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LCC-HVDC Connection of Off-shore Wind Farms
with Reduced Filter Banks

R. Blasco-Gimenez,Senior Member, IEEE, N. Aparicio, Member, IEEE, S. Añó-Villalba, and S. Bernal-Perez

Abstract—Despite being more efficient, the LCC-HVDC links
for the connection of large off-shore wind farms have the filter
bank size as one of their main drawbacks. This paper shows how
the HVDC rectifier filter banks can be substantially reduced by
taking advantage of the additional control possibilities offered by
the use of wind turbines with fully rated converters.

PSCAD simulations validate the operation of the wind farm
and a diode rectifier HVDC link with a capacitor and filter bank
five times smaller than its usual value. The proposed control
algorithm allows for good harmonic and reactive power sharing
between the different wind turbines.

As the reduced capacitor bank operation leads to a redistri-
bution of harmonic and reactive currents, an efficiency study has
been carried out to evaluate the new power loss distribution with
the reduced filter banks.

Index Terms—HVDC transmission control, Wind power gener-
ation, Power generation control, Energy efficiency, Power system
harmonics.

I. I NTRODUCTION

W IND turbines equipped with fully rated converter is the
favored technology for off-shore wind farms [1], [2].

They effectively contribute to voltage and frequency control
of the off-shore ac-grid [3], [4]. It has been also shown that
they can also perform the distributed control of all the duties
usually carried out by a thyristor based HVDC rectifier [5].
So it permits the replacement of the thyristor rectifier by an
uncontrolled diode based rectifier [3], [4].

The use of single generators connected to diode based
HVDC rectifiers has important advantages, including smaller
conduction losses, smaller installation cost and higher reliabil-
ity with respect to thyristor based rectifiers [6]–[8]. Besides,
existing distributed control techniques allow for joint operation
of wind turbines and HVDC diode rectifier in a similar way as
traditional thyristor rectifier HVDC links, i.e. HVDC rectifier
voltage or current control mode of operation, VDCOL fault
protection, etc. [3]. A similar solution consists on the series
connection of individual wind-turbine rectifier modules at
the expense of more stringent isolation requirements on the
individual wind turbine transformers [9].
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However, in spite of the advantages of LCC-HVDC links in
terms of efficiency and power carrying capability [10]–[12],
they are not being used for the connection of off-shore wind
farms, in favor of modular multilevel (MML) VSC-HVDC
stations [13]–[15]. One of the main obstacles for the use of
this, otherwise very successful technology, is the need of large
and costly capacitor and filter banks [16]. Noticeably, the
harmonics produced by the LCC converters are relatively large
and require filtering [17]. Moreover, the amount of filtering
required depends heavily on both the active power being
transmitted by the HVDC link and the harmonic characteristics
of the ac network. Therefore, filter design requires a detailed
ac network analysis and represents one of the most difficult
areas on the development of a LCC-HVDC link and subject
of ongoing research [18].

Additionally, filter and capacitor banks provide the reactive
power required by the rectifier and its transformer. Even when
the rectifier is fired at zero degrees (uncontrolled rectifier), the
current displacement caused by the commutation reactance and
the leakage reactance of the rectifier transformer leads to a
substantial amount of reactive power, typically in the range of
0.4−0.6 pu. Even in the case where CSC-HVDC converters
are used, filters rated up to0.24 pu are required [19].

On-shore installations of the considered rating would use
a typical of four to five capacitor and filter banks, each one
taking an area between 400 to 1200 m2. Therefore, total filter
area might be several times larger than the valve building
itself. The proposed five-fold reduction on filter area is a clear
advantage for off-shore applications.

The study in [4] introduced a distributed control strategy
for the coordinated control of the wind power plant (WPP)
and the HVDC link. However, it did assume the use of large
capacitor and filter banks, which might be inadequate for off-
shore applications.

This paper shows that the aforementioned control strategy
can be used with little modification with reduced rectifier
capacitor and harmonic filter banks. Adequate operation has
been shown when the capacitor and filter banks are reduced
from 446 MVA ( 0.45 pu) to 89 MVA ( 0.09 pu).

