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ABSTRACT 

The problem of efficiently compressing massive high-dimensional 
data cubes still waits for efficient solutions capable of overcoming 
well-recognized scalability limitations of state-of-the-art 
histogram-based techniques, which perform well on small-in-size 
low-dimensional data cubes, whereas their performance in both 
representing the input data domain and efficiently supporting 
approximate query answering against the generated compressed 
data structure decreases dramatically when data cubes grow in 
dimension number and size. To overcome this relevant research 
challenge, in this paper we propose LCS-Hist, an innovative 
multidimensional histogram devising a complex methodology that 
combines intelligent data modeling and processing techniques in 
order to tame the annoying problem of compressing massive high-
dimensional data cubes. With respect to similar histogram-based 
proposals, our technique introduces (i) a surprising consumption 
of the storage space available to house the compressed 
representation of the input data cube, and (ii) a superior 
scalability on high-dimensional data cubes. Finally, several 
experimental results performed against various classes of data 
cubes confirm the advantages of LCS-Hist, even in comparison 
with those given by state-of-the-art similar techniques. 

1. INTRODUCTION 
During the last two decades, research communities have devoted a 
great deal of attention to the annoying problem of compressing 
data cubes for various purposes, among which providing 
approximate answers to resource-intensive OLAP queries against 
such multidimensional data structures is the most relevant one. 
Briefly, benefits coming from the data cube compression proposal 
can be synthesized in a faster evaluation of queries that is 
balanced by some approximation in the final answers, which, 
however, is perfectly tolerable with respect to OLAP analysis 
goals [6]. In turn, performance improvement gained from 
mitigating effects of resource-intensive OLAP query evaluation 
makes consolidated methodologies for extracting integrated, 
summarized, OLAP-shaped knowledge from large amounts of data 
stored in massive corporate data cubes, like On-Line Analytical 
Mining (OLAM), feasible-in-practice and efficient. 
According to these considerations, a plethora of approximate 

query answering techniques have been proposed in literature, 
each of them aiming at minimizing the occupancy of compressed 
data cubes, while, at the same time, minimizing the query error 
due to approximate answers to OLAP queries against such 
condensed representations. Among all the alternatives, 
histograms, wavelets [18], and random sampling (e.g., [7]) are the 
most popular solutions, which, in several instances, have been 
implemented within the core layer of commercial OLAP server 
platforms. Specifically, histograms, which have a long history, are 
the most successful proposal, and offer the best performance in 
both compressing data cubes and efficiently supporting 
approximate query answering. 
Nevertheless, just like other approximate query answering 
techniques, performance of histograms decreases when data cubes 
grow in dimension number and size. In more detail, histograms 
suffer of scalability issues (e.g., see [6]), i.e. they perform well on 
small-in-size low-dimensional data cubes whereas they do not 
scale satisfactorily on massive high-dimensional data cubes. For 
this reason, when the latter kind of data cubes are considered, we 
generally observe a significant performance degradation in both 
representing the input data domain and introducing low (query) 
errors in the retrieved approximate answers. It should be noted 
that, from the application side perspective, the latter is the most 
problematic issue to be faced-off, being OLAP queries the 
baseline operations on top of which advanced Knowledge 
Discovery in Multidimensional Databases (KDMD) processes 
(e.g., OLAM and Decision Support (DS) processes) are 
implemented. Unfortunately, real-life data cubes that one can find 
in Data Warehousing (DW) systems, Business Intelligence (BI) 
systems, Sensor Network Data Analysis tools, and, without any 
loss of generality, in all those data-intensive application scenarios 
where distributed massive data must be analyzed on the basis of a 
multidimensional and multi-resolution vision, are characterized 
by a dimension number that, due to the same processes according 
to which knowledge is produced, processed and mined, is very 
large, and can easily reach several tens of dimensions in most 
cases! 
To adequately fulfill this gap between the nature of real-life data 
cubes and resulting compression/approximate-query-answering 
issues deriving-from and emphasized-by massive sizes and high 
dimension numbers, in this paper we propose an innovative 
multidimensional histogram, called LCS-Hist, whose main goal is 
to tame the annoying problem of compressing massive high-
dimensional data cubes. Similarly to histogram-based data cube 
compression techniques, LCS-Hist makes use of a partitioned 
representation of the input data cube in terms of buckets, data 
blocks storing some aggregate information on the items they 
contain. To this end, the methodology underlying LCS-Hist 
defines an innovative data cube compression technique that 
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combines: (i) Linear programming, (ii) Constrained partitions of 
multidimensional data domains, and (iii) Similarity metrics on 
one-dimensional histograms. The main motivation underlying the 
vision carried out by LCS-Hist is the following. Since traditional 
histogram-based data cube compression techniques introduce 
problematic limitations when applied to massive high-
dimensional data cubes, combine advanced data modeling and 
processing techniques in order to obtain a final compressed data 
structure (i.e., LCS-Hist) that, although paying something in 
terms of computational overheads, allows us to achieve excellent 
performance in both representing the input data cube and 
efficiently supporting approximate query answering to resource-
intensive OLAP queries against the compressed data cube. 
Moreover, contrary to state-of-the-art data cube compression 
techniques, LCS-Hist ensures high scalability and efficiency on 
massive high-dimensional data cubes, as we experimentally prove 
in our comprehensive experimental analysis. 

Being LCS-Hist computed in an off-line manner, likewise to what 
happens with other common maintenance operations of 
commercial OLAP server platforms, the cost needed for 
computing LCS-Hist is transparent to the target OLAP client 
application, whereas, at query time, the latter takes advantages 
from obtaining fast, approximate answers to resource-intensive 
OLAP queries for knowledge discovery and decision support 
purposes. 

