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Abstract--The use of power converter is becom
nowadays to maximize the power extraction fro
interfacing the wind generator with the powe
plays an important role for interconnecting t
utility grid. Although several researchers desig
based inverters, it has been still lacking in
consisted and systematic design methodology th
space mathematical models for delta and
capacitors, considering grounding options and 
mitigation. This paper discusses a comprehen
output LCL filter for the grid-interconnected
small scale wind energy conversion system, 
industrial point of view. The proposed design
also be used in medium and large scale grid co
photovoltaic systems. This paper has practica
describing all the procedural methodology and 
design LCL filters supported by an in-depth sim

Index Terms--Filter; harmonics; inverter; 
pulsewidth-modulated(PWM) inverters; 

I. INTRODUCTION

UE to the space limitations and lower 
energy resources, renewable-based distr

(DG) technologies in urban areas are usually
micro and small-scale systems. 

There has been a huge increase in energy
the last few decades, which has accelerated 
world fossil fuel supplies. Environmenta
international policies are supporting new
developments for small - scale power generat

Microgeneration is the small-scale gener
electric power by individuals, small 
communities to meet their own needs, a
supplements to traditional centralized grid-c
Although this may be motivated by practica
such as unreliable grid power or long d
electric grid, the term is mainly use
environmentally-conscious approaches that 
low-carbon footprints [3]. Small-scale wind p
given to wind generation systems with the ca
up to 50 kW of electrical power. Isolated c
may otherwise rely on diesel generators,
turbines as an alternative. Individuals may
systems to reduce or eliminate their dep
electricity for economic reasons, or to red
footprint. Wind turbines have been used
electricity generation in conjunction with bat
many decades in remote areas [4]. 
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178,000 metrictons of carbon dioxide (equiv
31,000 cars from service) [6]. 

For making purpose of small, medium, or
turbines, grid code is an important issue to be
codes of wind turbine vary from country to co
are many countries yet to be developed
Therefore, wind turbine manufacturers fac
need to come up with a moderate approach to
standards which suit to all regions. As a resul
has vital importance for the grid connection
generator systems in order to mitigate harmon

At the present, variable speed wind t
systems hold the major market share. Today
turbines use direct driven permanent magn
asynchronous generators [5]. Direct d
reluctance generator will also be popular in
For the small variable speed wind turbines,
single-phase grid-connected voltage source
needed to interface between the output of
generator and electric power grid. Since t
system can only follow the voltage of the grid
interconnection standards [7], its power 
depends on inverter output current. To 
interconnections standards, the current c
connected VSIs output filter play important 
grid with high quality power [8]. 

Voltage source inverters (VSI) are almost
for the energy transfer and utilization from a 
utility grid in our case. In order to interface 
the power grid, it is necessary to have a f
current-like feedback control and reduce h
injected output current. A series inductor can
filter, but it highly depends on switching
harmonic attenuation levels, causing high v
the grid frequency along bulky components [9

Fig. 2:  Grid Interconnected DC Power S

The LCL filter is a good alternative to 
attenuation and cost reduction, in addition to
and size. Since a high order LCL filter has
used in place of the conventional L-filter 
smoothing of output currents from a VSI [9]
observed that there is a gap in the analysis 
LCL filters for a systematic design methodo
is a core requirement for grid-connected inv
width modulated active rectifiers [9]-[13], m
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alent to removing 

r large scale wind 
e considered. Grid 
ountries and there 

d the grid code. 
ce difficulty and 
o comply with the
lt, filter designing 
n of wind turbine 
nics. 
turbine generator 

y most small wind 
net generators or 
driven switched 
n near future [6]. 
 a three-phase or 

e inverter(VSI) is 
f a wind turbine 
the wind turbine 
d a as required by 

quality mainly 
meet the IEEE 

control of grid-
role in feeding a 

t exclusively used 
DC source to the 
power sources to 

filter to impose a 
harmonics of the 
n be used as such 
g frequency and 
voltage drop over 
9]. 

Source 

achieve a higher 
 improved weight 

s commonly been 
to give a better 

, [10], it has been 
and evaluation of 
logy [11], [12]. It 
verters and pulse-
mainly due to its 
distortion injected 
nic attenuation of 
ing frequencies to 

meet harmonic as defined by stand
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still using quite small values of indu
In order to design a good LCL filt
appropriate mathematical model of t
output filter model, filter design p
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A lot of work has been done rega
and their application [1], [2]. The aim
comprehensive analysis and modelin
filter for transformerless inverter 
application with respect to the groun
topologies of the three-phase full-br
is one of the simplest and most wid
are compared: with wye connect
damping resistors, the second on
capacitors and resistors. 

