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Abstract—Loop closure detection is an essential component of Sim-
ultaneous Localization and Mapping (SLAM) systems, which reduces
the drift accumulated over time. Over the years, several deep learning
approaches have been proposed to address this task, however their
performance has been subpar compared to handcrafted techniques,
especially while dealing with reverse loops. In this paper, we introduce
the novel LCDNet that effectively detects loop closures in LiDAR
point clouds by simultaneously identifying previously visited places
and estimating the 6-DoF relative transformation between the current
scan and the map. LCDNet is composed of a shared encoder, a place
recognition head that extracts global descriptors, and a relative pose
head that estimates the transformation between two point clouds.
We introduce a novel relative pose head based on the unbalanced
optimal transport theory that we implement in a differentiable
manner to allow for end-to-end training. Extensive evaluations
of LCDNet on multiple real-world autonomous driving datasets
show that our approach outperforms state-of-the-art loop closure
detection and point cloud registration techniques by a large margin,
especially while dealing with reverse loops. Moreover, we integrate
our proposed loop closure detection approach into a LiDAR SLAM
library to provide a complete mapping system and demonstrate the
generalization ability using different sensor setup in an unseen city.

Index Terms—Loop Closure Detection, Point Cloud Registration,
Place Recognition, Simultaneous Localization and Mapping, Deep
Learning.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) is
an essential task for autonomous mobile robots as it is

a critical precursor for other tasks in the navigation pipeline.
A failure in the SLAM system will adversely affect all the
subsequent tasks and negatively impact the functioning of
the robot. Therefore, improving the robustness of SLAM
systems has garnered significant interest from both industry
and academia in the past decades, as demonstrated by the
widespread adoption in many fields such as self-driving cars [1],
unmanned aerial vehicles [2], agricultural robots [3], and
autonomous marine vehicles [4]. The goal of any SLAM system
is to build a map of an unknown environment by exploiting
onboard sensor data (such as Global Positioning System (GPS),
cameras, Light Detection and Ranging (LiDAR), and Inertial
Measurement Units (IMUs)), and at the same time localize the
robot within the built map.

A typical SLAM pipeline consists of three main components:
(i) consecutive scan alignment in which subsequent scans are
aligned by leveraging information such as odometry, scan
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Figure 1. Our proposed LCDNet detects loops by computing the similarity
between two point clouds and predicting the relative pose between them.
This is a crucial component of any SLAM system, as it reduces the drift
accumulated over time.

matching, or IMUs information; (ii) loop detection to identify
places that were previously visited, and (iii) loop closure to
align the current scan to the previously visited place and
accordingly correct the map. Since the first step by itself
usually drifts over time due to its incremental nature, the map
will no longer be consistent when the robot navigates through
a place that was previously visited. Therefore, steps (ii) and
(iii) are employed to reduce the accumulated drift by adding
a new constraint to the pose graph when a loop is detected.
Subsequently, all the previous poses are corrected according
to this constraint, thus generating a consistent map.

Although several vision-based SLAM systems have been
proposed [5], [6], their loop closure methods often fail in
case of strong variation due to illumination, appearance, or
viewpoint changes. LIDARs on the other hand, are invariant
to illumination changes and provide an accurate geometric
reconstruction of the surrounding environment. Hence, they
are often preferred over cameras for SLAM approaches due to
their inherent robustness. Standard LiDAR-based loop detection
methods extract local keypoints [7], [8] or global handcrafted
descriptors [9], [10], and compare the descriptor of the current
scan with that of previous scans to identify loops. However,
most of these approaches require an ad hoc function to compare
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the descriptors of two point clouds, which drastically impacts
the runtime when the number of past scans increases.

Driven by the significant strides achieved by Deep Neural
Networks (DNNs) in different fields, many recent works [11],
[12], [13], [14], [15] employ DNNs to address the loop
detection task in LiDAR-based SLAM systems. While these
approaches are generally faster than handcrafted methods, their
performance is not on par with these state-of-the-art methods,
especially in the case of reverse loops. Another challenge
faced while detecting a loop closure is related to aligning the
current point cloud with the built map. A common approach
is to leverage standard techniques for scan matching such as
the Iterative Closest Point (ICP) [16] algorithm or one of its
variants [17], [18], [19]. Although ICP is generally able to
successfully align two point clouds when they are relatively
similar and close, it can fall in local minima when the initial
pose between the point clouds is very different. This is often
the case when faced with reverse direction loops. To overcome
this problem, some methods also provide an estimate of the
rotation between the two point clouds. This estimate can then
be used as an initial guess in the ICP algorithm to aid the
alignment to converge to the correct solution.

Several recent works [20], [21], [22], [23] have been
proposed to address the point cloud registration task by
leveraging the advancement in deep learning. Although these
approaches achieve impressive results in registering single
objects and outperform standard techniques, the protocol used
to test these approaches only consider a relatively small initial
rotation misalignment (up to 45◦). However, the point clouds
can be rotated by 180◦ in the loop closure task. Recent work
has shown that some of these methods have a very low success
rate when the initial misalignment is larger than 120◦ [20].

In this paper, we propose the novel LCDNet for loop closure
detection which performs both loop detection and point cloud
registration (see Figure 1). Our method combines the ability of
DNNs to extract distinctive features from point clouds, with
algorithms from the transport theory for feature matching.
LCDNet is composed of a shared backbone that extracts
point features, followed by the place recognition head that
extracts global descriptors and the relative pose head that
estimates the transformation between two point clouds. One
of the core components of our LCDNet is the Unbalanced
Optimal Transport (UOT) algorithm that we implement in a
differentiable manner. UOT allows us to effectively match the
features extracted from the two point clouds, reject outliers,
and handle occluded points, while still being able to train the
network in an end-to-end manner. As opposed to existing loop
closure detection methods that estimate the relative yaw rotation
between two point clouds, our proposed LCDNet estimates
the full 6-DoF relative transformation under driving conditions
between them which significantly helps the subsequent ICP
refinement to converge faster.

We train our proposed LCDNet on sequences from the KITTI
odometry [24] and KITTI-360 [25] datasets, and evaluate it on
the unseen sequences on both datasets. Moreover, we found

that there is a lack of a standard protocol for evaluating loop
closure detection methods in the existing literature. Different
works evaluated their approaches using different metrics such
as precision-recall curve, average precision, Receiver Operating
Characteristic (ROC) curve, recall@k, and maximum F1-
score. Even among the methods that use the same metric
for evaluation, there are still substantial differences in the other
parameters chosen for computing the metrics which makes the
performance of existing methods not directly comparable. For
example, the definition of a true loop can span from scans
within three meters [14] up to scans within 15 meters [15].
Therefore, in this work, we evaluate existing state-of-the-art
approaches using a uniform evaluation protocol to provide
a fair comparison. Exhaustive comparisons demonstrate that
our proposed LCDNet outperforms both handcrafted methods
as well as DNN-based methods and achieves state-of-the-
art performance on both loop closure detection and point
cloud registration tasks. Furthermore, we present detailed
ablation studies on the architectural topology of LCDNet and
also present results from integrating LCDNet into a recent
LiDAR SLAM library [26]. Additionally, we demonstrate
the generalization ability of our proposed approach using
experiments with a different sensor setup from an autonomous
driving scenario in a completely different city.

The main contributions of this work can be summarized as
follows:

1) We propose LCDNet, a novel approach for loop closure
detection that effectively detects reverse loops.

2) We propose an end-to-end trainable relative pose regres-
sion network based on the unbalanced optimal transport
theory that can register two point clouds that only partially
overlap and with an arbitrary initial misalignment.

3) We comprehensively evaluate existing state-of-the-art loop
closure detection methods using a uniform evaluation
protocol, we perform extensive evaluations of LCDNet
on multiple autonomous driving datasets, and we present
detailed ablation studies that demonstrate the efficacy of
our contributions.

4) We study the generalization ability of our approach
to unseen environments and different sensor setups by
evaluating LCDNet on our own recorded dataset around
the city of Freiburg, Germany.

5) We integrate our network into a SLAM library to provide
a complete system for localization and mapping and
we make the code, the entire SLAM system, and the
evaluation tools publicly available at http://rl.uni-freiburg.
de/research/lidar-slam-lc.

The remainder of the paper is organized as follows: we
review existing methods that are related to our approach in Sec-
tion II. In Section III, we detail our proposed LCDNet and the
integration into the SLAM system. We then present experiments
that demonstrate the effectiveness and robustness of LCDNet in
Section IV. Finally, we present our conclusions in Section V.

http://rl.uni-freiburg.de/research/lidar-slam-lc
http://rl.uni-freiburg.de/research/lidar-slam-lc
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II. RELATED WORKS

In this section, we provide an overview of the state-of-the-
art techniques for vision-based and LiDAR-based loop closure
detection, followed by methods for point cloud registration.

Loop Closure Detection: Techniques for loop closure detection
can primarily be categorized into visual and LiDAR-based
methods. Traditionally, vision-based techniques for loop closure
detection rely on handcrafted features for identifying and
representing relevant parts of scenes depicted within images,
and exploit a Bag-of-Words model to combine them [5], [6].
In the last few years, deep learning approaches [27], [28]
have been proposed that achieve successful results. These
techniques employ DNN for computing global descriptors
to provide a compact representation of images and perform
direct comparisons between descriptors for searching matches
between similar places. Recently, [29] proposed a novel
approach that employs DNNs for extracting local features
from intermediate layers and organizes them in a word-pairs
model. Although vision-based methods achieve impressive
performance, they are not robust against adverse environmental
situations such as challenging light conditions and appearance
variations that can arise during long-term navigation. As loop
closure detection is a critical task within SLAM systems, in
this work, we exploit LiDARs for the sensing modality since
they provide more reliable information even in challenging
conditions in which visual systems fail.