As the harmonic filter reduction implies larger harmonic
distortion, a detailed study on the harmonic contents on
voltages and currents has been carried out. Moreover, the
harmonic distortion analysis has been used to calculate the
additional transformer and converter losses.

The effects on overall losses and equipment rating due to
the additional reactive power from the wind power plant are
also studied.

Therefore, this paper shows the suitability of the control
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Fig. 1. SG-Based off-shore wind farm with HVDC connection

strategy proposed in [4] for operation with substantially re-
duced filters, together with a detailed study of its possible
drawbacks.

II. SYSTEM DESCRIPTION

The system under study is shown in Fig. 1. The wind farm
consists on 200 wind turbines rated at5 MW each one, totaling
1 GW aggregated power. The wind turbines are connected to
the local off-shore grid using fully rated converters [20],[21].
The off-shore ac-grid is connected to the on-shore transmission
grid using a 12-pulse diode rectifier HVDC link [3], [4].

Reactive power compensation and harmonic filtering is
carried out by the capacitor and filter banks with parameters
CF and ZF respectively. Their values are obtained from
the CIGRE benchmark model [22] (scaled to the appropriate
voltage level). The baseline case assumes that the capacitor
and filter banks are rated a total of446 MVA divided into
four equal banks that would be switched on and off depending
on the generated power. The parameters of the HVDC link
have been also obtained from the CIGRE benchmark model.
Finally, the wind farm has been modelled using a total of
five aggregated wind turbine clusters of different rated power
(SR1 = 390 MVA, SR2 = 300 MVA, SR3 = 200 MVA, SR4 =
100 MVA and SR5 = 10 MVA). The machine-side converter of
each of the wind turbines is used to control the wind turbine
dc-link voltageEDC [3], [23].

The HVDC link is modelled using aT -equivalent of the
DC transmission line, whereas the on-shore inverter station is
based on a standard twelve pulse thyristor bridge. The analysis
of the off-shore ac grid has been carried out neglecting the line
impedances and wind turbine transformer shunt impedances.

Therefore, the off-shore ac-grid dynamics in a synchronous
frame rotating atωF and oriented onVF , i.e. VFq = 0, can
be written as [4]:

d

dt
VFd =

1

CF

n
∑

i=1

IWdi −
1

CF

IRacd (1)
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Fig. 2. Off-shore ac-grid voltage control.
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Fig. 3. Off-shore ac-grid frequency control.

ωFVFd =
1

CF

n
∑

i=1

IWqi −
1

CF

IRacq (2)

The individual wind turbine d-q currents (IWdi and IWqi)
can be controlled to follow desired step references with simple
PI controllers.

A. Off-shore ac-grid voltage and frequency control

It is clear from (1) that the overall WPP active current
(I∗Fd =

∑n

i=1
I∗Wdi) can be used to control the off-shore ac-

grid voltageVFd. Equation (2) can also be obtained from the
reactive power balance of the off-shore grid. AssumingVFd

is appropriately controlled, then the overall reactive current
supplied by the wind farm (I∗Fq =

∑n

i=1
I∗Wqi) can be

used to control the off-shore grid frequencyωF . The WPP
voltage and frequency control loops are shown in Figs. 2
and 3, respectively [4]. Note reactive power droop depends on



3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

 V
R

d
c  

V
F

d
  

V
F

d

*
 (

p
u
)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

 I
R

d
c (

p
u
)

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

 I
W

d
i p

u

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

 I
W

q
i (

p
u
)

0 0.5 1 1.5 2 2.5 3
48

50

52

 ω
F
 (

H
z)

time (s)

Fig. 4. Start-up operation with original capacitor and filter banks.

frequency measurement, so adequate sharing can be achieved
with relative ease.

During normal operation, the HVDC diode rectifier acts as a
voltage clamp onVFd. Therefore, the different voltage control
loops are saturated and inject a current determined by each
wind turbine optimal characteristic [24].

On the other hand, if the distributed controller is no longer
saturated, local voltage control will be carried out by the wind
turbines. This is the case when the HVDC line is disconnected
or when the inverter is operating in current control mode.