Another peculiar characteristic of LCS-Hist is the idea of 
combining a collection of intelligent data modeling and 
processing techniques in a systematic methodology that, overall, 
allows us to effectively tame massive high-dimensional data cube 
compression. This approach has similar, well-known initiatives in 
the context of histogram-based data cube compression techniques. 
Just like LCS-Hist, Min-Skew [1], GenHist [10], and STHoles [3] 
histograms propose computing the final compressed 
representation of the input data cube by means of a rather 
complex methodology, which makes such class of proposals a 
breaking point with respect to traditional approaches exposing 
simpler build algorithms (e.g., Equi-Depth [14] and MHist [16] 
histograms). In virtue of this, in our work we consider Min-Skew 
[1], GenHist [10], and STHoles [3] histograms as similar, related 
techniques, whereas the comparison of LCS-Hist with different-
in-nature data cube compression techniques appeared in literature 
recently, such as condensed [19] and Dwarf [17] cubes, or 
distributed and parallel data cube compression methodologies, 
such as [8], is outside the scope of this paper and postponed as 
future work. On the other hand, latest proposals in the context of 
approximate query answering have confirmed the trend of 
encompassing complex methodologies to solve this so-exciting 
research challenge. Among these proposals, we mention the 
optimized stratified sampling technique by Chaudhuri et al. [4], 
and the DBO OLAP engine by Jermaine et al. [12]. Despite this 
analogy, both [4] and [12] are not comparable with our work as 
[4] makes strong assumptions on the target query-workload in 
order to improve the quality of stratified sampling, and [12] 
investigates the specific problem of supporting scalable online 
aggregation, which can be both reasonably considered as 
application scenarios very different from ours. 
An admissible limitation of complex histogram-based data cube 
compression techniques like ours is represented by the fact that, 

due to the computational overheads introduced by the underlying 
(complex) build/restructure procedure, such techniques are not 
suitable to be adopted within dynamic software components 
extending OLAP server platforms and capable of efficiently 
accomplishing updates that can happen in the relational data 
sources alimenting the target data cube. This amenity could be 
achieved by means of methodologies allowing the actual 
configuration of the compressed representation to be rapidly re-
tuned accordingly, like happens in other proposals (e.g., [3]) 
inspired by widely-recognized principles of self-tuning databases. 
However, these research aspects are outside the scope of this 
paper, and the usage of LCS-Hist as off-line component within 
the core layer of OLAP server platforms can be reasonably 
assumed as the most appropriate one to be considered. 
The remaining part of this paper is organized as follows. In 
Section 2, we report on state-of-the-art complex histogram-based 
data cube compression techniques, namely Min-Skew [1], GenHist 
[10], and STHoles [3] histograms. Section 3 is devoted to 
fundamentals and basic definitions of our research. In Section 4, 
due to the complexity of the methodology underlying LCS-Hist, 
we provide a useful overview of such methodology throughout a 
sketch on the LCS-Hist build algorithm. Section 5 describes how 
the data cube partition underlying LCS-Hist is obtained by means 
of an innovative dynamic programming procedure. In Section 6, 
we show how the partition above is further optimized by means of 
imposing a set of partitioning constraints. In Section 7, we 
introduce our innovative similarity metrics on one-dimensional 
histograms, which allows us to reduce the overall size of the 
partition and, as a consequence, the final occupancy of LCS-Hist, 
while ensuring a high degree of accuracy of the retrieved 
approximate answers. As a noticeable side effect, this strategy 
allows us to obtain high scalability and efficiency of LCS-Hist in 
both representing the input data cube and efficiently supporting 
approximate query answering in the presence of massive sizes and 
high dimension numbers. In Section 8, we describe how the final 
constrained partition of the input data cube is obtained. This 
partition is the one on top of which the final histogram is 
computed. Section 9 is devoted to our comprehensive 
experimental evaluation that demonstrates the advantages coming 
from LCS-Hist, even in comparison with state-of-the-art similar 
techniques. Finally, in Section 10, we complete our overall 
contribution by discussing conclusions and putting the basis for 
future work in this research field. 

2. RELATED WORK 
As highlighted in Section 1, within the context delineated by the 
wide literature on histogram-based data cube techniques, three 
reference proposals are close to our work: Min-Skew [1], GenHist 
[10], and STHoles [3] histograms. Similarly to ours, these 
techniques make use of complex, systematic methodologies to 
deal with the annoying problem of compressing massive high-
dimensional data cubes. For this reason, in this Section we 
provide a brief overview on these proposals. 
Min-Skew histogram was originally designed by Acharya et al. [1] 
to tackle the problem of selectivity estimation of spatial data in 
Geographical Information Systems (GIS). Spatial data are referred 
to spatial (or geographical) entities such as points, lines, poly-
lines, polygons and surfaces, and are very often treated by means 
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of minimal rectangles containing them, namely Minimum 
Bounding Rectangles (MBR). The main idea behind a Min-Skew 
histogram is to follow the criterion of minimizing the spatial skew 
of the histogram by performing a Binary Space Partitioning 
(BSP) via recursively dividing the data space along one of the 
dimensions each time. More formally, each point in the space of a 
given GIS instance is associated to a spatial density, defined as 
the number of MBR that contain such a point. When performing 
the partition, the spatial skew S(Bi) is assigned to each bucket Bi. 
S(Bi) is defined as follows: 
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spatial frequency of the k-th item within Bi; (iii) if  represents the 
average frequency of all the items within Bi. The total skew S(H) 
of the histogram H is defined as follows: 
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buckets of the histogram H, and N(Bk) and S(Bk) are defined as 
introduced above. The build algorithm of MinSkew tries, at each 
step, to minimize the overall spatial skew of the histogram by 
selecting (i) a bucket to be split, (ii) a dimension of the 
multidimensional space along which splitting, and (iii) a splitting 
point in that dimension, such that the overall spatial skew 
computed after the split is smaller than the one computed at the 
previous step. Finally, noticing that the spatial skew captures the 
variance of the spatial density of MBR within each bucket, we 
can say that Min-Skew follows, in some sense, the spirit of the 
well-know V-Optimal histogram. 
Gunopulos et al. propose GenHist histogram [10], a 
multidimensional histogram that is different from the previous 
ones with respect to the particular nature of the build algorithm. 
The key idea of GenHist is the following. Given a histogram H 
with NB buckets on the input data cube A, a GenHist histogram is 
built by finding nb overlapping buckets on H, such that nb is an 
input parameter. To this end, thanks to a greedy algorithm that 
considers increasingly-coarser grids, the technique individuates 
the number of distinct regions that is much larger than the original 
number of buckets NB. At each step, this algorithm selects the set 
of cells J of highest density, and moves enough randomly-
selected points from J into a bucket to make J and its neighboring 
cells “close-to-uniform”. Therefore, the novelty of this proposal 
consists in defining a truly multidimensional splitting policy, 
based on the concept of tuple density. A drawback of the GenHist 
proposal is represented by the difficulty of choosing the right 
values for setting the input parameters, which are quite numerous. 
Bruno et al. [3] propose the workload-aware histogram STHoles, 
a multidimensional histogram based on the analysis of the query-
workload on the target data cube. Rather than an arbitrary 
overlap, a STHoles histogram allows bucket nesting, thus 
achieving the definition of the so-called bucket tree. The query-
workload is handled as follows. Query result stream QR to be 
analyzed is intercepted and, for each query Qk belonging to QR 
and for each bucket Bi belonging to the current bucket tree TB, the 
number |Qk ∩ Bi| is counted. Then, “holes” in Bi for regions of 
different tuple density are “drilled” and “pulled out” as children 
of Bi. Finally, buckets of similar densities are merged in such a 
way as to keep the number of buckets constant. STHoles makes 
use of a tree-like in-memory-data-structure, since the parent-child 
relationship in a tree well represents the nesting relationship, and 