3D LiDAR-based techniques have gained significant interest
in the last decade, as LiDARs provide rich 3D information
of the environment with high accuracy and their performance
is not affected by illumination changes. Similar to vision-
based approaches, LiDAR-based techniques also exploit local
features. Most methods use 3D keypoints [30], [31] that are
organized in a bag-of-words model for matching point clouds
[7]. [8] propose a keypoint based approach in which a nearest
neighbor voting paradigm is employed to determine if a set
of keypoints represent a previously visited location. Recently,
[32] propose a voxel-based method that divides a 3D scan
into voxels and extracts multiple features from them through
different modalities, followed by learning the importance of
voxels and types of features.

Another category of techniques represents point clouds
through global descriptors. [9] propose an approach that directly
produces point clouds fingerprints. In particular, this method
relies on density signatures extracted from multiple projections
of 3D point clouds on different 2D planes. [10] introduces
a novel global descriptor called Scan Context that exploits
bird-eye-view representation of a point cloud together with a
space partitioning procedure to encode the 2.5D information
within an image. In a similar approach, [33] propose a method
to extract binary signature images from 3D point clouds by
employing LoG-Gabor filtering with thresholding operations
to obtain a descriptor. The main drawback of these approaches
is that they require an ad-hoc function to compare the global
descriptor of two point clouds which drastically impacts the
runtime when the number of scans to compare increases.

Recently, DNN-based techniques have also been proposed
for computing descriptors from 3D point clouds. [11] propose
PointNetVLAD which is composed of PointNet [34] with
a NetVLAD layer [27] and yields compact descriptors. [12]
propose OREOS which computes 2D projection of point clouds
on cylindrical planes and is subsequently fed into a DNN that
computes global descriptors and estimate their yaw discrepancy.
More recently, the OverlapNet [13] architecture was introduced,
which estimates the overlap and relative yaw angle between
a pair of point clouds. The overlap estimate is then used for
detecting loop closures while the yaw angle estimation is
provided to the Iterative Closest Point (ICP) algorithm as the
initial guess for the point clouds alignment. While DNN-based
methods are generally faster than classical techniques, and
show promising results in sequences that contain loops only
in the same direction, their performance drastically decreases
when they are faced with reverse loops.

Recently, techniques that exploit graph structures by match-
ing semantic graphs have been proposed [14], [15]. These
approaches first extract semantic information and perform
instance retrieval, followed by defining graph vertices on
the object centroids. Subsequently, features are extracted by
considering handcrafted descriptors or by processing nodes
through a Dynamic Graph CNN [35]. Finally, loop closures
are identified by comparing vertices between graphs. However,
computing the exact correspondences between two graphs is
still an open problem and existing methods are only suitable
when a few vertices are considered or they can only provide
an approximated solution [36]. In this work, we exploit recent
advancements in deep learning and propose a DNN-based
approach for detecting loop closure by combining high-level
voxel features with fine-grained point features. Our approach
effectively detects loops in challenging scenarios such as reverse
loops and outperforms state-of-the-art handcrafted and learning-
based techniques.

Point Cloud Registration: Point clouds registration represents
the task of finding a rigid transformation to accurately align a
pair of point clouds. The ICP algorithm [16] is one standard
method that is often employed to tackle this task. Although
ICP is one of the most popular methods, the main drawback
concern the initial rough alignment of point clouds which is
required to reach an acceptable solution, and the algorithm
complexity which increases drastically with the number of
points. Other methods tackle the registration problem globally
without requiring a rough initial alignment. Traditionally, these
techniques exploit local features [37] for finding matches
between point clouds and employ algorithms such as RANdom
SAmple Consensus (RANSAC) [38] for estimating the final
transformation. However, the presence of noise in the input
data and outliers generated from incorrect matches can lead to
an inaccurate result. To address these problems, [39] proposes
a global registration approach that ensures fast and accurate
alignment, even in the presence of many outliers.

Recent years have also seen the introduction of deep learning
methods that tackle the registration problem. A typical approach
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Figure 2. Overview of our proposed LCDNet which is composed of a shared feature extractor (green), a place recognition head (blue) that generates
global descriptors, and a relative pose head (orange) that estimate the transformation between two point clouds. We use three loss functions to train
LCDNet (triplet loss, aux loss, and pose loss) which are depicted in purple. The topology of the feature extractor is further illustrated in Figure 3.

is to employ a DNN for extracting features which are then
used in the later stages to perform point clouds alignment.
[20] propose such an approach known as PointNetLK, which
exploits the PointNet [34] architecture for feature extraction and
employs a variation of the Lucas and Kanade algorithm [40]
to perform registration. Deep Closest Point (DCP) [23] is
another approach that employs a Siamese architecture, attention
modules, and differentiable Singular Value Decomposition
(SVD) to regress a rigid transform for aligning two input point
clouds. Recently, [21] proposes a DNN-based method called
RPM-Net which is inspired by Robust Point Matching (RPM).
RPM-Net employs two different neural networks to extract
features and predict annealing parameters that are required for
RPM. However, these methods are only capable of aligning
point clouds that are relatively close to each other (up to 45◦

rotation misalignment), and completely fail to register point
clouds that are more than 120◦ apart [20]. In contrast to the
aforementioned methods, the approach that we propose in this
work does not require any initial guess as input and can handle
both outliers and occluded points. Moreover, unlike existing
DNN-based methods, our approach effectively aligns point
clouds with arbitrary initial rotation misalignment.

III. TECHNICAL APPROACH

In this section, we detail our proposed LCDNet for loop
closure detection and point cloud registration from LiDAR
point clouds. An overview of the proposed approach is
depicted in Figure 2. The network consists of three main
components: feature extraction, global descriptor head, and
6-DoF relative pose estimation head. We first describe each
of the aforementioned components and the associated loss
functions for training, followed by the approach for integrating
LCDNet into the SLAM system.
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Figure 3. Network topology of the PV-RCNN architecture that we build
upon for feature extractor component of our proposed LCDNet.

A. Feature Extraction

We build the feature extractor stream of our network based
upon the PV-RCNN [41] architecture that was proposed for 3D
object detection. PV-RCNN effectively combines the ability of
voxel-based methods for extracting high-level features, with
fine-grained features provided by PointNet-type architectures.
We make several changes to the standard architecture to adapt it
to our task. We illustrate the topology of our adapted PV-RCNN
in Figure 3.

The input to the network is a point cloud P ∈RJx4 (J points
with 4 values each: x, y, z, and intensity). The output of
our feature extractor network is a set of N keypoints’ feature
FRP = { f rP

1 , . . . , f rP
N}, where f rP

i ∈RD is the D-dimensional
feature vector for the i-th keypoint. Since we are interested
in the feature extraction, and not in the object detection head,
we only use the 3D voxel DNN and the Voxel Set Abstraction
(VSA) module, and we discarded the region proposal network,
the ROI-grid pooling, and the fully connected layers towards
the end of the architecture. The 3D voxel DNN first converts
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the point cloud into a voxel grid of size L×W×H, where voxel
features are averaged across all the points that lay within the
same voxel. Subsequently, we extract a feature pyramid using
sparse 3D convolutions and downsampling. In particular, we
use four pyramid blocks composed of 3D sparse convolutions,
with downsampling rates of 1×, 2×, 4×, and 8×, respectively.
Finally, we convert the coarsest feature map into a 2D Bird’s-
Eye-View (BEV) feature map by stacking the features along
the Z axis.

The VSA module, on the other hand, aggregates all the
pyramid feature maps together with the BEV feature map
and the input point cloud into a small set of N keypoints
features. To do so, we first downsample the point cloud using
the Farthest Point Sampling (FPS) algorithm [42] to select
N uniformly distributed keypoints. The VSA module is an
extension of the Set Abstraction (SA) level [43]. The standard
SA aggregate neighbors point features in the raw point cloud,
whereas, the VSA aggregate neighbors voxel features in the
3D sparse feature map. For every selected keypoint kpi, and
every layer l of the pyramid feature map, the keypoint features
f l
i are computed as

f l
i = MP(MLP(M(Sl

i))), (1)

where MP is the max-pooling operation, MLP denotes a Multi
Layer Perceptron (MLP), and M randomly samples the set of
neighbor voxel features Sl

i , which is computed as

Sl
i =

{[
f voxl

j;vl
j− kpi

]
; s. t.

∥∥∥vl
j− kpi

∥∥∥2
< r
}
, (2)

where f voxl
j is the feature of the voxel j at level l, vl

j denotes
the coordinates of the voxel j at level l, and r is the neighbor
radius. This operation is performed at every level of the pyramid
to yield

f pv
i =

[
f 1
i , f 2

i , f 3
i , f 4

i
]
. (3)

We perform a similar operation for the input raw point cloud, as
well as the BEV feature map, yielding the aggregated keypoint
features

f 3D
i =

[
f pv
i , f raw

i , f bev
i

]
. (4)

Lastly, we employ a MLP on the aggregated keypoint features
to generate the final keypoint feature vectors as

f ri = MLP( f 3D
i ). (5)

As opposed to the original PV-RCNN that processes only
the points that lay in the camera Field Of View (FOV), we
require the full 360° surrounding view. Therefore, we use
a voxel grid size of ±70.4m, ±70.4m and [−1m,3m] in
the x,y and z dimensions, respectively. We use a voxel size
of 0.1m× 0.1m× 0.1m. We demonstrate the ability of our
feature extractor in generating discriminative keypoint features
by comparing it with different state-of-the-art backbones in
the ablation studies presented in Section IV-F. Moreover, we
also investigate the best choice for the dimensionality D of the
keypoint features.