The voltage control loop is designed to have a20 Hz
closed loop bandwidth, therefore, communication delays on
the centralized integrator in the range of5−10 ms can be
easily tolerated. A detailed description of the control strategy
can be found in [4].

III. D ISTRIBUTED OPERATION WITH REDUCED FILTER

BANKS

It has been previously shown that the proposed control
strategy can successfully operate during the disconnection
and subsequent reconnection of a large part of the capacitor
and filter banks [4]. This result proves the robustness of the
control system to changes in filter capacitance. Moreover,
if the voltage and frequency controls are designed taking
into account the value of the reduced filter banks, then it
is possible to substantially reduce the reactive power rating
of the capacitor and filter banks. Therefore, the capacitor and
filter banks from the CIGRE benchmark model [22] have been
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Fig. 5. Start-up operation with reduced capacitor and filterbanks.

substituted by a single capacitor bank rated one fifth of the
original capacitor and filter bank size.

The front-end converter current loop bandwidth has been
designed to be around180 Hz, which corresponds to a
switching frequency of1 kHz. In this way, 11th, 13th, 23rd

and 25th harmonics are all above the bandwidth of the current
loops.

Figs. 4 and 5 show the connection transient of the off-shore
grid with original and reduced capacitor bank, respectively.
Initially, the on-shore thyristor bridge is blocked and theoff-
shore ac-grid voltage reference (V ∗

Fd) is ramped up from0 to
1.1 pu. When the HVDC link voltage (VRdc) reaches 0.75 pu
(t = 1.2 s), the on-shore thyristor bridge is deblocked.

To ensure a smooth transition, both the wind farm power
and the inverter current references are limited to 0.1 pu. From
t = 1.8 s, these limits are gradually increased to1 pu.

Both active and reactive currents are shared adequately
between the different wind turbines.

The effects of the filter reduction on the reactive power
delivered by the wind farm and the overall harmonic contents
can be easily evaluated by comparing Figs. 4 and 5. The con-
nection transient is relatively fast, therefore, bank switching
has not been considered.

Clearly, the current traces show a large ripple due to the
increased harmonic contents when using the reduced capacitor
bank. Otherwise, voltages, HVDC current and wind farm
active power show similar behavior in both cases.

On the other hand, the reactive currents delivered by the
wind farm IWqi show marked differences. In the original
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case, the wind farm does not deliver reactive current when
generating rated power.

Conversely, with the reduced capacitor bank, the wind farm
injects the reactive power previously provided by the harmonic
filters.

As a result, the wind farm is required to produce357 MVA
reactive power at full load. Therefore, the wind turbine front-
end converters and transformers must increase their power
rating by around6.5%, as shown in Fig. 6.

During normal operation, the baseline capacitor and har-
monic filter banks are switched on and off according to the
HVDC link delivered power. Fig. 7 shows that, in this case,
the wind farm reactive power is within a predefined limits of
−0.05 to 0.05 pu.

In the reduced filter case, the wind farm must inject the
reactive power not provided by the capacitor bank, which
delivers89 MVA independently of the HVDC link load. There-
fore, at low loads, the HVDC rectifier is overcompensated and
the wind farm needs to absorb reactive power. For generated
power above0.23 pu, the wind farm injects reactive power to
a maximum of357 MVA.
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A. Voltage and Current Distortion

The effects of the filter and capacitor bank reduction on the
harmonic contents of the off-shore ac-voltage (VF ), the ac-side
current of the diode rectifier (IR), the wind farm current (IF ),
and the capacitor bank current (ICF ) are shown in Figs. 8
to 16. In each case, the 11th, 13th, 23rd and 25th harmonics
are presented as a ratio to the corresponding fundamental
component.

Fig. 8 shows the amplitude of the 11th, 13th, 23rd and
25th current harmonics flowing through phase A of each WT
cluster. Clearly, the harmonic contents are shared adequately
amongst the different wind turbines.

The harmonic contents on the wind farm ac-grid voltage
with original and reduced filter banks are shown in Fig. 9. The
variation on the 23rd and 25th harmonics is almost negligible,
while the 11th and 13th harmonics do increase.