the sibling-sibling relationship is well represented by buckets 
nested within the same bucket. Thereby, STHoles build algorithm 
does not take into account the original data set; indeed, the needed 
information is instead gathered by inspecting the target query-
workload and query feedback. This amenity makes STHoles self 
tunable, i.e. adaptable to updates and modifications of the query-
workload’s characteristics. On the basis of this strategy, a relevant 
amount of the total storage space available for housing the 
histogram is invested in representing “heavy-queried regions”, 
thus providing a better approximation for such regions, whereas a 
fewer storage space is reserved to “lowly-queried regions”, thus 
admitting some inaccuracy for such regions. In addition to this, in 
[3] authors also show that, on the DBMS Microsoft SQL Server, 
query-workload analysis overheads introduced by STHoles are 
very low, less than 10 % of the overall DBMS throughput. 

3. FUNDAMENTALS AND BASIC 
DEFINITIONS 
For the sake of explanation, in this Section we introduce 
fundamentals and definitions used throughout the paper. Let A be 
an n-dimensional OLAP data cube having D = {d0, d1, …, dn-1} as 
dimension set. A data cell of A is denoted as C[k0, k1, …, kn-1], 
such that {k0, k1, …, kn-1} represents the set of OLAP metadata 
that univocally identify C within the n-dimensional space defined 
by A, each kj being a member of the dimension dj. When there is 
not the need of explicitly referring the OLAP metadata of a 
generic data cell C of A (i.e., C[k0, k1, …, kn-1]), we will refer to 
such cell as C simply. 
A bucket over A is a (n-dimensional) sub-set of the n-dimensional 
space of A, denoted as B[l0:u0, l1:u1, …, ln-1:un-1], where each pair 
[lj:uj] defines the bounds of B along the dimension dj. Likewise, 
we will denote a generic bucket of A as B simply, whenever there 
is not the need of explicitly referring its bounds along dimensions 
of A. 
Given an n-dimensional bucket B[l0:u0, l1:u1, …, ln-1:un-1], we say 
that a data cell C[k0, k1, …, kn-1] is a vertex of B if either kj = lj or 
kj = uj, for each j in {0, 1, …, n – 1}. 
It should be noted that each OLAP dimension constitutes a totally 
ordered set. Given a dimension dj of a data cube A, if members of 
dj are numerical, then the order relation of dj is naturally defined. 
Otherwise, if members of dj are categorical, then the order 
relation of dj is the one exposed by the target OLAP server (this 
depending on the way multidimensional data are organized, 
represented and processed). Therefore, it makes sense to introduce 
the notion of interval of members over an OLAP dimension. To 
this end, instead of explicitly referring a specific member kj of dj, 
we will denote such member by means of an index on its position 
in the ordering of dj. This notation also suggests that, given data 
cell C of A, apart from the logical representation, C could 
alternatively be regarded as a vector in the vectorial space defined 
by A, denoted as Z(A). 

Given a data cell C[k0, k1, …, kn-1] and a bucket B[l0:u0, l1:u1, …, 
ln-1:un-1], we say that C is contained within B, i.e. C  B, if lj ≤ kj 
≤ uj, for each j in {0, 1, …, n – 1}. Furthermore, we define 
Cells(B) as the set of all data cells in A that are contained within 
the bucket B. 
Finally, some statistical properties of buckets will also be used 
throughout the paper. Here, we introduce these properties. Given 
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a bucket B[l0:u0, l1:u1, …, ln-1:un-1], we define the statistical mean 
of B, denoted as (B), as follows: 
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and the statistical variance of B, denoted as 2(B), as follows: 
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4. LCS-Hist OVERVIEW 
In this Section, we provide a sketch on LCS-Hist throughout its 
build algorithm. This allows us to give a first intuition of the 
overall data cube compression methodology underlying LCS-Hist 
we propose. Then, in the following Sections, we detail each main 
task of our proposed methodology. 

LCS-Hist build algorithm is a four-step algorithm such that each 
step codifies a certain intelligent data modeling and processing 
technique, according to the guidelines given in Section 1. 

The first step consists in computing an initial, raw partition R of 
the input data cube A by means of an innovative dynamic 
programming procedure that follows the widely-accepted 
criterion of minimizing the variance 2 of data contained within 
buckets of the partition. This criterion allows us to generate close-
to-uniform buckets, which involve in important benefits 
concerning to the increase of accuracy of retrieved approximate 
answers (e.g., see [1]). From active literature, recall that among 
all possible partitions of a given data cube, the optimal one is that 
minimizing the query error due to the data cube compression 
process. However, finding the optimal partition is an NP-Hard 
problem [15], so that very often greedy approaches are adopted 
(e.g., [16]). In our solution, the adoption of a dynamic 
programming procedure instead of most-used-in-literature greedy 
approaches gives us the opportunity of obtaining a closer-to-
optimal (raw) partition at the cost of a little performance 
degradation. This because, due to their local-optimum-focused 
search policies, greedy algorithms usually compute sub-optimal 
solutions only which could not perfectly realize the final goal of 
obtaining fair data cube partitions as meant by any histogram-
based data cube compression technique (e.g., see [6]). In our data 
cube compression framework, the problem of computing the raw 
partition R is rigorously formalized and solved in terms of an 
Integer Linear Programming (ILP) optimization problem, whose 
feasible region is shaped by taking into account geometrical 
properties of buckets. Finally, it is worth noticing that the so-
computed partition R is isomorphic to the input data cube A, i.e. 
each bucket B of R has the same dimensionality of A. 
Subsequently, in the second step of the algorithm, the initial 
partition R is further refined via imposing a set of partitioning 
constraints, which make constrained the final partition we obtain, 
denoted by B. Constraints above are meant to significantly 
reduce the search space of the final problem of finding an optimal 
partition of the input data cube by progressively refining the 
actual partition via subsequent steps, thus significantly lowering 
the overall computational cost needed to compute LCS-Hist. 