II. SYSTEM MO

A. Per Phase Model
The LCL filter per-phase model �� is the inverter side inductor, �� is

is the capacitor of LCL filter and ��� is the grid resistance.��and�� are
of inverter bridge. 

Fig. 3:  LCL Filter per P

The currents 	�
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next sections. 
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ODELING 

is shown in Fig. 3 where 
s the grid side inductor, +- �- is the damping resistor, 
 input and output voltages 

Phase Model 

inverter output current, 
espectively. There are two 
which will be discussed in 

odel with wye connected 
e model as shown on Fig.3 
g resistance ��-) is zero. 
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C. Delta Connected Capacitors 
A LCL filter with delta connected ca

analyzed in the ?@A stationary frame with th
Voltages and currents can be formulated as (6

 �
B % �B� % ��
 � 7 

 ���C�� � �D� 	�
B � �D� 	
B  

Fig. 4:  LCL Filter with Delta Connected C

where	�
B � 	�
 � 	�Band 	
B � 	
 � 	B
Equation (6) is the voltage balance arou

and the load side equations are supported 
corresponding matrix form in (11). 

E ����C�� � � �� �
B % �� ��
BE
E ����C�� � � 1 !F 	
B % � !F �
B � 

E �
B � �
B �  ��C !F % ��� ���C !F %
E � �
B G  !FH % 	
B  1 !F % ��
B

E
���
��

���� � �D�� I� � �D�� I�J��� � � �� � % �� ���J��� � � 1 !4 K4 % �4 !4E ' � �4 !
where� � L�
B�B���
MNO I� � L	�
B	�B�	���� � L��
B��B����
MNO I � L	
B	
 
Finally, the plant model as a contin

equation:  

where $ �
PQ
QQ
R 7DSD �D�� IDSD � �D�� ID� �� IDSD 7DSD 7DSD� ! IDSD 7DSD � 1 ! ID

74 4 !4; < 2
'�'T5 (5) 
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D. Frequency Response and Transfe
From the developed mathem

functions of LCL filter can be deri
transfer function from derived s\� � �F]�. The grid voltage is assum

source and it represents a sho
frequencies, and for the filter analy
So, the transfer function of LCL filte

 \��^. � ���� !._
for damped filter: 

 \`��^. � ������ !._9!����!
The bode plots of LCL filter wit

described in Section III are shown in

III. FILTER DESIGN 

A. Step By Step Design 
Important constraints must be tak

design of LCL filters, such as c
switching ripple attenuation. The 
seen by the grid because of the capac
that could lead to unstable operation
passive or active damping is prop
resistor in series with capacitor o
design[9]. Here will be used only pa

 

Fig. 5:  Step Response Bode Diagram for D

The LCL filter is more efficient t
because the latter has only attenuatio
the range of frequency [9]-[13],[16]
of inverter must be high enough fo
high current harmonics. The higher

�,Ea � =�I�I>ZS� 

fer Function 
matical models, transfer 
ived. One of the extracted 
state space equations is 
med to be an ideal voltage 

ort circuit for harmonic 
ysis is set to zero:b� � 7. 
er without damping is: 

�_9!��! !._ (12) 

1�_!�! !.1�_ !��! !._ (13) 

thout and with damping is 
n Fig. 5. 

PROCEDURE 

ken in consideration in the 
current ripple, filter size, 

reactive power variation 
citor may give a resonance 
n of the system. Therefore, 
posed by either adding a 
r changing the controller 
ssive damping technique. 

 
Damped and Undamped Cases 

than a simple inductor (L) 
on of 20 dB/decade for all 
. The switching frequency 

or a correct attenuation of 
r the switching frequency 
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there are more losses. LC filters suffer from variability of 
resonance frequency over time like the grid inductance; 
therefore it is not appropriate for a weak grid [17].  

In this study, the filter design approach has been explained 
step-by-step and if correctly damped, it is possible to avoid 
resonance problems passively [10] or actively [13]. The 
procedure for choosing the LCL filter parameters requires the 
power rating of the converter, the grid frequency and the 
switching frequency as inputs. Algorithm of LCL filter design 
is shown in Fig. 4, each step of which will be described in 
following sections and will be supported by filter design 
example. 