However, neither of them are above0.03 pu, which is the
planning level stated in IEC-1000-3-6. These values corre-
spond to a maximum total harmonic distortion of only3.5%,
which is reached at half load and mantained thereafter, as
shown in Fig. 10.

The distortion level of the wind farm ac-grid voltage is
relatively small. Therefore, the harmonic contents of the
HVDC rectifier ac-side current increase only marginally when
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Fig. 11. HVDC diode rectifier ac-side current harmonics.

a reduced filter bank is used. Fig. 11 shows the small variation
on the harmonic components ofIR with the original and
reduced banks. Hence, theIR total harmonic distortion (THD)
shown in Fig. 12 are very similar in both cases.

The wind farm current harmonic contents are shown in
Fig. 13. Note the 23rd and 25th harmonics remain almost
unchanged. However, as Fig. 13 clearly shows, the 11th

and 13th harmonics substantially increase. Both have their
maximum value at low load and decrease as load increases. In
any case, the 11th harmonic stays at or below0.025 pu and
the 13th harmonic is never above0.013 pu.

As shown in Fig. 14, the harmonic contents ofIF cor-
respond to a total harmonic distortion up to2.7% at low
load and1.2% at full load. Opposite to the behavior ofVF ,
the maximum distortion of bothIR and IF takes place at
minimum load and decreases as the load increases.

Finally, Fig. 15 shows that even voltage harmonics of a
relatively small amplitude have an important effect on the
currents through the capacitor bank. In both cases, at minimum
load the 11th harmonic is around0.1 pu. The connection of
the second bank in the baseline case produces a reduction in
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this harmonic. However, with the reduced capacitor bank, it
continues raising to a maximum of0.32 pu. This increase in
harmonic contents has to be taken into account when defining
the current rating of the capacitor bank.

Note theICF THD, shown in Fig. 16, surpasses40% for
delivered power above0.5 pu.

B. Impact on Overall System Efficiency

Even though the control system permits the operation of
the wind farm with increased voltage and current harmonics,
they would create additional losses in different parts of the
system that must be taken into account. The main elements
with increased losses are the different transformers, cables and
wind turbine front-end converters. On the other hand, filter
bank losses are reduced, as they are strongly dependent on its
MVA rating.

1) Wind Turbine Transformer: Both copper and core losses
of the wind turbine transformer will increase as the result of
the increased harmonic and reactive currents delivered by the
wind turbines [25].

A study on transformer harmonic losses is paramount to
determine the derating of the wind turbine transformers.
Transformer losses are divided into no-load losses and load
losses. Manufacturers usually provide information about no-
load losses (PNLL) and load losses (PLL) at rated current [26].
No-load losses, also known as excitation losses, are mainly
produced in the iron and have a value around0.1%. Voltage
harmonic components increase this value since they affect
hysteresis [27].

On the other hand, load-losses, also known as impedance
losses, are mainly produced in the windings and, in multi
megawatt transformers, have values around1% at rated cur-
rent. IEEE Std C57.110 [28] subdivides load losses into two
parts:I2R losses and what is called ”stray losses”. The latter
is the sum of the winding eddy-current losses (PEC) and other
stray losses (POSL). Therefore:

PLL = I2R+ PEC + POSL (3)

Harmonic components affect all three terms of the load
losses.I2R losses increase as the rms value of the transformer
current increases. Moreover, a higher value of the resistance
due to the skin effect can also be considered, especially with
higher harmonic components.

Eddy-current losses vary with distorted currents according
to an expression that is a function of its value under rated
conditions (PEC−R):

PEC = PEC−R

h=hmax
∑

h=1

(

Ih

In

)2

h2 (4)

where h is the harmonic order,Ih is the rms current at
harmonich, andIn is the rms fundamental current under rated
conditions.

The previous equation can be rewritten in per-unit quantities
considering the rated current as the base current andI2R loss
at rated current as the base losses, giving:

PEC(pu)= PEC−R(pu)
h=hmax
∑

h=1

Ih(pu)2h2 (5)

Finally, similar expressions to (4) and (5) are suggested for
other stray losses where the power ofh is changed by 0.8.
These losses are usually neglected for dry-type transformers,
so they are not considered in this paper. Hysteresis loss is not
considered either because no-load losses are far lower than
load losses and, in our case, the transformer voltage shows a
much smaller distortion than the current.