In the third step, LCS-Hist build algorithm tries to further reduce 
the cardinality of B by removing redundant buckets, namely 
buckets that store data having distribution similar to the one of 
other buckets, thus achieving the partition T. Similarly to 
previous considerations, reducing the amount of redundant 
information stored within the histogram (and, as a consequence, 
the final size of the histogram) is the underlying goal of such an 
approach. In more detail, LCS-Hist build algorithm partitions 
buckets in B into sets of buckets with close-to-similar 
distributions, and, for each such set, retains just one bucket while 
discarding the remaining ones. The intuition in this case is that 
retaining just one bucket for each (similar) bucket set, although 
introducing some approximation, leads, in most cases, to a 
surprising storage space saving. It should be clear from here that, 
since finding an optimal partition with respect to the bucket 
similarity is a key issue to be considered in order to reduce the 
introduced overall approximation error, the definition of a proper 
similarity metrics for detecting similar buckets (to be grouped 
within the same set) plays a critical role. In fact, intuitively 
enough, the more is the quality of the similarity metrics, the less 
is the introduced overall approximation error, thus the more is the 
efficiency of the final compressed data structure computed on top 
of such a partitioned representation. With these ideas in mind, we 
exploit research results provided by Kamarainen et al. in [13], 
which introduce a mathematical transformation for histograms, 
called Neighbor-Bank Transform (NBT). Briefly, NBT allows the 
performance of traditional similarity metrics, such as Euclidean, 
Manhattan and Minkowsky metrics, in detecting similar one-
dimensional histograms to be sensitively improved. As we 
demonstrate in Section 7, in our work we meaningfully exploit 
this nice capability of NBT in order to effectively detect similar 
buckets, thus obtaining the above-highlighted data reduction 
goals, and deriving benefits. 

In the fourth step of the algorithm, the partition T is finally 
obtained from the input partition B by addressing two goals: (i) 
T must effectively approximate OLAP data stored in the given 
data cube A, and (ii) T must not contain redundant buckets, i.e. 
buckets having a certain degree of similarity with other buckets in 
the partition. Similarly to step two of the algorithm, this defines 
an ILP problem, which we rigorously formalize and solve as well. 
In this case, the feasible region is shaped by taking into account 
(i) the so-called similarity threshold , i.e. the maximum value of 
the similarity metrics according to which two NBT histograms 
(buckets, respectively) are considered similar, and (ii) the 
maximum size allowed for the in-memory-representation of LCS-
Hist, denoted as G. Therefore, T is obtained as the sub-optimal 
partition solving the ILP problem above. The immediate benefit 
we obtain from such an approach is a relevant reduction of the 
cardinality (i.e., the number of buckets) of the actual partition 
(i.e., |T|  |B|) and, as a consequence, a relevant reduction of 
the final size of LCS-Hist, while ensuring a high degree of 
accuracy of retrieved approximate answers. 

5. PARTITIONING DATA CUBES BY 
DYNAMIC PROGRAMMING 
In the first step of the LCS-Hist build algorithm, we are given a 
multidimensional data cube A and we aim at obtaining a raw 
partition R of A by meaningfully exploiting the statistical 
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variance of buckets to be generated and stored within R. The 
goal is finally obtaining R in such a way as to minimize the 
variance of its buckets. To this end, we make use of an innovative 
dynamic programming procedure, whose main goal is to 
overcome limitations of traditional histogram-based data cube 
compression greedy techniques, on the basis of motivations given 
in Section 4. According to the strategy we propose, based on the 
well-known dynamic programming paradigm, (i) the whole 
problem (i.e., partitioning the data cube) is divided into a set of 
sub-problems (characterized next), (ii) each sub-problem is solved 
individually, and (iii) the optimal solution of the original (whole) 
problem is obtained by meaningfully exploiting optimal solutions 
of sub-problems. In our framework, we characterize a generic 
sub-problem as the basic problem of finding the bucket Bℓ with the 
lowest variance among a given set of possible ones. The 
procedure that computes R is a three-step procedure, outlined in 
the following: (s.0) for each data cell C in A, compute the set of 
all possible buckets of A having C as vertex, denoted as BS(A, C); 
(s.1) determine the lowest variance bucket set of A, denoted as 
LVBS(A), among buckets in the set 

1||

0
),()( 


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k kCABSABS ; 

(s.2) compute R  LVBS(A) via extracting from LVBS(A) the 
lowest variance covering bucket set, namely via extracting from 
LVBS(A) a set of buckets (i.e., R) that satisfies the so-called 
covering property. This property imposes that, for each data cell 
C in A, there exists a bucket B in R such that B contains C. 
Among all sub-sets of LVBS(A) that satisfy the covering property, 
R is obtained as the one having the lowest overall statistical 
variance 2(R), defined as follows: 
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Let us now focus on each sub-step of our dynamic programming 
strategy in greater detail. In order to properly treat step (s.0), we 
need to introduce a simple-yet-necessary data model useful to 
represent vertex data cells. Given an n-dimensional bucket 
B[l0:u0, l1:u1, …, ln-1:un-1], we associate to each vertex data cell C 
of B a binary tuple called vertex identifier, denoted as V(C) = v0, 
v1,…, vn-1, such that: (i) vi  {0, 1}, for each i in {0, 1, …, n – 
1}; (ii) vi = 0 means that ki = li, for each i in {0, 1, …, n – 1}; (iii) 
vi = 1 means that ki = ui, for each i in {0, 1, …, n – 1}. Roughly 
speaking, given an n-dimensional bucket B, a vertex identifier on 
B identifies a vertex of B among all possible 2n vertices. 

The task of step (s.0), i.e. computing the set BS(A, C) for a given 
data cell C of A, is implemented by a procedure that takes as input 
(i) a data cube A, (ii) the set D of its dimensions, (iii) a data cell C 
of A, and computes the set BS(A, C) by means of the following 
steps: (i) generate each possible vertex identifier V(C) of C 
throughout very efficient base-2 arithmetic operations; (ii) for 
each V(C), build the bucket with the minimum admissible volume, 
denoted as )(,

min
CVCB  (note that this step depends on the kind of 

vertex identifier V(C)); (iii) enlarge the bounds of )(,
min

CVCB  on the 
basis of the nature of vertex C (in turn, this is again determined by 
the kind of vertex identifier V(C)), until further enlargements are 
possible, i.e. there exists a dimension dj of A such that the bounds 
[lj :uj] of )(,

min
CVCB  along dj do not satisfy neither lj = 0 nor uj = |dj| 

– 1. 

Step (s.1) involves the trivial tasks of (i) finding, for each data 
cell C in A, the bucket in BS(A, C) with the lowest statistical 
variance, and, thereafter, (ii) determining the final set LVBS(A) by 
merging the previous intermediate results. Both tasks are very 
simple and do not deserve further details. 