 
Fig. 6:  LCL filter design algorithm 

The following parameters are needed for the filter design: cd -line to line RMS voltage (inverter output), �ef -phase 
voltage (inverter output), gd - rated active power, �h� -DC bus 
voltage, iT -grid frequency, i_j -switching frequency, ikl_ -
resonance frequency. 

The base impedance and base capacitance are defined by 
(14) and (15). Thus, the filter values will be referred in m of 
the base values: 

 no � pq rq  (14) 

 +o � �sqtu (15) 

For the design of the filter capacitance, it is considered that 
the maximum power factor variation seen by the grid is 5%, as 
it is multiplied by the value of base impedance of the 
system: +- � 7v7w+o  It is important to notice that factors 
higher than 5% can be used, since they will compensate the 
inductive reactance of the inductors on the filter and therefore 

the influence at the power factor of the system will be lesser 
than expected. The maximum current ripple at the output of 
DC/AC inverter is [18]: 

 xIy�S � ��z{D� �8 � |.|}_j (16) 

where, | - modulation factor. 
It can be observed that maximum peak to peak current 

ripple happens at | � 7vw, then  

 xIy�S � �z{[-~�� (17) 

where�� is inverter side inductor. A 87m ripple of the rated 
current for the design parameters is given by: 

 xIy�S � 7v8Iy�S (18) 

where 

 Iy�S � rq��D��� (19) 

 �� � �z{[-~��J���� (20) 

The main objective of the LCL filter design is in fact to 
reduce the expected 10% current ripple limit to 20% of its own 
value, resulting in a ripple value of 2% of the output current 
[10], [15]. In order to calculate the ripple reduction, the LCL 
filter equivalent circuit is firstly analyzed considering the 
inverter as a current source for each harmonic frequency Fig.3. 

Equations (21) and (22) give the relation between the 
harmonic current generated by the inverter and the once 
injected in the grid: 

 �F�f.���f. � ���!k�����us~� S�� � �� (21) 

or 

 �� � � ��� !���j~�  (22) 

where, �� is desired attenuation. +- � 7v78 � 7v7w+o 
The constant �  is defined as the relation between the 

inductance at the inverter side and the one at the grid side: 

 �� � ��� (23) 

Plotting for different �E one can evaluate the transfer 
function of the filter at a particular resonant frequency that 
depends on the nominal grid impedance [14]. A resistor in 
series ��-) with the capacitor attenuates part of the ripple on 
the switching frequency in order to avoid the resonance. The 
value of this resistor should be one third of the impedance of 
the filter capacitor at the resonant frequency [19] and the 
resistor in series with the filter capacitance is given by (26). 
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 ���� � �4�!4 !44�4 ��  (24) 

 87i� � ikl_ � 7vwi_j (25) 

It is necessary to check resonant frequency to satisfy (25). 
If it does not, the parameters should be re-chosen.  

 �- � �Ds��~��  (26) 

B. Delta or Wye Configuraiton 
After defining all parameters for LCL filter two 

configuration are possible for implementation. Parameters 
defined in Section A are valid for wye capacitors connection, 
however using simple and well known wye delta 
transformation for balanced system wye configuration can be 
transformed to delta: 

 n
B � t�D   (27) 

It's obvious from (28), that for delta configuration size of 
capacitor should be three times smaller than for wye 
configuration and vice versa for damping resistance: 

 �-� � ��-�  (28) 

 +-� � ���D   (29) 

It is common practice to ground neutral, or central point of 
wye connection [20]. In most cases, this grounding is required 
by the U.S. National Electric Code (NFPA-70). By grounding 
a wye system, the voltages to ground are stabilized and 
controlled. This makes system much less susceptible to 
impulses, and faults that cause high voltages to ground. In 
case of delta configuration there are no questions and 
problems with grounding. That's why author's propose delta 
connection as more convenient and less questionable way to 
get same good performance of LCL filter. 

