
recommended. Therefore, we test the efficiency of our proposed
LCARS over these two factors.

3.2 Experimental Results
In this subsection, we first report the performance of our LCARS

on the recommendation effectiveness and then compare the time
costs of different recommendation algorithms.

3.2.1 Effectiveness of Recommendations
In this part, we first present the optimal performance with well-

tuned parameters and then study the impact of model parameters.
Figure 3 reports the performance of the recommendation algo-

rithms on DoubanEvent dataset. We show only the performance
where k is in the range [1...20], because a greater value of k is usu-
ally ignored for a typical top-k recommendation task. It is apparent
that the algorithms have significant performance disparity in terms
of top-k recall. As shown in Figure 3(a) where querying cities are
new cities, the recall of LCA-LDA is about 0.33 when k = 10,
and 0.42 when k = 20 (i.e., the model has a probability of 33%
of placing an appealing event within the querying city in the top-10
and 42% of placing it in the top-20). Clearly, our proposed LCA-
LDA model outperforms other competitor recommendation algo-
rithms significantly. First, IKNN, CKNN and USG drop behind
four other model-based methods, showing the advantage of using
latent topic models to model users’ preferences and produce rec-
ommendations. Second, LA-LDA outperforms LDA, justifying the
benefit brought by considering local preferences. Third, CA-LDA
exceeds LDA due to the advantages of taking item contents into
consideration. Finally, LCA-LDA outperforms both LA-LDA and
CA-LDA, showing the advantages of combining local preferences
and item contents in a unified manner.

In Figure 3(b), we report the performance of all recommendation
algorithms for the second setting where querying cities are home
cities of querying users. From the figure, we can see that the trend
of comparison result is similar to that presented in Figure 3(a). The
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Figure 3: Top-k Performance on DoubanEvent
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Figure 4: Top-k Performance on Foursquare
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Figure 5: Impact of the Number of Latent Topics

main difference is that CKNN outperforms IKNN in Figure 3(a)
while IKNN exceeds CKNN significantly in Figure 3(b), showing
that the pure CF-based method (i.e., IKNN) better suits the set-
ting where the user-item matrix is not very sparse, and the hybrid
method (i.e., CKNN) is more capable of overcoming the difficulty
of data sparsity, i.e., the new city problem. Another observation
is that USG almost performs as well as LA-LDA, and outperforms
LDA, CKNN and IKNN in the home city setting, verifying the ben-
efit brought by considering the geographical influence. However,
USG is still less effective than LCA-LDA in this setting. Further-
more, the performance of USG is poor in the new city setting, as
shown in Figure 3(a), which shows that exploiting geographical
influence cannot alleviate the new city problem since there is no
activity history of the querying user in the new city.

Figure 4 reports the performance of the recommendation algo-
rithms on the Foursquare dataset. We only compare LA-LDA, one
component of our LCA-LDA model, with LDA, USG and IKNN
since this dataset does not contain item content information. From
the figure, we can see that the trend of comparison result is similar
to that presented in Figure 3, and LA-LDA performs best, showing
the advantage of exploiting the local preference.

Impact of Model Parameters. Tuning model parameters, such
as the number of topics for all topic models, is critical to the per-
formance of models. We therefore also study the impact of model
parameters on DoubanEvent dataset. Because of space limitations,
we only show the experimental results for the new city setting.

As for the hyperparameters α, α′, β, β′, γ and γ′, following
existing works [26, 25], we empirically set fixed values (i.e., α =
α′ = 50/K, β = β′ = 0.01, γ = γ′ = 0.5). We tried different se-
tups and found that the estimated topic models are not sensitive to
the hyperparameters, but the performance of topic models such as
LDA are slightly sensitive to the number of topics. Thus, we tested
the performance of LDA, LA-LDA, CA-LDA and LCA-LDA mod-
els by varying the number of topics, and present the results in Fig-
ures 5(a) to 5(d). From the figures, we observe: 1) the Recall@k
values of all latent topic-based recommender models slightly in-
crease with the increasing number of topics; 2) the performance
of latent topic-based recommender models does not change signif-

icantly when the number of topics is larger than 150; 3) LA-LDA,
CA-LDA and LCA-LDA perform better than LDA under any num-
ber of topics, and LCA-LDA consistently performs best.