For what concerns step (s.2), we formalize and solve the problem 
underlying it as an ILP problem. Let us (i) assign an index i to 
each bucket B in LVBS(A), (ii) denote as I(A) the set of all such 
indices on buckets, (iii) assign an index j to each data cell C in A, 
(iv) denote as J(A) the set of all such indices on cells. In addition 
to this, let us introduce the function Dj,i, which models whenever 
a given cell Cj is contained by a given bucket Bi (i.e., Cj  Bi). Dj,i 
is formally defined as follows: 



 


otherwise

Bif C
D ij

ij 0

 1
,

 (4) 

Furthermore, we introduce |LVBS(A)| decision variables xi, one 
for each bucket Bi in LVBS(A), defined as follows: 



 


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inBif
x

R
i

i 0
   1  (5) 

Finally, the ILP formulation of step (1.3) is the following: 
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(6) 

wherein: (i) function (ℓ.0) is the objective function to be 
minimized (the sum of the variances of buckets retained in R); 
(ii) constraint (ℓ.1) imposes that, for each data cell Cj of J(A), 
there exists at least one bucket Bi in R such that Bi contains Cj; 
finally, (iii) constraint (ℓ.2) imposes that decision variables xi 
must be binary-valued (i.e., either 0 or 1). 

6. REFINING THE PARTITIONED 
REPRESENTATION OF DATA CUBES BY 
PARTITIONING CONSTRAINTS 
This Section deals with the second step of the LCS-Hist build 
algorithm. Given the so-far-computed raw partitioned 
representation of A, R, second step produces in output the 
refined partition B by means of imposing the following 
partitioning constraints: (c.0) no overlapping buckets allowed, 
(c.1) no nested buckets allowed, (c.2) whenever bucket splitting 
is needed, use a splitting policy still aimed at variance reduction. 
Another obvious requirement due to geometrical issues is that 
buckets in B must be convex. Therefore, before explaining how 
the refined partition B is obtained from the raw partition R, we 
need to introduce the concept of bucket convexity. As explained in 
Section 3, a data cube A can be thought of as a multidimensional 
vectorial space Z(A), each data cell C being a vector W(C) in 
Z(A). Under this vision, we define the bucket convexity concept 
by borrowing the concept of convexity from the convex set 
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theory. Given a multidimensional bucket B, we say that B is 
convex if the following condition holds: 

 1,0),()1()(,   BCellsCCCBCellsCC kjiji
 (7) 

where the symbol  denotes the (vectorial) sum among the 
coordinates of Ci and Cj in their vectorial representation. 
Bucket convexity is of interest to the goals of our framework due 
to the fact that while applying constraints (c.0), (c.1) and (c.2) 
some buckets in the current partition (i.e., R) could temporally 
lose the convexity property, and hence they must be made convex 
since buckets in B must be convex by construction. Bucket 
convexification is therefore obtained by splitting each non-convex 
bucket B into a set of convex buckets, denoted as Conv(B) and 
defined as follows: 

  i ii iii BBBBBCellsBBConv )(|{)(  

 }convexisBi  

(8) 

With respect to the bucket convexification process, a significant 
problem appears when, given a non-convex bucket B, there could 
exist more than one possible convexification of B. Let C(B) 
denote the set of convexifications of B, and Convj(B) denote a 
generic item of C(B) (i.e., a generic convexification of B). Due to 
the constraint (c.2) (i.e., splits must be done based on a variance-
reduction-driven policy), in order to make B convex we replace B 
in B with that convexification (of B) leading to the minimum 
overall variance, denoted as MVConv(B), and defined as follows: 

  ))}(({minarg 2

)(
BConvBMVConv j

Bj


C
  (9) 

such that 2(Convj(B)) is defined as follows: 

  


BConvB ij
ji

BBConv )())(( 22   (10) 

Let us now examine partitioning constraints (c.0) and (c.1), and 
the way they are applied to R in order to obtain B. Consider 
two non-disjoint buckets Bi and Bj, as this case is more interesting 
than the trivial case in which Bi and Bj are disjointed. In this 
condition (i.e., non-disjoint buckets), Bi and Bj can violate 
partitioning constraints (c.0) and (c.1) in (at most) three ways: (a) 
Bi and Bj are nested one within the other, (b) Bi and Bj coincide, 
(c) Bi and Bj overlap. We next carefully investigate all these 
alternatives, and provide solutions to them. Basically, these 
solutions consist in removing the buckets of the current partition 
R that cause constraint violations. 
Case (a): Nested Buckets. Given two buckets Bi and Bj, Bi is 
nested within Bj if Cells(Bi)  Cells(Bj). Obviously, in the most 
general case, we could have a singleton bucket Bj containing a set 
of nested bucket NB(Bj) = {Bi | Cells(Bi)  Cells(Bj)}. Partitioning 
constraint (c.0) is imposed by removing from R buckets in 
NB(Bj) and retaining just the bucket Bj. It should be noted that this 
simple method used to remove nested buckets has two major 
benefits. First, it reduces the overall cardinality of R and, in turn, 
the one of B (note that this involves the amenity of reducing the 
final space occupancy of LCS-Hist). Second, it follows the well-
accepted-in-OLAP criterion of aggregating data as it allows the 

final partition to store more aggregated data (i.e., the singleton 
bucket Bj) instead of less aggregated ones (i.e., buckets in 
NB(Bj)). Figure 1 shows an example on how nested buckets are 
removed in order to satisfy the partitioning constraint (c.0). 
Specifically, in Figure 1 nested buckets B1, B2, B3, and B4 are 
removed from R. 

B1
B2

B3

B4

 

Figure 1. Removing nested buckets. 

Case (b): Identical Buckets. Two buckets Bi and Bj coincide if 
the following two conditions hold: (i) Cells(Bi)  Cells(Bj), and 
(ii) Cells(Bj)  Cells(Bi). In this case, partitioning constraint (c.0) 
is imposed by simply removing from R one bucket between Bi 
and Bj. It does not matter which bucket is removed since Bi and Bj 
cover the same area exactly, and have the same statistical 
properties exactly. 

Case (c): Overlapping Buckets. Two buckets Bi and Bj overlap if 
the following conditions hold: 

(i) Cells(Bi)  Cells(Bj)  Cells(Bi) 
(ii) Cells(Bi)  Cells(Bj)  Cells(Bj) 

(iii) Cells(Bi)  Cells(Bj)   

(11) 

Obviously, it could be the case that there exist in R more than 
just two overlapping buckets, but this case can be meaningfully 
treated by decomposition, thus considering only a pair of 
overlapping buckets at time. Therefore, in the following we will 
restrict our analysis to the case of having two overlapping buckets 
Bi and Bj, and we will denote as Bk = Bi  Bj the intersection area, 
or, equally, the intersection bucket. 
With respect to the overall variance reduction criterion, by 
comparing statistical variances of the involved buckets (i.e., Bi, 
Bj, and Bk), three cases can occur at this point. We carefully 
investigate these cases in the following. 
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Figure 2. Removing overlapping buckets – case (c.1). 