B. Global Descriptor

In order to generate a global descriptor for a given point
cloud, we aggregate the keypoints’ feature set FRP obtained
from the feature extractor into a compact G-dimensional vector.
To do so, we first employ the NetVLAD layer [27] which
converts the (N x D)-dimensional FRP set into a (K x D)-
dimensional vector V(FRP) by learning a set of K cluster
centers {c1, . . . ,cK}, ck ∈RD. NetVLAD mimics the original
Vector of Locally Aggregated Descriptor (VLAD) [44] using
differentiable operations. It replaces the k-means clustering
with learnable clusters and replacing the hard assignment with
a soft assignment defined as

ak( f rP
i ) =

ew>k f rP
i +bk

∑
K
k′=1 ew>

k′ f rP
i +bk′

, (6)

where wk ∈ RD and bk ∈ R are the learnable weights and bias.
In practice, ak( f rP

i ) represents the probability of assigning the
feature vector f rP

i to the cluster center ck. The final NetVLAD
descriptor V(FRP) = [V1(FRP), . . . VK(FRP)] is computed
by combining the original VLAD formulation with the soft
assignment defined in Equation (6) as

Vk(FRP) =
N

∑
i=1

ak( f rP
i )( f rP

i − ck). (7)

We use the NetVLAD layer instead of max-pooling employed
in PointNet [34], as it has demonstrated superior performance
for point cloud retrieval [11]. To further reduce the dimen-
sionality of the final global descriptor, we employ a simple
MLP that compresses the (K × D)-dimensional vector V(FRP)

into a G-dimensional compact descriptor. We then obtain the
final global descriptor f (P) ∈ RG by employing the Context
Gating (CG) module [45] on the output of the MLP. The CG
module re-weights the output of the MLP using a self-attention
mechanism as

Y (X) = σ(WX +b)�X , (8)

where X is the MLP output, σ is the element-wise sigmoid
operation, � is the element-wise multiplication, W and b
are the weights and bias of the MLP. The CG module
captures dependencies among features by down-weighting or
up-weighting features based on the context while considering
the full set of features as a whole, thus focusing the attention
on more discriminative features.

C. Relative Pose Estimation

Given two point clouds P and S, the third component of our
architecture estimates the 6-DoF transformation to align the
source point cloud P with the target point cloud S under driving
conditions. We perform this task by matching the keypoints’
features FRP and FRS computed using our feature extractor
from Section III-A. Due to the sparse nature of LiDAR point
clouds and the keypoint sampling step which is performed
in the feature extractor, a point in P might not have a single
matching point in S, but it can lay in between two or more
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points in S. Therefore, a one-to-one mapping is not desirable
in our task.

In order to address this problem, we employ the Sinkhorn
algorithm [46], which can be used to approximate the optimal
transport (OT) theory in a fast, highly parallelizable and differ-
entiable manner. Recent work has shown benefits of using the
Sinkhorn algorithm with DNNs for several tasks such as feature
matching [47], scene flow [48], shape correspondence [49],
and style transfer [50]. The discrete Kantorovich formulation
of the optimal transport is defined as

T = argmin
A∈RN×N

{
∑
i, j

Ci jAi j; s. t. A is doubly stochastic

}
, (9)

where Ci j is the cost of matching the i-th point in P to the
j-th point in S. In order to employ the Sinkhorn algorithm, we
add an entropic regularization term:

T = argmin
A∈RN×N

{
∑
i, j

Ci jAi j +λAi j (logAi j−1)

}
, (10)

where λ is a parameter that controls the sparseness of the
mapping (as λ → 0, T converges to a one-to-one mapping).
However, both Equations (9) and (10) are subject to A being
a doubly stochastic matrix (mass preservation constraint), i.e.,
every point in FRP has to be matched to one or more points in
FRS, and vice versa. In our point cloud matching task, some
points in FRP might not have a matching in FRS, for example
when a car is present in one point cloud but is absent in the
other, or in the case of occlusions. Therefore, we need to
relax the mass prevention constraint. One common approach to
overcome this problem is by adding a dummy point in both P
and S (i.e., add a dummy row and column to A). Another way
is to reformulate the problem as unbalanced optimal transport
(UOT) which allows mass creation and destruction, and is
defined as

T =argmin
A∈RN×N

{(
∑
i, j

Ci jAi j +λAi j (logAi j−1)

)
+

ρ

(
KL

(
∑

i
Ai j|U(1,N)

)
+KL

(
∑

j
Ai j|U(1,N)

))}
,

(11)

where KL is the Kullback–Leibler divergence, U is the discrete
uniform distribution, and ρ is a parameter that controls how
much mass is preserved. The UOT formulation, compared
to the standard OT, reduces the negative effect caused by
incorrect point matching and is more robust to the stochasticity
induced by keypoint sampling [51]. A recent extension to
the Sinkhorn algorithm [52] that approximates the unbalanced
optimal transport is shown in Algo. 1. We set the cost matrix
C as cosine distance between the keypoints’ features Ci j =

1− FRP
i ·FRS

j/‖FRP
i ‖
∥∥∥FRS

j

∥∥∥. Instead of setting λ and ρ manually,
we learn them using back propagation.

Once we estimate the unbalanced optimal transport T , which
represents the set of soft correspondence between keypoints’
features FRP and FRS, together with their respective 3D

Algorithm 1: Unbalanced Optimal Transport
Data: Cost matrix C, number of iterations L,

parameters λ and ρ

Result: Unbalanced Optimal Transport T
begin

K← e−C/λ

a← 1N/N
b← 1N/N
v← 1N/N
for i← 1 to L do

u← [a� (Kv)]ρ/(ρ+λ )

v← [b� (Kᵀu)]ρ/(ρ+λ )

end
T ← u�K� vᵀ

end
where � is the element wise division, and � is the element-wise
multiplication.

keypoints’ coordinates P and S, we compute for every keypoint
p j ∈ P its projected coordinates in S as

ŝ j =
∑

K
k=1 Tjksk

∑
K
k=1 Tjk

. (12)

Finally, to estimate the rigid body transformation between
the original point cloud P and its projection Ŝ in S we
use the weighted SVD. Since both Algo. 1 and SVD are
differentiable, we train our relative pose head in an end-to-end
manner by comparing the predicted transformation ĤS

P with
the groundtruth transformation HS

P.
Once the network has been trained, we replace the UOT-

based relative position head with a RANSAC-based registration
method that exploits the features extracted by our network to
find correspondences. In this way, we can train the network in
an end-to-end manner, and at the same time estimate accurate
relative poses using the robust RANSAC estimator during
inference.

D. Loss Function

We train our global descriptors using the triplet loss [53].
Given an anchor point cloud Pa, a positive sample Pp (point
cloud of the same place), and a negative sample Pn (point
cloud of a different place), the triplet loss enforce the distance
between the descriptors of positive samples to be smaller
than the distance between negative samples descriptors. More
formally, the triplet loss is defined as

Ltrp = [d( f (Pa), f (Pp))−d( f (Pa), f (Pn))+m)]+, (13)

where d(·) is a distance function, m is the desired separation
margin, and [x]+ means max(0,x).

Instead of selecting the triplets in advance (offline mining)
for every anchor in the batch, we randomly select a positive
sample, and we select the negative sample randomly from all
the samples in the batch that depict a different place (online
negative mining). We compute the relative pose transformation
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only for positive pairs, and we train the model by comparing the
anchor point cloud Pa = {pa

1, . . . , pa
J} transformed using the

predicted transformation Ĥ p
a and the groundtruth transformation

H p
a as

Lpose =
1
J

J

∑
j=1

∣∣∣Ĥ p
a pa

j −H p
a pa

j

∣∣∣ . (14)

We add an auxiliary loss on the matches estimated by the
unbalanced optimal transport T as

LOT =
1
J

J

∑
j=1

∣∣∣∣∣∑K
k=1 Tjk pp

k

∑
K
k=1 Tjk

−H p
a pa

j

∣∣∣∣∣ . (15)

The final loss function is a linear combination of the three
aforementioned components:

Ltotal = Ltrp +Lpose +βLOT , (16)

where β is loss balancing term which we empirically set to
0.05. Consequently, due to the combination of triplet loss, UOT,
and data augmentation, the shared feature extractor learns to
yield distinctive, rotation and translation invariant keypoints’
features through backpropagation.