3.2.2 Efficiency of Recommendations
In the efficiency study on DoubanEvent, we tested 10000 query-

ing users for the querying cities of Beijing, Shanghai, Guangzhou
and Shenzhen respectively, by recommending a ranked list of events
in each querying city for each test user. It is worth mentioning
that there is different number of events in these four cities (i.e.,
|VBeijing|> |VShanghai|> |VGuangzhou| > |VShenzhen|). All the
recommendation algorithms were implemented in Java (JDK 1.6)
and run on a Linux Server with 32G RAM. For the online recom-
mendation of LCARS, we adopt two methods to utilize the knowl-
edge learnt offline by LCA-LDA to produce recommendations. The
first is called LCA-LDA-TA proposed in Section 2.3.1, which ex-
tends TA algorithm to produce top-k recommendations. The sec-
ond is called LCA-LDA-BF which uses a brute-force algorithm
to produce top-k recommendations. In LCA-LDA-BF, we online
compute the preference score of a test user to all events within the
querying city and subsequently select the best k ones.

Figures 6(a)-6(d) present the average online efficiency of differ-
ent methods, varying in the number of recommendations, for query-
ing cities Beijing, Shanghai, Guangzhou, and Shenzhen respec-
tively. For example, on average our proposed LCA-LDA-TA can
find the top-10 event recommendations from about 72,000 events
within Beijing in 11.4ms, from 51,780 events within Shanghai in
6.7ms, from 18,000 events within Guangzhou in 6.1 ms, and from
13,290 events within Shenzhen in about 5.4 ms. From the figures,
we observe that 1) LCA-LDA-TA outperforms LCA-LDA-BF sig-
nificantly in all querying cities, justifying the benefits brought by
the TA algorithm; 2) both LCA-LDA-TA and LCA-LDA-BF are
consistently better than CKNN and IKNN, showing that the model-
based methods can produce faster responses to querying users than
memory-based methods once the model parameters are learnt of-
fline; 3) the time costs of all algorithms increase slowly with the
increasing number of recommendations; 4) the time cost (TS) of
each algorithm in four different cities can be ranked as follows:
TSBeijing> TSShanghai> TSGuangzhou >TSShenzhen, showing
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Figure 6: Efficiency w.r.t Recommendations

that a city with more events available requires more processing time
to produce top-k recommendations within this city.

3.3 Local Preference Influence Study
In this section, we study the effects of personal interest and local

preference on users’ decision making. The self interest influence
probability λu and the local preference influence probability 1−λu

are learnt automatically in our proposed LCA-LDA model. Since
different people have different mixing weights, we plot the distri-
butions of both self interest and local preference influence probabil-
ities among all users. The results on the DoubanEvent data set are
shown in Figure 7, where Figure 7(a) plots the cumulative distribu-
tion of self interest influence probabilities, and Figure 7(b) shows
the local preference influence probabilities. It can be observed that,
in general, people’s self interest influence is higher than the influ-
ence of the local preference. For example, Figure 7(a) shows that
the self interest influence probability of more than 70% of users
is higher than 0.5. The implication of this finding is that people
mainly attend social events based on their self interests, and they
sometimes attend popular local events regardless of their interests,
especially when travelling in new cities. This finding also explains
the superiority of LCA-LDA and LA-LDA in the recommendation
performance (Section 3.2.1).
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Figure 7: Local Preference Influence Result (DoubanEvent)

4. RELATED WORK
In this section, we introduce related works, including general

recommender systems and location-based recommendation.

4.1 General Recommender Systems
Collaborative filtering and content-based filtering techniques are

two widely adopted approaches for recommender systems [1]. Both
of them discover users’ personal interests and utilize these discov-
ered interests to find relevant items. Collaborative filtering tech-
niques [5, 21] automatically suggest relevant items for a given user
by referencing item rating information from other taste-similar users.
The content-based recommendation [20] is based on the assump-
tion that descriptive features of an item tell much about a user’s
preference for an item. Recommender systems using pure collabo-
rative filtering approaches tend to fail when little knowledge about
the user is known or when no one has interests similar to the user’s.