As a result, the loss increase due to eddy currents is
calculated as an increment in theI2R and inPEC terms. The
resistance of the wind turbine transformers is assumed to be
0.5%, which corresponds to the value ofI2R at rated current.

Moreover, load losses at rated current have been considered
to bePLL = 0.6% for each wind turbine transformer. Thus,
PEC−R needed in (5) is only0.1%. These values are in
agreement with [29].

In order to calculate the eddy-current losses of each turbine
transformer, the four harmonic components ofIF shown in
Fig. 13 are introduced into (5).
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After calculation, the new value for the eddy-current losses
at rated load is0.106%. This marginal increase with the
reduced filter was expected according to the harmonics com-
ponents ofIF as i) the higher order components, which are
multiplied by the order squared, are negligible; andii) the
distortion decreases as load increases, being significantly lower
close to rated power.

Besides the increase in eddy current losses, the transformer
copper losses would also increase, since now the wind tur-
bines have to provide a large portion of the reactive power
compensation required by the HVDC rectifier (Fig. 7). At low
power, the reactive current delivered by the wind turbines is
smaller than that of the base case. However, when the wind
farm is delivering rated power, its current will be1.06 times
the base case current. Hence, rated powerI2R losses would
increase from0.5% to 0.564% (i.e. 0.5× 1.062).

Therefore, total transformer losses (eddy current plusI2R)
at rated power would increase from0.6% to 0.67% when the
reduced capacitor bank is used.

2) Capacitor and Filter Banks: Capacitor and filter bank
losses are largely proportional to MVA bank rating. Therefore,
the proposed filter reduction would lead to smaller capacitor
and filter bank losses. A conservative figure for capacitor and
filter bank losses would be0.04%, assuming0.9% total HVDC
rectifier station losses and4.4% contribution of the capacitor
and filter banks to total HVDC station losses [30].

Clearly, the power loss reduction would be dependent on the
delivered active power, as the base case includes commutation
of the capacitor and filter banks. At rated delivered power, the
capacitor and filter bank losses will decrease from0.04% to
0.008%.

3) Wind Turbine Front-End Converter: Converter losses
can be classified in switching and conduction losses. More-
over, for IGBT devices, conduction losses are further divided
into losses proportional toI and proportional toI2 [31].

A detailed loss analysis should consider, at least, the
converter topology, the particular device being used and the
converter switching frequency. Typical figures for converter
losses at rated load range from1% to 2% [32], [33].

Therefore, a simplified loss calculation approach has been
used here, whereby rated power front-end converter losses
have been assumed to be1.6% [32], [33] and proportional
to the delivered current.

This simplifying assumption implies a small degree of loss
overestimation at medium power, but otherwise reflects the
behavior of IGBT front-end converter losses [32].

With this approach, the full power front-end converter losses
are estimated to increase from1.6% to 1.86% when the
reduced capacitor bank is used.

Fig. 17 includes the total loss of the systems under con-
sideration, namely wind turbine front-end converter and trans-
former, capacitor and filter banks. At full load, the reduced
bank case leads to the increase of total losses from2.265% to
2.41%.

From Fig. 17, the annual losses for the considered systems
can be calculated with the help of the Weibull distribution
of specific sites. Three locations in the North Sea have been
considered. Scale parameterA and shape parameterk for

TABLE I
ANNUAL LOSSES

Location A k base case losses reduced filter losses

1 9.8 m/s 2.1 1.74% 1.83%

2 11.1 m/s 2.1 1.86% 1.96%

3 7.2 m/s 2.1 1.31% 1.36%
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Fig. 17. Sum of losses in front-end converter, filter bank andWT transformer.

locations 1 and 2 are provided in [34], whereas for location
3, which corresponds to Horns Rev, is provided in [35]. The
results are shown in Table I.

For the system elements under consideration, Fig. 18 shows
the relative increase on the total losses as percentage of base
case losses.

At low power, the wind turbine reactive current absorption
is smaller in the reduced bank case. Moreover, capacitor bank
losses are always smaller with the reduced capacitor bank.
Therefore, there is7.8% loss reduction at low power.