E. SLAM System

We integrate our proposed LCDNet into a recently proposed
SLAM system, namely LIO-SAM [26] which achieves state-
of-the-art performance on large-scale outdoor environments.
LIO-SAM is a tightly coupled LiDAR inertial odometry
framework built atop a factor graph. The framework takes
a LiDAR point cloud and IMU measurements as input. It
includes four types of constraints that are added to the
factor graph: IMU preintegration, LiDAR odometry, GPS
measurements (optional), and loop closure. In order to reduce
the computational complexity, LIO-SAM selectively chooses
LiDAR scans as keyframes only when the robot moves more
than a predefined threshold since the last saved keyframe.
The scans in between two keyframes are then discarded. We
replaced the Euclidean distance-based loop closure detection
provided in LIO-SAM with our LCDNet. From a technical
perspective, for every keyframe Fi added to the LIO-SAM
factor graph, we compute and store its global descriptor f (Fi)

in a database. When a new keyframe Fi+1 is added to the graph,
we retrieve the point cloud with the most similar descriptor
(excluding the past M keyframes) from the database:

W = argmin
j∈{1,...,i−M}

∥∥ f (Fi+1)− f (F j)
∥∥ . (17)

If the distance between the two descriptors is below a certain
threshold th, we set FW as a loop candidate, and we estimate
the 6-DoF transformation between the two point clouds ĤW

i+1
provided by the relative pose head as described in Section III-C.
Finally, we further refine the transformation using ICP with
ĤW

i+1 as initial guess, and we add the loop closure factor to
the pose graph only if the ICP fitness score is higher than a
threshold thicp. By using this additional geometric consistency
check, we can discard the few remaining false positive detection.
It is important to note that no IMU nor GPS measurements
are used in the loop detection step.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe the datasets that we evaluate
on, followed by the implementation details and the training
protocol that we employ. We then present quantitative and
qualitative results from experiments that are designed to
demonstrate that our proposed LCDNet can (i) effectively detect
loop closures even in challenging condition such as loops in
the reverse direction, (ii) align two point clouds without any
prior initial guess, (iii) robustly align point clouds that only
partly overlap, (iv) provide an accurate initial guess for further
ICP alignment, (v) integrate with an existing SLAM system to
provide a fully featured localization and mapping framework,
(vi) generalize to unseen environments.

A. Datasets

We evaluate our proposed approach on three different
autonomous driving datasets. We detail the list of sequences
that we use for training and testing, together with the respective
number of loop closures and route direction of revisited places
in Table I. Note that we do not include the sequences without
loops.

KITTI: The KITTI odometry dataset [24] contains 11 sequences
with LiDAR point clouds and groundtruth poses, six of which
contain loops. However, the groundtruth for some of these
sequences is not aligned to nearby loop closures. Therefore,
we use the groundtruth provided with the SemanticKITTI
dataset [54] which is consistent for all the sequences. Most of
the KITTI odometry sequences contain loop closures from the
same driving direction, except for sequence 08 which contains
reverse loop closures. We evaluate our approach on sequences
00 and 08 as they contain the highest number of loops and
reverse loops, respectively.

KITTI-360: The recently released KITTI-360 dataset [25]
consists of nine sequences, six of which contain loops. KITTI-
360 contains more loops and reverse loops than the standard
KITTI dataset (see Table I). We evaluate our approach on two
of the sequences in KITTI-360 that contain the highest number
of loop closures: sequence 02 and sequence 09.

Freiburg: We recorded our own dataset by driving around the
city of Freiburg, Germany, across different days. We used a
car equipped with a Velodyne HDL-64E LiDAR sensor and
an Applanix POS LV positioning system. The resulting dataset
includes many loops, both from the same and reverse directions.
Moreover, differently from the KITTI and KITTI-360 datasets,
our Freiburg dataset includes many dynamic objects. The
Freiburg dataset is thus used to evaluate the generalization
ability of our approach to a different city, different sensor setup,
and across different days by training the models on KITTI and
KITTI-360, and evaluating them on our own dataset collected
in Freiburg, without any re-training or fine-tuning.

B. Implementation and Training Details

Following [10], we consider two point clouds as a real loop
if the distance between the groundtruth poses is less than four
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Table I
STATISTICS OF EVALUATION DATASETS.

KITTI KITTI-360 Freiburg

00 05 06 07 08 09 00 02 04 05 06 09 -

Num. of scans 4541 2761 1101 1101 4071 1591 10514 18235 11052 6291 9186 13247 25612
Num. of loops 790 492 69 97 334 18 2452 4690 2218 2008 2433 4670 13851
Num. of pairs 10499 6534 2138 2497 2960 252 24499 43894 21165 20361 22822 53858 ∼ 411M
Route direction Same Same Same Same Reverse Same Both Both Both Both Both Both Both
% Reverse Loops 3% 5% 0% 0% 100% 0% 67% 87% 92% 88% 61% 46% 20%

meters. Moreover, we do not search for loop candidates in the
past 50 scans to avoid detecting loops in nearby scans. We
train LCDNet on sequences 05, 06, 07, and 09 of the KITTI
dataset, validate it on sequences 00 and 08, and test it on the
KITTI-360 dataset. We also train a second model, denoted as
LCDNet†, which is trained on sequences 00, 04, 05, and 06
of the KITTI-360 dataset, validated on sequences 02 and 09,
and tested on the KITTI dataset.

We train all models for 150 epochs on a server with 4
NVIDIA TITAN RTX GPUs, using a batch size of 24 positive
pairs. We use the ADAM optimizer to update the weights of the
network, with an initial learning rate of 0.004 which is halved
after epochs 40 and 80, and a weight decay of 5 ·10−6. In all
the experiments, if not otherwise specified, we set the number
of keypoints N = 4096, the intermediate feature dimension
D = 640, the output feature dimension G = 256, the number
of NetVLAD clusters K = 64, the triplet margin m = 0.5, and
the distance function in Equation (13) as the L2 distance. The
number of iterations for the Sinkhorn algorithm is set to L = 5.

In order to help the network to learn viewpoint-invariant
features, we apply a random rigid body transformation to each
point cloud, with a maximum translation of [±1.5m] on the
x and y axes, and [±0.25m] on the z axis; the maximum
rotation of [±180°] for the yaw (to simulate loop closures
from different directions), and [±3°] for roll and pitch.

C. Evaluation of Loop Closure Detection

To evaluate the loop closure detection performance of
LCDNet, we use precision-recall curves and the Average
Precision (AP) metric under two different evaluation protocols.

Protocol 1: In the first protocol, we evaluate our approach in a
real loop closure setting. For each scan i of the sequence, we
compute the similarity between the global descriptor f (Pi) and
the descriptor of all the previous scans, excluding the nearby
scan as detailed in Section IV-A. We select scan j with the
highest similarity as the loop candidate, and if the similarity
between the two descriptors is higher than a threshold th, then
we consider the pair (i, j) as a loop. In such a case, we further
check the distance of the groundtruth poses between the two
scans: if the distance is less than four meters, then we consider
it as a true positive, and as a false positive otherwise. On the
other hand, if the similarity is lower than the threshold, but
if a scan within four meters around the current scan i exists,
then we consider it as a false negative.

Protocol 2: In the second protocol, for each scan, we take into
account all the previous scans, not only the one with the highest
similarity. For every pair of scans, if the similarity between the
two descriptors is higher than the threshold, we consider the
pair as loop closure, and we compare against the groundtruth
to compute precision and recall. Although in a real-world loop
closure application only the most similar scan matters, if an
approach is able to detect loops when the scans are very similar,
but fails in more challenging scenarios (such as occlusions),
this will not be reflected in the protocol 1 results. In protocol
2, on the other hand, all pairs of scans are considered, and
thus approaches that better deal with challenging situations
will achieve better results. Also in this protocol, we ignore
nearby scans to avoid matching consecutive scans.

In both protocols, by varying the threshold th we obtain
a set of pairs (precision, recall), that we use to generate the
precision-recall curve and to compute the AP.

We compare our approach with state-of-the-art handcraf-
ted methods: M2DP [9], Scan-Context [10], Intensity Scan-
Context (ISC) [55], and LiDAR-IRIS [33], as well as DNN-
based methods OverlapNet [13], and Semantic Graph Place
Recognition (SG PR) [14]. For all these approaches, we used
the official code published by the respective authors, and
the pretrained models that are provided by the authors for
DNN-based methods. OverlapNet only provides the model
trained with geometric information, we refer to this model
as OverlapNet (Geo). All the DNN-based methods except for
LCDNet† are trained on the KITTI dataset as described in
Section IV-A, and evaluated individually on sequences from
both KITTI and KITTI-360 datasets.

We present results with the AP metric for protocol 1 and
protocol 2 in Table II. The best method is highlighted in bold,
and the second best is underlined. Moreover, we present the
precision-recall curves for both protocols in Figure 4. We
observe that while most approaches achieve satisfactory results
in detecting loop closures in the same direction (Figure 4 (a)),
this is not the case for reverse loops as shown in Figure 4 (b).
M2DP and SG PR completely fail on the KITTI sequence 08;
Scan Context, OverlapNet (Geo) and LiDAR-Iris also show a
strong decrease in performance when dealing with reverse loops.
For instance, the previous state-of-the-art method Scan Context
achieved an AP of 0.96 in sequence 00 of the KITTI dataset
(which contains only same direction loops), and 0.65 in se-
quence 08. Our proposed LCDNet, on the other hand, performs
equally well for both reverse and same direction loops, achiev-
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(a) KITTI sequence 00
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(b) KITTI sequence 08
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(c) KITTI-360 sequence 02
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(d) KITTI-360 sequence 09

M2DP Scan Context ISC Lidar-IRIS

OverlapNet LCDNet LCDNet†SG_PR

Figure 4. Comparison of loop closure detection precision-recall curves on KITTI (a-b) and on KITTI-360 (c-d) datasets evaluated using both protocols.
Our proposed LCDNet† achieves the best performance in all the experiments, followed by our LCDNet as second best method. The improvement over
previous state-of-the-art approaches is even more prominent when dealing with reverse direction loops, as observed in (b).
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Table II
COMPARISON WITH THE STATE OF THE ART IN TERMS OF THE AVERAGE PRECISION EVALUATED ON THE KITTI AND KITTI-360 DATASETS.