IV. FILTER DESIGN EXAMPLE 
A step by step procedure to obtain parameters of the filter 

with wye configuration considering the following given data, 
needed for the filter design:Ecd � 8�7��E� - line to line RMS 
voltage, gB � gd � wE��- rated active power,E�h� �  77E�- 
DC bus voltage,�¡ � �¢£7-grid frequency, ¤_j � 8w�\¥  - 
switching frequency, " � 7v7w  - maximum power factor 
variation seen by the grid, �� � 7v�(20%) - attenuation factor 
is done. Therefore, the base impedance and the base 
capacitance are nB � Uv£ ¦ , +B � �7§¨©  respectively 
(parameters are shown in Table I). 
1. Using 10% allowed ripple equation (17) gives inductance �� � �v��|\ 

2. Maximum capacitor value is 8£v£�¨© to be in limit of 5% 
of the base value +B. After rounding to closest possible 
value +- � 8w¨©. 

3. Setting desired attenuation �� � �7m and using (22) �� 
is calculated to be 7v7 w|\ 

4.  Putting all calculated parameters from (1)-(3) to (23) 
gives ikl_ � £ w7�\¥  which is meets condition from 
(24) 

5. Equation (25) gives value of damping resistance                    �- � 7vww¦ 
6. Inductors parameters are defined using the software 

available on web site of  Magnetics® Company and 
presented in Table II. 

 

TABLE I.  TESTED SYSTEM PARAMETERS 

i� Grid frequency 60Hz i_j PWM carrier frequency 15kHz gd Nominal Power 5kW �� Phase grid voltage 120V �h� DC link Voltage 400V �� Inverter side inductor 2.33|\ �� Grid side inductor 0.045|\ +- Capacitor filter ª«¬ 15¨©/5¨© �- Damping Resistor ª«¬ 0.55¦/1.65¦ 

TABLE II.  INDUCTORS PARAMETERS 

Parameter �� �� 
Inductance(|\) 2.33|\ 0.045|\ 
Core Type 77102-A7 77258-A7 
Number in Stack 5 1 
Wire AWG 12 AWG 12 
Number of Turns 116 43 

V. SIMULATION RESULTS AND ANALYSIS 

A. System Modeling 
For the sake of simplicity the wind generator dynamics 

including generator side converter are ignored assuming the 
DC-link voltage is constant as focus is given on the grid side 
dynamics. The model has been built using Matlab® and 
Simulink® Power System ToolBox environment as shown in 
Fig.7. Sampling time and simulation step size is 0.5 ¨^ , 
sampling time for the control system is 50¨^. Fig.8 shows a 
schematic diagram of a current-controlled real-/reactive-power 
controller, illustrating that the control in performed in ` -
frame. Thus active and reactive power controlled by the line 
current components 	�and 	® . The feedback and feed-forward 
signals are first transformed to the ` - frame and then 
processed by compensators to produce the control signals in `-frame. The active and reactive powers are calculated using 
measurements at the PCC and their values are compared with 
set-points. Then PI-based controllers decide the reference ` 
and  components of the reference current. Finally, the control 
signals are transformed to the ?@A-frame and fed to VSI. To 
protect the VSI, the reference commands 	�kl-  and 	®kl- are 
limited by the corresponding saturation blocks (not shown in 
Fig.8)
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B. System Perfomance and Power Quality 
As it can be seen from Fig. 9 and

configurations have very good performance. 

Fig. 9:Current(pu) and Voltage(pu) for P

Fig. 10:Active Power Injected to the G

THD analysis is conducted with the help
Transformation tool in Simulink and results
Table III for injecting power to the grid un
factor condition. 

Fig. 7:Grid Connected Inverter 

Fig. 8:Control System  

d Fig. 10, both 

 
hase A 

 
Grid 

p of Fast Fourier 
s are presented in 
nder unity power 

TABLE III.  THD

Active Power Delta
1500kW(0.3pu) 1.44%
2500kW(0.5pu) 0.94%
5000kW(1pu) 0.45%

 
THD results are within limits, as d

VI. CONCLU
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related to the integration of mic
inverter-based generation systems i
and control, this paper discussed a 
end inverter with LCL filter. The pa
the LCL filter has been proposed
connected inverter system used in 
generator system. The LCL filter us
frequency ripple has been analyzed.
should be made carefully due to th
issues. Therefore, a comprehensi
procedure for the LCL filter has be
and  dynamics of the overall system
found that the design meets the indu
THD within the given range. The 

 

 RESULTS 

a Wye 
% 1.42% 
% 0.93% 
% 0.45% 

defined by[15],[7]. 
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he resonance and stability 
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ustry standards keeping the 
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LCL filter is also applicable with the front end inverters used in 
medium and large scale wind generators and photovoltaic 
systems as well. 
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