For generated power up to0.5 pu, the filter reduction effect
on the losses is either beneficial or negligible.

For power from0.5 pu upwards, the use of the reduced filter
implies an increase on existing losses, reaching a maximum of
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Fig. 18. Loss increase in front-end converter, filter bank and WT transformer.



8

6.4% at rated power. In the three considered locations, these
values correspond to an increase of5.3% in location 1,5.6%
in location 2, and4.2% in location 3.

IV. D ISCUSSION ANDCONCLUSIONS

This paper has shown that the control strategy introduced
in [4] can be used with little modification when the rectifier
harmonic filter and capacitor banks are reduced to one fifth of
their original value. Moreover, it has been shown that the WPP
is capable of energizing the HVDC link without the need of
additional DC equipment.

The wind turbine front-end converters act as a distributed
filter to absorb a large portion of the harmonic currents
injected by the HVDC rectifier and to provide reactive power
compensation.

The harmonic distortion on the off-shore ac grid voltage has
been analyzed, as well as that of the different currents through
the system. It has been found that the change on the harmonic
currents injected by the HVDC rectifier is negligible.

On the other hand, the total harmonic distortion of the off-
shore ac grid voltage increases noticeably to a maximum value
of 3.5%, below the planning level stated in IEC-1000-3-6.

The wind turbine transformers and front-end converters
need to be overrated by6.5% to meet the increased reactive
power requirements of the complete system at full load.

This is clearly a drawback of the proposed reduced filter
solution, which should be weighed against its advantages,
namely, reduced filter size and no need for filter bank switch-
ing (reduced cost and increased reliability) and the possi-
bility of off-shore use of otherwise too large LCC rectifier
stations, which are cheaper and more efficient than VSC-
HVDC stations. It has been shown that the increase on the WT
transformer load losses due to the higher harmonic contents
in wind turbine voltage and currents is negligible.

The fundamental and harmonic currents flowing through the
HVDC rectifier are approximately equal in both the original
and the reduced filter case. Therefore, the HVDC station does
not need to be overrated.

Finally, a conservative efficiency study has lead to the
conclusion that wind turbine transformer, front-end converter
and filter bank losses would only increase by6.4% at full
power. Moreover, at powers below0.5 pu the loss increment is
very small, leading to loss reduction for powers below0.35 pu.

Site specific studies have been carried out in order to calcu-
late realistic loss increases in the aforementioned equipment.
Calculated loss increase ranged from4.3% to 5.6%.

Therefore, the results presented in this paper show that the
proposed control algorithm allows for the use a diode rectifier
HVDC link with reduced filtering requirements and with small
impact on overall system losses.

The results also show a good sharing of harmonic and
reactive currents among the wind turbine front-end converters.

In any case, the reduction on the capacitor bank, together
with the elimination of the need for switching filter banks,
would lead to reduced installation costs and increased relia-
bility, with a reduced impact on overall losses.

APPENDIX

SYSTEM PARAMETERS

Off-Shore AC Grid:

Base Values: 193.6 kV L-N rms, 1.745 kA rms, 50 Hz
HVDC Link:

Base Values: 500 kV, 1000 MW, 50 Hz
Transformer TR: 603.73 MVA, 50 Hz, 345/213 kV (L-L
rms),XL = 0.18 pu.
HVDC Link Impedances: RR = RI = 2.5 Ω, LR = LI =

0.5968 H, CL = 26 µF.
Original filter and reactive power compensation bank

(according to CIGRE benchmark):
CF = 2.5181 µF
ZF (Low Frequency Filter):
Ca1 = 5.0369 µF, Ca2 = 55.9667 µF, Ra1 = 39.498 Ω,

Ra2 = 347.5584 Ω, La = 181.0324 mH.
ZF (High Frequency Filter):
Cb = 5.0369 µF, Rb = 110.5837 Ω, Lb = 18.0502 mH.
Reduced capacitor bank:

CF = 2.5181 µF
Controllers

PI Current Controllers: KP = 33.83, KI = 28.188
PI Voltage Controller: KP = 583.8× 10−6, KI = 0.048
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