Method Protocol 1 Protocol 2

KITTI KITTI-360 KITTI KITTI-360

00 08 02 09 00 08 02 09
H

an
dc

ra
ft

ed M2DP [9] 0.93 0.05 0.15 0.66 0.31 0.01 0.03 0.17
Scan Context [10] 0.96 0.65 0.81 0.90 0.47 0.21 0.32 0.31
ISC [55] 0.83 0.31 0.41 0.65 0.14 0.05 0.03 0.04
LiDAR-Iris [33] 0.96 0.64 0.83 0.91 0.42 0.17 0.25 0.26

D
N

N
-

ba
se

d

OverlapNet [13] 0.95 0.32 0.14 0.70 0.60 0.20 0.05 0.33
SG PR [14] 0.49 0.13 - - 0.23 0.13 - -
LCDNet 0.97 0.94 0.95 0.98 0.62 0.73 0.69 0.79
LCDNet† 0.998 0.96 0.97 0.99 0.89 0.76 0.73 0.80

ing an AP of 0.94 and 0.97 respectively. This is even more
noticeable in the results using protocol 2 where all the other ap-
proaches show a substantial decrease in performance, while our
LCDNet achieves an AP score that is even better for detecting
reverse loops than the same direction loops. We also observe
that the model trained on the KITTI-360 dataset (LCDNet†)
achieves the best performance on all the sequences, thereby
setting the new state-of-the-art on both KITTI and KITTI-360.

D. Evaluation of Relative Pose Estimation

In this section, we evaluate the relative pose estimation
between two point clouds. Our proposed LCDNet provides a
full 6-DoF transformation under driving conditions between
two points clouds. However, Scan Context, ISC, LiDAR-Iris,
and OverlapNet only provide an estimation of the yaw angle.
As M2DP, and SG PR do not provide any information about the
relative pose, we do not include them in the results presented
in this section. Moreover, we compare our approach with state-
of-the-art handcrafted methods for point cloud registration:
ICP [16] using point-to-point and point-to-plane distances,
RANSAC with FPFH features [37] and Fast Global Registration
(FGR) [39], all implemented in the Open3D library [57], and
TEASER++ [56] using the official implementation. We also
compare with DNN-based methods RPMNet [21], Deep Closest
Point (DCP) [23] and Product of Cross-Attention Matrices
(PCAM) [22]. To provide a fair comparison, we trained all the
latter DNN-based approaches on the same data, following the
same protocol, and using the same number of keypoints used
to train our LCDNet. Following [58], for the aforementioned
handcrafted methods we first downsample the point clouds
using a voxel size of 0.3 meter, while the latter DNN-based
methods and our LCDNet perform point cloud registration using
4096 sampled points, which is a much sparser representation.
Scan-Context, LiDAR-Iris, ISC, and OverlapNet, on the other
hand, operate on spherical projections of the points, and thus
they process almost all the points in the original cloud. We
evaluate two versions of our method. The first one, denoted as
LCDNet (fast), leverages the output of the UOT-based relative
position head to estimate the transformation. In the second
version, denoted as LCDNet, we replace the UOT-based head
with a RANSAC estimator, as described in Section III-C. The

models trained on KITTI-360 are denoted as LCDNet† (fast)
and LCDNet†, respectively. We also evaluate the performance of
LCDNet followed by a further ICP registration. We report the
latter evaluation only as a reference to show the best alignment
achievable. Finally, we further investigate whether TEASER++
is a better pose estimator by replacing RANSAC in LCDNet.

We evaluate all the methods in terms of success rate
(percentage of successfully aligned pairs), translation error
(TE), and rotation error (RE) averaged over successful pairs
as well as over all the positive pairs. We consider two pairs
to be aligned successfully if the final rotation and translation
error is below five degrees and two meters, respectively. The
results on the KITTI and KITTI-360 datasets are reported
in Tables III and IV. We observe that LiDAR-Iris achieves the
best performance among the handcrafted methods and PCAM
demonstrates superior results compared to existing DNN-based
approaches when dealing with same and reverse direction
pairs. However, as opposed to the other methods, PCAM
only performs point cloud registration and do not provide
any information regarding loop closure detection. Whereas, our
proposed LCDNet and LCDNet† achieve the highest success
rates and lowest rotation errors compared to all the methods
, with a success rate of 100% in three out of four sequences.
PCAM, on the other hand, achieves the lowest translation
errors in most sequences, but is not robust to registration under
partial overlap, as we discuss in Section IV-E. The fast versions
of our method achieve results comparable with, and in some
sequences even better than existing approaches, while being
much faster than most point cloud registration methods, as
we discuss in Section IV-H. We observe that by replacing
RANSAC in LCDNet and LCDNet† with TEASER++ the
success rates decrease and the translation errors significantly
increase, while the rotation errors remain similar. During our
experimental evaluations, we also observed that while the
rotation and translation invariance obtained by our LCDNet
primarily arise from our data augmentation scheme, many
existing loop closure detection approaches (not reported in
the comparison) did not converge at all when trained with the
same scheme. Therefore, we argue that data augmentation by
itself is not sufficient, and a well-designed architecture and
loss function is necessary to achieve invariance.
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Table III
COMPARISON OF RELATIVE POSE ERRORS (ROTATION AND TRANSLATION) BETWEEN POSITIVE PAIRS ON THE KITTI DATASET.

Approach Seq. 00 Seq. 08

Success TE [m] (succ. / all) RE [deg] (succ. / all) Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

dc
ra

ft
ed

Scan Context∗ [10] 97.66% - / - 1.34 / 1.92 98.21% - / - 1.71 / 3.11
ISC∗ [55] 32.07% - / - 1.39 / 2.13 81.28% - / - 2.07 / 6.27
LiDAR-Iris∗ [33] 98.83% - / - 0.65 / 1.69 99.29% - / - 0.93 / 1.84
ICP (P2p) [16] 35.57% 0.97 / 2.08 1.36 / 8.98 0% - / 2.43 - / 160.46
ICP (P2pl) [16] 35.54% 1.00 / 2.11 1.39 / 8.99 0% - / 2.44 - / 160.45
RANSAC [37] 33.95% 0.98 / 2.75 1.37 / 12.01 15.61% 1.33 / 4.57 1.79 / 37.31
FGR [39] 34.54% 0.98 / 5972.31 1.2 / 12.79 17.16% 1.32 / 35109.13 1.76 / 28.98
TEASER++ [56] 34.06% 0.98 / 2.72 1.33 / 15.85 17.13% 1.34 / 3.83 1.93 / 29.19

D
N

N
-b

as
ed OverlapNet∗ [13] 83.86% - / - 1.28 / 3.89 0.10% - / - 2.03 / 65.45

RPMNet [21] 47.31% 1.05 / 2.07 0.60 / 1.88 27.80% 1.28 / 2.42 1.77 / 13.13
DCP [23] 50.71% 0.98 / 1.83 1.14 / 6.61 0% - / 4.01 - / 161.24
PCAM [22] 99.68% 0.07 / 0.08 0.35 / 0.74 94.90% 0.19 / 0.41 0.51 / 6.01

O
ur

s

LCDNet (fast) 93.03% 0.65 / 0.77 0.86 / 1.07 60.71% 1.02 / 1.62 1.65 / 3.13
LCDNet 100% 0.11 / 0.11 0.12 / 0.12 100% 0.15 / 0.15 0.34 / 0.34
LCDNet† (fast) 99.79% 0.28 / 0.29 0.30 / 0.30 88.51% 0.66 / 0.93 1.00 / 1.31
LCDNet† 100% 0.14 / 0.14 0.14 / 0.14 100% 0.18 / 0.18 0.36 / 0.36

LCDNet + ICP 100% 0.04 / 0.04 0.09 / 0.09 100% 0.09 / 0.09 0.33 / 0.33
LCDNet† + ICP 100% 0.04 / 0.04 0.08 / 0.08 100% 0.07 / 0.07 0.32 / 0.32
LCDNet + TEASER 94.39% 0.66 / 0.77 0.09 / 0.10 71.99% 1.05 / 1.62 0.33 / 0.35
LCDNet† + TEASER 99.78% 0.28 / 0.29 0.09 / 0.09 89.39% 0.67 / 0.93 0.33 / 0.34

∗ these approaches only estimate the rotation between two point clouds, therefore are not directly comparable with the other approaches which
estimate the full 6-DoF transformation under driving conditions.

Table IV
COMPARISON OF RELATIVE POSE ERRORS (ROTATION AND TRANSLATION) BETWEEN POSITIVE PAIRS ON THE KITTI-360 DATASET.