Although the content-based method is capable of coping with the
lack of knowledge, it fails to account for community endorsement.
As a result, a certain amount of research has focused on combin-
ing the advantages of both collaborative filtering and content-based
methods [18, 4, 12]. Our proposal in this work is not only able to
integrate the ideas behind collaborative filtering and content-based
methods but also incorporates the influence of the local preference
into the recommendation process.

4.2 Location-Based Recommendation
Regardless of the preference of an individual, some recent lit-

eratures [27, 33] focus on non-personalized spatial item recom-
mendation systems which encapsulate public opinions on spatial
items and provide users with the most interesting ones. Several
studies [17, 2] address the problem of predicting the future loca-
tions of moving objects by using a model (e.g., a decision tree
model or Hidden Markov Model) based on the mined trajectory
patterns. Another branch of recent research focuses on learning
user interest from the user’s activity history to make personalized
recommendations. Specifically, [14, 30, 24] deposited people’s ac-
tivity history into user-venue matrix where each row corresponds
to a user’s venue-visiting history and each column denotes a venue
such as a restaurant. A user-based CF method is then employed
to infer the user preference regarding an unvisited venue. Geo-
measured friend-based collaborative filtering [30] produces recom-
mendations by using only ratings from the querying user’s social-
network friends who live in the same city.

However, solely using a CF-based method, either the user-based
or the item-based, cannot handle the data sparsity problem very
well if we directly formulate user-venue matrix. Although litera-
tures [19, 33, 5] applied latent factor models such as topic model
and matrix factorization to a user-venue matrix to reduce the data
sparsity to some extent, these methods do not work well in the
new city setting because there are few overlapped users, possibly
none, between spatial items which are located in home cities and
new cities respectively. Instead of using traditional CF-based meth-
ods, [3] proposed a category-based similarity computation method
which is able to find k-nearest neighbors for a querying user in
a new city. Gao et al. [9] utilized the social network information
to solve the “cold start” location prediction problem, with a geo-
social correlation model to capture social correlations on LBSNs.
Mao et al. [31] exploited the geographical clustering phenomenon
to improve the recommendation performance, with a unified frame-
work to linearly fuse both user interest and geographical influence.
Woerndl et al. [29] developed a proactive context-aware model for
mobile recommender systems which first analyzes the current situ-
ation and then computes the ranking scores of candidate items.

The interest in location-based data spans beyond the domain of
spatial item recommendation (e.g., points of interest and events).
Many recent literatures [23, 28, 6] have analyzed the interplay be-
tween users’ mobility and their online social connections. Based on
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the analysis results, they proposed a link prediction framework to
recommend social connections based on users’ physical mobility.

Our proposed location-content-aware recommender system dis-
tinguishes itself from the above-mentioned works in the follow-
ing three aspects: 1) We project a user’s activity history into a la-
tent space which integrates the content knowledge of spatial items.
Thus, we can recommend spatial items to a user in a new city by
exploiting the content information about his/her preferred spatial
items in other cities. 2) We take into account both user interest and
local preference to produce recommendations. The local prefer-
ence, which has previously been neglected, is a valuable resource
for making a recommendation since people generally want to see
local attractions and attend local popular events, especially when
traveling to an unfamiliar city. 3) The idea of integrating local pref-
erence’s influences, collaborative filtering and content-based meth-
ods into a probabilistic generative model is unexplored.

5. CONCLUSION
This paper proposed a location-content-aware recommender sys-

tem, LCARS, which provides a user with spatial item recommen-
dations within the querying city based on the individual interests
and the local preferences mined from the user’s activity history.
LCARS can facilitate people’s travel not only in their home area
but also in a new city where they have no activity history. By
taking advantage of both the content and location information of
spatial items, our system overcomes the data sparsity problem in
the original user-item matrix. We evaluated our system using ex-
tensive experiments based on two real data sets. According to the
experimental results, our approach significantly outperforms exist-
ing recommendation methods in effectiveness. The results also jus-
tify each component proposed in our system, such as taking local
preferences and item content information into account, and the pro-
posed scalable query processing technique improves the efficiency
of our approach significantly.
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