Case (c.1): 2(Bi)  2(Bk)  2(Bi) ≤ 2(Bj). In this case, in order 
to obtain an overall variance reduction within B (as imposed by 
constraint (c.2)), we maintain Bi and cut from Bj the area 
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corresponding to Bk, thus removing the overlapping area. Since 
the area Bj – Bi may not be convex, we apply the minimum 
variance convexification by replacing Bj with MVConv(Bj – Bi). 
As an example, Figure 2 shows the procedure above on buckets 
B1, B2, and B3, such that MVConv(B2 – B1) = {B2,1, B2,2}. 
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Figure 3. Removing overlapping buckets – case (c.2). 

Case (c.2): 2(Bi)  2(Bk)  2(Bi)  2(Bj) (i.e., 2(Bj)  2(Bi) 
 2(Bk)). In this case, in order to obtain an overall variance 
reduction within B, we (i) maintain Bj (since it covers the area 
with the lowest variance), (ii) cut the area corresponding to Bk 
from bucket Bi, and (iii) replace Bi with MVConv(Bi – Bk). Figure 
3 shows the procedure above on buckets B1, B2, and B3, such that 
MVConv(B1 – B3) = {B1,1, B1,2}. 

Case (c.3): 2(Bk)  2(Bi)  2(Bk)  2(Bj). In this case, in 
order to achieve an overall variance reduction within B, we 
originate a new bucket from Bk and cut from both Bi and Bj the 
area corresponding to Bk, thus eliminating the overlapping area. 
Buckets Bi and Bj are then replaced by MVConv(Bi) and 
MVConv(Bj), respectively. To give an example, consider Figure 4, 
where, given three buckets B1, B2, and B3, it is assumed that 
MVConv(B1 – B3) = {B1,1, B1,2} and MVConv(B2 – B3) = {B2,1, 
B2,2}. Applying the strategy above, we finally obtain five new 
buckets belonging to the partition B (see Figure 4). 
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Figure 4. Removing overlapping buckets – case (c.3). 

From the analysis above, it clearly follows that, due to 
geometrical issues, there could be settings for which new buckets 
are originated and, as a consequence, the final cardinality of B is 
greater than the one of R (i.e., |B|  |R|), which would lead to 
an increase of the final size of LCS-Hist. Nevertheless, this effect 
is effectively contrasted by the third step of the methodology we 
propose, where redundant buckets are discarded (see Section 4). 

7. EXPLOITING SIMILARITY METRICS 
ON ONE-DIMENSIONAL HISTOGRAMS 
TO DISCARD REDUNDANT BUCKETS 
As we discussed in Section 4, in step three of the LCS-Hist build 
algorithm our approach aims at minimizing the number of buckets 
storing similar information. To this end, a critical issue is 
represented by the problem of choosing an effective similarity 
metrics capable of properly detecting similar buckets. In this 
Section, we will present the similarity metrics we introduce in our 
framework. This formally corresponds to define a procedure for 
computing the similarity function  :     , such that (i) 
  denotes a set of multidimensional buckets, and (ii)   denotes 
the set of real numbers. 
As highlighted in Section 4, in order to achieve this goal we 
efficiently exploit the NBT proposed by Kamarainen et al. [13]. 
[13] experimentally demonstrates that performance of traditional 
similarity metrics on one-dimensional histograms is poor, due to 
the “difficult nature” of such data structures. To overcome this 
limitation, [13] proposes applying NBT to the input histograms 
before using any (traditional) similarity metrics over them. Given 
two histograms Hi and Hj, and a one-dimensional histogram 
similarity metrics m, the NBT-transformed histograms T

iH  and 
T
jH , respectively, allow us to achieve a finer evaluation of m 

over Hi and Hj, denoted as ),( T
j

T
i HHm , rather than the one 

provided by the same metrics applied to the original histograms, 
denoted as m(Hi, Hj). Thanks to this nice property, based on NBT 
we can detect similar histograms better than using traditional 
metrics directly. 
Nevertheless, since NBT is suitable for one-dimensional 
histograms only, whereas buckets in B are multidimensional in 
nature, in order to effectively exploit benefits coming from NBT, 
we perform the following tasks: (s.0) for each bucket Bi in B, 
build the so-called linearized set (Bi) (i.e., a one-dimensional 
representation of Bi) by sorting data cells in Cells(Bi) using an 
innovative locality-preserving linearization technique; (s.1) for 
each so-generated set (Bi), build the one-dimensional histogram 
H((Bi)) associated to Bi; (s.2) for each so-generated histogram 
H((Bi)), apply NBT to H((Bi)), thus obtaining the transformed 
histogram ))(( i

T BH  ; finally, (s.3) for each pair of NBT-

transformed histograms HT((Bi)) and HT((Bj)) built from 
buckets Bi and Bj, respectively, apply the Mahalanobis similarity 
metrics [2], denoted as m(HT((Bi)), HT((Bj))). Note that the 
above-listed tasks finally implement the procedure for computing 
the similarity function . 
According to the procedure above, in order to detect if a pair of 
buckets Bi and Bj belonging to B are similar, so that one can be 
discarded in favor of the other one, the Mahalanobis metrics on 
the corresponding pair of NBT histograms ))(( i

T BH   and 

))(( j
T BH   is considered. Among all the similarity metrics 

available in literature, we choose to adopt the Mahalanobis 
metrics due to the following motivations: (i) it is statistical in 
nature and specialized for correlated data, thus suitable for 
OLAP data [5]; (ii) it can be easily implemented within a 
dedicated software component, being based on conventional 
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matrix algebra operations; (iii) according to [13], compared with 
traditional metrics, it also gives the best performance on 
correlated data, turning to be perfect for OLAP. 
Let us now carefully investigate each step of the procedure for 
computing  (i.e., (s.0), (s.1), (s.2), and (s.3)) in a greater detail. 
Step (s.0) aims at computing the linearized set (Bi) from a given 
multidimensional bucket Bi by means of a locality-preserving 
linearization technique, which is inspired by the work of 
Hamilton and Rau-Chaplin [11]. This technique, which plays a 
leading role in our framework, is composed by the following 
tasks: (i) perform a coordinate transformation in order to express 
the set of coordinates of each data cell C within Bi in a set of 
coordinates that is attached to Bi (i.e., a set of coordinates of C 
defined with respect to the Bi’s coordinate space rather than the 
coordinate space of the entire data cube A); (ii) for each data cell 
C, compute its Compact Hilbert Index (CHI) [11] (described 
next), denoted as Ω(C); (iii) sort data cells in Cells(Bi) by their 
CHIs. 