Approach Seq. 02 Seq. 09

Success TE [m] (succ. / all) RE [deg] (succ. / all) Success TE [m] (succ. / all) RE [deg] (succ. / all)

H
an

dc
ra

ft
ed

Scan Context∗ [10] 92.31% - / - 1.60 / 5.49 95.25% - / - 1.40 / 6.80
ISC∗ [55] 83.15% - / - 1.71 / 3.44 86.26% - / - 1.51 / 7.08
LiDAR-Iris∗ [33] 96.54% - / - 1.07 / 2.24 97.63% - / - 0.72 / 3.80
ICP (P2p) [16] 4.19% 1.10 / 2.26 1.74 / 149.76 21.24% 1.06 / 2.22 1.34 / 66.34
ICP (P2pl) [16] 4.19% 1.11 / 2.30 1.18 / 149.39 21.29% 1.07 / 2.24 1.38 / 66.23
RANSAC [37] 24.78% 1.24 / 3.67 1.83 / 32.22 29.69% 1.12 / 3.14 1.48 / 23.42
FGR [39] 27.92% 1.23 / 6758.87 1.85 / 18.16 30.46% 1.12 / 6011.39 1.44 / 17.35
TEASER++ [56] 27.02% 1.25 / 3.16 1.83 / 19.16 30.32% 1.14 / 2.91 1.46 / 19.22

D
N

N
-b

as
ed OverlapNet∗ [13] 11.42% - / - 1.79 / 76.74 54.33% - / - 1.38 / 33.62

RPMNet [21] 37.99% 1.18 / 2.26 1.30 / 5.97 41.42% 1.13 / 2.21 1.02 / 3.95
DCP [23] 5.62% 1.09 / 3.14 1.36 / 149.27 30.10% 1.04 / 2.30 1.06 / 64.86
PCAM [22] 97.46% 0.20 / 0.30 0.75 / 1.36 99.78% 0.12 / 0.13 0.51 / 0.64

O
ur

s

LCDNet (fast) 83.92% 0.84 / 1.10 1.28 / 1.67 89.49% 0.76 / 0.94 0.99 / 1.19
LCDNet 98.62% 0.28 / 0.32 0.32 / 0.35 100% 0.18 / 0.18 0.20 / 0.20
LCDNet† (fast) 89.07% 0.40 / 0.45 0.57 / 0.62 98.87% 0.43 / 0.44 0.59 / 0.63
LCDNet† 98.55% 0.27 / 0.32 0.32 / 0.34 100% 0.20 / 0.20 0.22 / 0.22

LCDNet + ICP 98.51% 0.20 / 0.25 0.24 / 0.27 100% 0.10 / 0.10 0.15 / 0.15
LCDNet† + ICP 98.51% 0.20 / 0.25 0.24 / 0.27 100% 0.11 / 0.11 0.15 / 0.15
LCDNet + TEASER 86.63% 0.85 / 1.10 0.40 / 0.52 90.57% 0.76 / 0.94 0.22 / 0.25
LCDNet† + TEASER 98.06% 0.40 / 0.45 0.37 / 0.45 99.10% 0.43 / 0.44 0.22 / 0.23

∗ these approaches only estimate the rotation between two point clouds, therefore are not directly comparable with the other approaches which
estimate the full 6-DoF transformation under driving conditions.
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E. Partial Overlap

In this section, we evaluate the ability of LCDNet in
detecting loops and regressing the relative pose between
point clouds that only overlap partially. To do so, we follow
the same evaluation protocol that we use in Section IV-C
(protocol 1) and Section IV-D. We simulate partial overlapping
pairs by removing a random section of each point cloud.
We compare LCDNet against state-of-the-art approaches on
the sequence 08 of the KITTI dataset under two settings: by
removing a random 45° and 90° sector, respectively. Table V
reports the results of this experiment in terms of average
precision (AP), success rate, mean translation error and mean
rotation error. Although the AP of LCDNet drops moderately
when a 90° section is removed, LCDNet† still achieves an
AP higher than all the existing approaches evaluated on the
complete overlap test (Table II). We observe that PCAM which
achieves remarkable results in the full overlap registration test,
struggles when dealing with partial overlapping point clouds
with a success rate that drops from 95% to 56%, a translation
error that increases from 0.41 m to 3.32 m, and a rotation
error that raises from 6.01° to 34.64°. LCDNet and LCDNet†,
on the other hand, retain an almost perfect success rate and
slightly lower translation and rotation errors.

We also investigated the MulRan dataset [59] for this exper-
iment, as the LiDAR mounted on their vehicle is obstructed by
the radar sensor for approximately 70° rear FOV. Therefore,
in reverse direction scenarios, the scans share only a very
limited overlap. In preliminary evaluations, all the considered
approaches failed in detecting reverse loops. We argue that this
is a limitation of all scan-to-scan methods, and that scan-to-map
approaches should be considered in these scenarios.

F. Ablation Studies

In this section, we present ablation studies on the different
architectural components of our proposed LCDNet. All the
models presented in this section are trained on the KITTI
dataset, and evaluated on the sequence 08 using the AP, mean
rotation error (RE) and mean translation error (TE) metrics.
We choose sequence 08 as the validation set since it is the
most challenging sequence, containing only reverse direction
loops. Since RANSAC does not influence the training of the
network, in this section the rotation and translation errors are
computed using the LCDNet (fast) version.

We first compare our feature extractor built upon PVRCNN
presented in Section III-A with three different backbones: the
widely adopted feature extractor PointNet [34], the dynamic
graph CNN EdgeConv [35], and the recent state-of-the-art
semantic segmentation network RandLA-Net [60]. We modified
all backbones in order to output a feature vector of size D= 640
for N = 4096 points, similar to our backbone. We report results
in Table VI. The ability of our feature extractor presented in
Section III-A to combine high-level features from the 3D voxel
DNN with fine-grained details provided by the PointNet-based
voxel set abstraction layer is demonstrated by the superior
performance compared to other backbones, outperforming them

in every metric by a large margin. Our backbone built upon
PV-RCNN achieves an average precision of 0.94 compared to
0.67 achieved by the second best backbone. For relative pose
estimation, PV-RCNN achieves a mean rotation error of 3.13°
and a mean translation error of 1.62 m compared to 16.85°
achieved by EdgeConv and 3.55 m achieved by RandLA-Net.

In Table VII, we present ablation studies on the architecture
of the relative pose head, the dimensionality of the extracted
point features, the effect of the auxiliary optimal transport
loss presented in Equation (15), and the number of keypoints.
We first compare our UOT-based relative pose head presented
in Section III-C with a MLP that directly regresses the rotation
and translation, similar to [12]. In particular, we train three
models using different rotation representations. The first model,
MLP(sin-cos) uses two parameters to represent the rotation:
the sine and cosine of the yaw angle. MLP(quat) represents
the rotation as unit quaternions, and MLP(bingham) uses the
Bingham representation proposed in [61]. From the first set
of rows in Table VII, we observe that our proposed relative
pose head significantly outperforms the MLP-based heads,
especially in the rotation estimation. Our proposed relative
pose head achieves a mean rotation error of 3.13◦ compared
to 21.05◦ achieved by the best MLP model. Moreover, the
UOT-based head favors keypoint features that are rotation
and translation invariant, thus enabling the backbone to learn
more discriminative features, consequently also improving the
loop closure detection performance. The MLP based heads, on
the other hand, require rotation specific features in order to
predict the transformation, which hinders the performance of
the place recognition head, which can be observed from the
lower average precision achieved by these models.

Subsequently, we study the influence of the dimensionality
of point features on the performance of our approach. We
train four models by varying dimensionality D as 640, 128,
64, and 32. From the results shown in the second set of rows
in Table VII, we observe that the performances decrease with
lowering the dimensionality D.

We evaluate the performance of LCDNet without the auxili-
ary loss presented in Equation (15). From the results shown
in the third set of rows of Table VII, we observe that when
training without the optimal transport loss, the performance in
terms of average precision and relative transformation decreases
significantly. This demonstrates that the auxiliary optimal
transport loss enables the network to learn more distinctive
features, which benefits the performance of both loop closure
detection and relative transformation estimation.

Finally, in the last set of rows of Table VII we compare
the performance of LCDNet to changes in the number of
selected keypoints N. Predictably, the performances increase
with adding more keypoints. However, the average precision
does not improve when increasing the number of keypoints to
8192. Therefore, due to the higher memory and computation
required, we use 4096 keypoints in our final model.
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Table V
COMPARISON OF LOOP CLOSURE DETECTION (AP) AND RELATIVE POSE ERRORS (ROTATION AND TRANSLATION) UNDER PARTIAL OVERLAP ON

THE SEQUENCE 08 OF THE KITTI DATASET.

Approach 45° 90°

AP Success TE [m] (all) RE [deg] (all) AP Success TE [m] (all) RE [deg] (all)

H
an

dc
ra

ft
ed

Scan Context∗ [10] 0.52 27.33% - 57.70 0.40 17.40% - 72.05
LiDAR-Iris∗ [33] 0.43 97.84% - 2.78 0.22 96.28% - 5.13
ICP (P2p) [16] - 0% 2.42 160.46 - 0% 2.42 160.46
ICP (P2pl) [16] - 0% 2.45 160.46 - 0% 2.45 160.42
RANSAC [37] - 15.51% 4.88 43.77 - 13.78% 5.50 48.74
FGR [39] - 16.55% 44439.37 30.30 - 14.49% 235332.54 34.20
TEASER++ [56] - 16.42% 4.03 30.32 - 15.98% 4.37 34.99

D
N

N
-

ba
se

d OverlapNet∗ [13] 0.09 1.11% - 70.69 0.01 0.68% - 85.68
PCAM [22] - 84.67% 1.04 11.80 - 55.62% 3.32 34.64

O
ur

s LCDNet 0.79 100% 0.20 0.38 0.59 99.93% 0.24 0.46
LCDNet† 0.83 100% 0.19 0.36 0.70 100% 0.21 0.37

∗ these approaches only estimate the rotation between two point clouds, therefore are not directly comparable with the other approaches
which estimate the full 6-DoF transformation under driving conditions.

(c) KITTI-360 sequence 02

Figure 5. Comparison of time (left) and RMSE (right) between ICP without initial guess and ICP with the LCDNet prediction as the initial guess on
the sequence 02 of the KITTI-360 dataset. Results on other sequences show similar behaviour, and are thus not reported for brevity. The initial guess
provided by our LCDNet significantly reduces both runtime and final error on sequences containing reverse loops.

Table VI
ABLATION STUDY ON THE BACKBONE NETWORK ARCHITECTURE.

Backbone AP TE [m] RE [deg]

PointNet [34] 0.67 5.15 34.14
EdgeConv [35] 0.52 5.44 16.85
RandLA-Net [60] 0.55 3.55 20.08
PVRCNN [41] 0.94 1.62 3.13

G. ICP with Initial Guess

In this experiment, we evaluate the performance of employ-
ing LCDNet as an initial guess for further refinement using
ICP. We compare the runtime and the final Root Mean Square
Error (RMSE) of ICP without any initial guess and ICP with
LCDNet relative pose estimate as an initial guess. The time
of ICP with initial guess also includes the network inference
time. Results from this experiment are presented in Figure 5
and two qualitative results are shown in Figure 6. While only
dealing with the same direction loops, ICP achieves satisfactory
results and the initial guess does not improve the performance

significantly. However, when reverse loops are present, ICP
often fails in accurately registering the two point clouds. In this
case, the initial guess from our LCDNet greatly reduces both
the runtime and final errors of ICP as observed in Figure 5.

From Figure 6, we see that ICP fails when the rotation
misalignment between the two point clouds is significant. On
the other hand, LCDNet accurately aligns these two point
clouds and it improves the results even further while using
ICP with LCDNet prediction as initial guess. On average, ICP
with LCDNet initial guess is 4 times faster than ICP without
any initial guess and achieves an RMSE which is 22 times
lower. Note that in the results presented in Figure 5, we use
the whole point clouds to perform the registration with ICP.

H. Runtime Analysis

In this section, we compare the runtime of LCDNet with
existing state-of-the-art approaches for loop detection. All
experiments were performed on a system with an Intel i7-
6850K CPU and an NVIDIA GTX 1080 ti GPU. We use the
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Table VII
ABLATION STUDY ON THE DIFFERENT ARCHITECTURAL COMPONENTS OF OUR LCDNET EVALUATED ON SEQUENCE 08 OF THE KITTI DATASET.

Relative Feature Auxiliary Num AP TE [m] RE [deg]
Pose Head Size D Loss Keypoints

UOT

640 3 4096

0.94 1.62 3.13
MLP (sin-cos) 0.75 2.14 21.05
MLP (quat) 0.78 2.43 35.16
MLP (bingham) 0.75 2.27 22.69

UOT

640

3 4096

0.94 1.62 3.13
128 0.92 1.85 3.19
64 0.92 1.99 3.33
32 0.86 2.23 4.09

UOT 640 3 4096 0.94 1.62 3.13
7 0.83 6.00 4.71

UOT 640 3

8192 0.94 1.28 1.99
4096 0.94 1.62 3.13
2048 0.85 4.68 3.73
1024 0.69 5.17 4.75
512 0.50 4.79 4.85

(a) Source (b) Target (c) ICP without initial pose (d) Alignment from LCDNet (e) ICP with LCDNet initial guess

Figure 6. Qualitative comparison of ICP alignment with and without using the LCDNet prediction as an initial guess. ICP alone (c) is not able to
register the source (a) and the target (b) when the initial rotation misalignment is high. Whereas, our LCDNet effectively aligns them (d). The final
ICP alignment with the prediction of our LCDNet as the initial guess further improve the results (e).

Table VIII
COMPARISON OF RUNTIME ANALYSIS FOR THE LOOP CLOSURE TASK.

Method Descriptor Pairwise Map GPU
Extraction Comparison Querying Required

[ms] [ms] [ms]

M2DP [9] 169.28 0.01 5 7
SC [10] 3.66 0.11 2000 7
SC-50 [10] 3.66 0.11 6.96 7
ISC [55] 1.97 0.53 9000 7
LiDAR-Iris [33] 8.13 5.39 98000 7
OverlapNet [13] 16.00 6.00 109000 3
LCDNet 94.60 0.01 5 3

official implementation of existing approaches as described
in Sections IV-C and IV-D. Results from this experiment are
presented in Table VIII in which the descriptor extraction
time also includes the preprocessing required by the respective
method. The pairwise comparison represents the time required
to compare the descriptors of two point clouds. In the map
querying column, we report the time for comparing the
descriptor of one scan with that of all the previous scans in the
KITTI-360 sequence 02, which amounts to 18235 comparisons
in total. For methods that do not require an ad-hoc function
to compare descriptors (LCDNet and M2DP), we use the
efficient FAISS library [62] for similarity search in order to
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Table IX
COMPARISON OF RUNTIME ANALYSIS FOR THE POINT CLOUD

REGISTRATION TASK.

Method Descriptor Pairwise Total [ms] GPU
Extract. [ms] Reg. [ms]

H
an

dc
ra

ft
ed

SC [10] 3.66 0.11 7.43 7
ISC [55] 1.97 0.53 4.47 7
LiDAR-Iris [33] 8.13 5.39 21.65 7
ICP (P2p) [16] - 25.53 25.53 7
ICP (P2pl) [16] 8.16 35.83 52.15 7
RANSAC [37] 24.99 299.66 349.64 7
FGR [39] 24.99 188.74 238.72 7
TEASER++ [56] 24.99 94.89 144.87 7

D
N

N
-b

as
ed OverlapNet [13] 16.00 6.00 38.00 3

RPMNet [21] 366.75 121.29 854.79 3
DCP [23] 19.56 78.76 117.88 3
PCAM [22] 187.71 80.77 456.18 3

O
ur

s LCDNet (fast) 94.60 4.70 193.9 3
LCDNet 94.60 1135 1324.2 3

build and query the map. Scan Context also introduces the
ring key descriptors which enable fast search for finding loop
candidates, at the expense of detection performances. We also
report the runtime of scan context using the ring key, denoted
as Scan Context-50. However, it is important to note that the
results reported in IV-C were computed without the ring key.

As shown in Table VIII, the methods that require an ad-hoc
comparison function (ISC, LiDAR-Iris, and OverlapNet) are
not suited for real-time applications, since they require up
to 100 seconds to perform a single query. Whereas, LCDNet
queries more than 18000 scans in five milliseconds. Although
it is possible to further reduce the time required to query the
map when integrating the loop closure approaches in a SLAM
system, such as using the covariance-based radius search [13],
in this experiment we evaluate the runtime in the case where
no prior information about the current pose is available.

We report the runtime for aligning two point clouds by
LCDNet and existing approaches in Table IX. For methods
that perform both loop closure and point cloud alignment (SC,
ISC, LiDAR-IRIS, OverlapNet, and LCDNet), the descriptor
extraction time is shared between the two tasks. While LCDNet
(fast) is faster than most DNN-based approaches for point
cloud registration (RPMNet and PCAM), LCDNet is slightly
slower than RPMNet. On the other hand, some approaches are
much faster than both LCDNet and LCDNet (fast); however,
they either only estimate a 1-DoF transformation (SC, ISC,
and LiDAR-Iris), or achieve unsatisfactory performances (ICP,
RANSAC, FGR, TEASER++, and DCP). It is important to
note that the point cloud registration task does not need to run
in realtime, since it is only required after a loop closure is
detected. Moreover, LCDNet is the only method that performs
both loop closure detection and 6-DoF point cloud registration
under driving conditions.

I. Qualitative Results

We present the qualitative results from LCDNet and
LCDNet† on sequences from both the KITTI and KITTI-360

Table X
COMPARISON WITH THE STATE OF THE ART ON DATA FROM THE

GENERALIZATION EXPERIMENTS IN FREIBURG.

Method AP

H
an

dc
ra

ft
ed M2DP [9] 0.60

Scan Context [10] 0.74
ISC [55] 0.38
LiDAR-Iris [33] 0.73

D
N

N
-

ba
se

d OverlapNet [13] 0.59
LCDNet 0.79
LCDNet† 0.88

datasets in Figure 7. We show the true positive, false positive,
and false negative scans overlaid with the respective groundtruth
trajectories. We observe that while LCDNet effectively detects
same direction and reverse direction loops, it also fails to
detect some loops (false negative) and detects some loops
where there should be no loops (false positive). LCDNet†
further improves the performance by reducing the number
of false positives and false negatives, while still maintaining
accurate true positive detections. On the KITTI sequence 08,
LCDNet yields some false negative detections that are almost
completely eliminated by LCDNet†, although few false positive
scans are still detected. On sequence 02 of the KITTI-360
dataset, LCDNet presents a large amount of false negatives
which are significantly reduced by LCDNet†. Similarly, on the
KITTI-360 sequence 09, LCDNet presents a few false positive
detections that are completely eliminated by LCDNet†.