In more detail, the main idea behind the construction of (Bi) is 
to exploit both Hilbert curves and their relevant improvements 
proposed in [11]. Briefly, Hilbert curves are continuous self-
similar functions that provide a mapping between a 
multidimensional set and a one-dimensional interval (thus 
providing a linear ordering of points in the multidimensional set), 
and having the amenity of preserving data locality. This property 
states that data that are “near” to each other in the original 
multidimensional set are “close” one to another also in the 
resulting linear ordering given by the Hilbert-curves-based 
mapping. On top of this data locality property, [11] makes two 
interesting contributions. First one consists in an extension to 
standard Hilbert curves able to effectively treat the case in which 
dimensions of the original multidimensional space have different 
cardinalities. Is should be noted that this specific feature is very 
useful in several application scenarios, but particularly in OLAP, 
where this case occurs very often. To give an example, consider a 
data cube storing sales data. Here, we can have a dimension, say 
ProductID, with thousands of members, and another dimension, 
say Gender, with just two members. The second contribution 
consists in an efficient algorithm, called compHilbertIndex, 
which, given a point P in a multidimensional space, based on 
simple base-2 arithmetic operations, computes the CHI (P), i.e. 
an integer-valued binary label indicating the position of P in the 
linear ordering imposed by Hilbert curves. 
compHilbertIndex takes as input (i) the number of 
dimensions n, (ii) the cardinality of each dimension |dj|, with j in 
{0, 1, …, n – 1}, and (iii) the set of coordinates identifying P with 
respect to the coordinate system of the input n-dimensional space. 
In our approach, in order to meaningfully exploit 
compHilbertIndex, for each bucket Bi in B, we apply the 
following coordinate transformation, denoted as T(), to each 
data cell C[k0, k1, …, kn-1] in Cells(Bi): 

}1,...,1,0{,  ninjeachforlkk jjj
 (12) 

This allows us to obtain the transformed set of coordinates 
},...,,{ 110  nkkk  of C with respect to the Bi’s coordinate space. 

After this transformation, we can safely apply 
compHilbertIndex to C, thus generating the CHI Ω(C). By 
exploiting this task as baseline operation, the linearized set (Bi) 

of Bi is finally computed by sorting each data cell C in Cells(Bi) 
by its CHI Ω(C). This gives raise to the following formal 
definition: 

(Bi) = { I | I = ]),...,,[( 110  nkkkC  = 

               compHilbertIndex( n, |d0|, |d1|, …,|dn-1|, 
               },...,,{ 110  nkkk )  

               C[k0, k1, …, kn-1]  Cells(Bi)  
               },...,,{ 110  nkkk  = T({k0, k1, …, kn-1})  

               ],...,,[ 110  nkkkC   B  

              )()( pl CC    if 
pl CC   with l < p } 

(13) 

such that   denotes the ordering relation between two items (i.e., 
pl CC   means that Cl precedes Cp in the target ordering). As a 

clarifying example, Figure 5 shows the locality-preserving 
linearization technique applied to the two-dimensional bucket 
B[3:6; 18:21]. 
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Figure 5. Locality-preserving linearization of a 2D bucket. 

Step (s.1) builds the one-dimensional histogram H((Bi)) by 
grouping adjacent items in (Bi). Determining the number of 
buckets to be allocated for each H((Bi)) is a non-trivial 
engagement, so that it is not possible to give valid-for-all 
guidelines on which range this parameter should assume. This 
because it depends on several factors such as the particular data 
distribution and the cardinality of (Bi). Regardless of this, even 
due to query efficiency purposes (e.g., [14]), the sole property to 
be necessarily satisfied in a global fashion is that all the 
histograms H((Bi)) have the same cardinality N (i.e., the same 
number of buckets). Despite of the different sizes of buckets in 
B, this requirement can be easily fulfilled by fixing N to an 
appropriate value, and setting the class interval of each histogram 
H((Bi)) accordingly. Recall that, given a histogram H on a data 
domain D, the class interval of H is defined as the number of 
adjacent items of D to be grouped within the same bucket B in H. 
This way, the desired number of buckets N can be finally 
obtained. 

Step (s.2) consists in applying NBT to each histogram H((Bi)), 
thus obtaining the NBT-transformed histogram ))(( i

T BH  . 

Specifically, NBT is obtained by projecting H((Bi)) onto a fewer 
cardinality set of neighbor-banks by means of a linear 
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transformation, in order to enhance the performance of traditional 
similarity metrics applied to ordered histograms (i.e., histograms 
such that adjacent buckets represents highly correlated data). It 
should be noted how requirements of NBT are perfectly met by 
our histograms H((Bi)), because of two main reasons. First, the 
ordered histogram assumption holds for histograms H((Bi)) 
since: (i) they are built on top of OLAP data cubes (by definition, 
adjacent cells in OLAP data cubes store strongly correlated data 
[5]); (ii) they are obtained via the locality-preserving linearization 
technique (step (s.1)) that has the amenity of preserving the 
correlation of data even in the linearized set (Bi); (iii) they are 
built by grouping together adjacent (correlated) items of (Bi); 
(vi) more generally, partitions ФR and ФB are computed by 
procedures aiming at reducing the overall statistical variance, thus 
overall inducting a greater correlation into data. The second 
reason of the suitability of our framework to the NBT’s 
requirements is that, as argued in [13], NBT is particularly 
suitable for sparse data sets, and OLAP data, beyond highly 
correlated are also, typically, sparse [5]. 
Projection performed by NBT is done by means of a set of cos2 
functions while ensuring that (i) the sum of all banks is equal to 1, 
and (ii) each bank is equi-weighted [13]. More formally, let (i) Nb 
be an input parameter modeling the number of banks, and (ii) i be 
an index ranging from 0 to Nb – 1, the i-th bank bi, for each i in 
{0, 1, …, Nb – 1}, is defined as follows: 
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such that (i) N is the desired cardinality of histograms, and (ii) Si 
is defined as follows: 
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Finally, in step (s.3), in order to obtain a numeric value that 
measures the degree of similarity between two buckets Bi and Bj, 
we apply the Mahalanobis metrics to their NBT-transformed 
histogram-based representations, ))(( i

T BH   and ))(( j
T BH  , 

respectively (denoted hereinafter as 
iH~  and 

jH~ , respectively). 