J. Evaluation of Complete SLAM System

We integrate our proposed approach into LIO-SAM [26],
which is a recent state-of-the-art LiDAR SLAM system, by
replacing its loop closure detection pipeline with LCDNet. We
evaluate the entire SLAM system on the sequence 02 of the
KITTI dataset. In particular, we evaluate LIO-SAM integrated
with LCDNet and we compare it with the original LIO-SAM.
We observed that our approach detects loop closures where
the original LIO-SAM fails to do so due to the presence
of the accumulated drift. In Figure 8, we report the results
obtained with both SLAM systems and show the distance error
between LIO-SAM keyframes and groundtruth poses. We can
observe that the high error (red) associated with the path of
the original LIO-SAM is caused by the failed loop closure
detection, since the system drifts significantly along the z-
dimension. Conversely, LCDNet detects such loops, perform
the closure and improve the overall performance of LIO-SAM.

We publicly release the integrated LIO-SAM system with
our LCDNet at http://rl.uni-freiburg.de/research/lidar-slam-lc.

K. Generalization Analysis

Finally, in this section, we evaluate the generalization ability
of our proposed LCDNet by analyzing the performance in
unseen environments and on different robot platforms. We
evaluate both LCDNet and LCDNet† in real-world experiments
in Freiburg using a car with a rack of LiDAR sensors mounted

http://rl.uni-freiburg.de/research/lidar-slam-lc
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LCDNet LCDNet†

(a) KITTI sequence 00

(b) KITTI sequence 08

(c) KITTI-360 sequence 02

(d) KITTI-360 sequence 09

Figure 7. Qualitative loop closure detection results of LCDNet on KITTI (a-b) and KITTI-360 (c-d) datasets. Green points are true positive
detections, red points are false positive, and blue points are false negative. The left column shows results of LCDNet trained on the KITTI
dataset, while the right columns shows results of LCDNet† trained on the KITTI-360 dataset. While both LCDNet and LCDNet† effectively detects
loops in all the sequences, LCDNet† further reduces the number of false positive and false negative detections.
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Figure 8. Performance of LIO-SAM with the original loop closure
detection method (left) compared to our approach (right) on sequence 02
of the KITTI dataset.
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Figure 9. Comparison of precision-recall curves evaluated using protocol 1
on data from the generalization experiments in Freiburg.

on the roof as shown in Figure 10 (bottom right). Note that
in these experiments, we do not retrain or fine-tune LCDNet
and LCDNet† on any data from Freiburg. The KITTI and
KITTI-360 datasets on which we trained our models on, were
primarily recorded in narrow roads, but the streets of Freiburg
also include dual carriageways, therefore we increase the range
at which two scans are considered to be a real loop from 4 to
10 meters. In Figure 9, we compare the precision-recall curves
of our approach with handcrafted and DNN-based methods
using protocol 1 (Section IV-C). We do not report results
using protocol 2 for this experiment as there are more than
400 million positive pairs in this trajectory.

As shown in Table X, Scan Context achieves the best
performance among the handcrafted methods, with an AP
of 0.74. Nevertheless, our LCDNet and LCDNet† outperform
all the other approaches achieving an AP of 0.79 and 0.88,
respectively. Since the data from Freiburg consists of many
reverse loops, existing approaches often fail to detect them,
leading to a decrease in their performance. Our approach

demonstrates exceptional performance even though it has never
seen scans from Freiburg during training. Moreover, we employ
our modified version of LIO-SAM to generate the trajectory
and the map of the experimental runs in Freiburg. In Figure 10,
we show the resulting map overlaid on the aerial image. The
results show that the map is well aligned with the aerial
image and there is no evidence of any drift. This demonstrates
that our LCDNet effectively corrects the accumulated drift.
It is important to note that the precision-recall curve and the
AP of our LCDNet are computed based only on the global
descriptor extracted by the place recognition head. However,
in the modified SLAM system, we additionally perform a
consistency check (Section III-E) based on the transformation
predicted by the relative pose head which further discard the
remaining false positive detections.

Finally, we also exploit the Freiburg dataset to demonstrate
the point cloud alignment ability of our approach in new
environments. Since we do not have an accurate pose for each
LiDAR frame, we generate groundtruth transformations using
the GPS poses and ICP, and discarding pairs that produce an
inaccurate alignment. First, for each frame we identify possible
pairs by considering its neighbors within a distance of 10m.
In order to avoid the pairs that are composed of consecutive
frames, given a point cloud we discard the previous and the
following n = 100 frames. Secondly, for each pair we compute
the yaw angle difference ∆yaw and define three difficulty levels.
Then, for each frame we select a random pair for every
category whenever possible. We set the maximum number
of ICP iterations nicp = 1000, and we only consider pairs
with a fitness score f it >= 0.6 and an inlier correspondences
rmse<= 0.3m. Finally, we randomly sample the resulting pairs
to have about the same number of same direction and reverse
direction loops. The resulting number of pairs amounts to 4246,
of which 2106 are reverse loops.

The results reported in Table XI show that our LCDNet
effectively generalizes to new environments for the point cloud
registration task. LCDNet and LCDNet† achieve a success rate
of 98.94% and 99.81%, respectively, compared to the second
best method that achieves 92.49%. The overall mean translation
error of LCDNet† is more than two times smaller, and the
rotation error is an order of magnitude lower than PCAM.

V. CONCLUSIONS

In this paper, we presented the novel LCDNet architecture
for loop closure detection and point cloud registration. LCDNet
is composed of a shared feature extractor built upon the
PV-RCNN network, a place recognition head that captures
discriminative global descriptors, and a novel differentiable
relative pose head based on the unbalanced optimal transport
theory which effectively aligns two point clouds without any
prior information regarding their initial misalignment. We
identified a discrepancy in the evaluation protocols of existing
methods, therefore we performed uniform evaluations of state-
of-the-art handcrafted as well as DNN-based loop closure
detection methods.
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Figure 10. Qualitative results of our approach on data from the generalization experiments in Freiburg. The final map generated from LIO-SAM
integrated with our LCDNet is overlaid on the georeferenced aerial images. Image on the top shows the entire map, while the images in the bottom
show zoomed in segments and the car used to collect the dataset. The color of the point cloud is based on the Z-coordinates of the points from lowest
(blue) to highest (green).

We presented extensive evaluations of LCDNet on the KITTI
odometry and KITTI-360 datasets, which demonstrates that
our approach sets the new state-of-the-art and successfully
detects loops even in challenging conditions such as reverse
direction loops, where existing methods fail. Our LCDNet†
achieves an average precision of 0.96 on the sequence 08 of
the KITTI dataset which contains only reverse direction loops,
compared to 0.65 AP of the previous state-of-the-art method.
Our proposed relative pose head demonstrates impressive
results, outperforming existing approaches for point clouds
registration and loop closure detection as well as different heads
based on the standard MLPs. Our LCDNet aligns opposite
direction point clouds with an average rotation error of 0.34°,
and 0.15 m for the translation components, compared to 1.84°
and 0.41 m achieved by LiDAR-IRIS and PCAM, respectively.
Moreover, LCDNet is robust to partial overlapping point cloud,
retaining a 100% success rate when removing a 90° sector from
each point cloud, while the second best method drop from 95%

to 55%. We also showed that the relative pose prediction from
our approach can further be refined using ICP for accurate
registration. We integrated our LCDNet with LIO-SAM to
provide a complete SLAM system which can detect loops
even in presence of strong drift. Additionally, we demonstrated
the generalization ability of our approach by evaluating it on
the data from experiments using a different robotic platform
and in an unseen city from that which was used for training.
Finally, we have made the code and the SLAM system publicly
available to encourage research in this direction.
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Table XI
COMPARISON OF RELATIVE POSE ERRORS (ROTATION AND

TRANSLATION) BETWEEN POSITIVE PAIRS ON THE FREIBURG DATASET.

Approach Success TE [m] RE [deg]
(succ. / all) (succ. / all)

H
an

dc
ra

ft
ed

Scan Context [10] 59.30% - / - 1.36 / 52.70
ISC [55] 55.51% - / - 1.52 / 51.02
LiDAR-Iris [33] 69.95% - / - 1.52 / 51.02
ICP (P2p) [16] 29.06% 0.83 / 2.60 1.21 / 89.79
ICP (P2pl) [16] 28.73% 0.88 / 2.62 1.22 / 89.83
RANSAC [37] 29.96% 1.01 / 3.54 1.34 / 31.29
FGR [39] 27.72% 0.97 / 313258 1.27 / 13.46
TEASER++ [56] 29.49% 0.99 / 3.37 1.31 / 11.94

D
N

N
-b

as
ed OverlapNet [13] 42.79% - / - 1.31 / 70.91

RPMNet [21] 32.05% 0.87 / 2.57 1.09 / 46.99
DCP [23] 12.25% 1.26 / 5.22 1.19 / 87.04
PCAM [22] 92.49% 0.40 / 0.67 0.50 / 4.28

O
ur

s LCDNet 98.94% 0.39 / 0.42 0.32 / 0.37
LCDNet† 99.81% 0.28 / 0.28 0.18 / 0.18

LCDNet + ICP 99.79% 0.22 / 0.23 0.16 / 0.16
LCDNet† + ICP 99.86% 0.21 / 0.22 0.14 / 0.14
LCDNet + TEASER 33.61% 1.09 / 3.74 0.17 / 0.42
LCDNet† + TEASER 33.37% 1.15 / 4.45 0.13 / 0.27
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