Given 
iH~  and 

jH~ , the Mahalanobis metrics m(
iH~ , 

jH~ ) is 

defined as follows [2]: 

     jiHHjiji HHHHHHm
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~~~~~,~ 1
~,~    (16) 

where: (i)  denotes the matrix transposition operator, and (ii) 

ji HH ~,~  denotes the covariance matrix between 
iH~  and 

jH~ , 

which, in turn, is defined as follows: 
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such that: (i) E(f(x)) is the expected value of the function f(x), 
defined as:  

x
xPxfxfE )()())(( , where P(x) is a given 

probability density function; (ii)  lHi
~  denotes the value 

associated with the l-th bucket of 
iH~ ; (iii) (Bi) denotes the 

statistical mean of Bi (see Section 3). 

8. COMPUTING THE FINAL 
PARTITIONED REPRESENTATION OF 
DATA CUBES 
In the fourth step, the LCS-Hist build algorithm computes the 
final partition ФT by extracting from ФB a sub-set of buckets 
having the following properties: (i) buckets in ФB storing 
redundant (i.e., too similar) information are not retained in ФT; 
(ii) if a bucket Bi in ФB is not retained in ФT, there must exist a 
bucket Bj in ФT such that θ(Bi, Bj) ≤ , being  the similarity 
function (see Section 7) and  the similarity threshold (see 
Section 4); (iii) the size of ФT must not exceed the given space 
budget G, i.e. the total amount of storage space available for 
housing LCS-Hist. 

As highlighted in Section 4, in our framework the problem 
underlying step four is formulated and solved in the vest of an 
ILP problem, similarly to what done with the problem of 
computing the partition ФR of the input data cube A addressed in 
the step one of our algorithm (see Section 5). 
Let us (i) assign an index i to each bucket Bi in ФB, and (ii) denote 
as I(ФB) the set of all such indices on buckets. Furthermore, we 
introduce |ФB| decision variable xi, one variable for each bucket Bi 
in ФB, defined as follows: 
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and |ФB| × |ФB| coefficients Θi,j, defined as follows: 
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Bi and Bj being the i-th and j-th buckets of ФB, respectively. 
Finally, let Si denote the storage space needed for housing the 
bucket Bi. 
Given these theoretical tools, the problem underlying step four  of 
the LCS-Hist build algorithm can be formulated and solved as 
follows: 
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wherein: (i) function (ℓ.0) is the objective function to be 
minimized (the sum of the variances of buckets retained in ФT); 
(ii) constraint (ℓ.1) imposes that ФT does not exceed the given 
space budget G; (iii) constraint (ℓ.2) imposes that, among all 
buckets that are similar one to another, at least one bucket is 
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retained in ФT; finally, (iv) constraint (ℓ.3) imposes that decision 
variables xi must be binary-valued (i.e., either 0 or 1). 
It should be noted that, in order to have a non-empty feasible 
region for the above ILP problem, the value of the parameter G 
set as input to instances of such problem must belong to a proper 
validity range. Without any loss of generality, we highlight that 
there exists a correlation between this value and the value of the 
similarity threshold . In particular, if we lower  with the aim of 
refining the similarity detection process and consider two buckets 
to be similar if they have a high degree of similarity, then the 
value of G must belong to a range whose bounds have “big” 
values. On the contrary, if we relax this assumption and consider 
a more soft similarity condition, i.e. we higher  with the aim of 
considering two buckets similar if they have a low degree of 
similarity, then the value of G must belong to a range whose 
bounds have “small” values. 

Finally, it is clear that computing the histogram LCS-Hist is a 
resource-intensive task. The counterpart to this aspect is 
represented by a higher capability of effectively and efficiently 
compressing massive high-dimensional data cubes with respect to 
traditional histogram-based data cube compression approaches, at 
a provable degree of accuracy of retrieved approximate answers. 
However, as highlighted throughout the paper, LCS-Hist is built 
in an off-line manner, similarly to other data cube maintenance 
(and update) operations occurring in conventional OLAP server 
platforms, thus determining a transparent-for-the-application 
process. The complexity analysis of the LCS-Hist build algorithm 
would merit a specialized research effort, which is outside the 
scope of this paper. However, to give insights, the most resource-
intensive part of the algorithm is represented by the first step, 
where the initial raw partition of the input data cube is computed 
by means of a dynamic programming procedure. 

9. EXPERIMENTAL RESULTS 
In order to test the performance of our proposed compression 
technique, we conducted an extensive series of experiments on 
several classes of data cubes. Ranging the input parameters (such 
as dimension number, sparseness coefficient etc) is the major 
benefit coming from using synthetic data cubes instead of real-life 
ones. On the other hand, experiments on real-life data sets are 
useful to complete the overall assessment of any data-intensive 
technique like ours. In our experience, experiments on real-life 
data cubes have exposed observations similar to those of synthetic 
ones, so that in this Section we present experimental results on 
synthetic data cubes. Beyond space limitation, this choice is, 
above all, motivated by the fact that, as highlighted in Section 1, 
in our research we consider the class of complex histogram-based 
data cube compression techniques, so that, being more 
“customizable”, synthetic data cubes are more suitable to stress 
the performance of (complex) techniques depending on several 
building parameters rather than real-life ones that, on the 
contrary, cannot be customized easily. 
Specifically, we engineered two kinds of synthetic data cubes: 
CVA and SKEW. In the first kind of data cubes, data cells are 
generated according to a Uniform distribution defined on a given 
range [Lmin, Lmax], with Lmin  Lmax. In other words, for such data 
cubes the Continuous Value Assumption (CVA) [5], which 
assumes that data cells are uniformly distributed over the target 
domain, holds. On the contrary, in the second kind of data cubes, 

data cells are generated according to a Zipf distribution defined 
on a given parameter z, with z in [0, 1]. Furthermore, in both 
kinds of data cubes, the dimension number n is an input parameter 
that allows us to obtain different data cube “instances” having 
different values of dimensionality and size. Finally, to obtain 
close-to-real-life data cubes, we imposed a sparseness coefficient 
s equal to around 0.001, which is a widely-accepted setting for 
similar experimental experiences in approximate query answering 
against compressed data cubes (e.g., see [7]). 
As comparison, according to motivations given in Section 1, we 
chosen the following well-know-in-literature approximate query 
answering techniques: Min-Skew [1], GenHist [10] and STHoles 
[3]. To compare performance of LCS-Hist against those of 
comparison methods on a common basis, we imposed that all the 
techniques have the same space budget G for generating their own 
compressed representations of the target data cube. This aspect of 
our experimental analysis has been modeled by the compression 
ratio r, which is defined as follows: 

)(
)(

Asize
Hsizer   (21) 

such that: (i) size(H) is the size of the compressed representation 
H, and (ii) size(A) is the size of the target data cube A. For 
instance, r equal to 10 %, is widely recognized as a “reasonable” 
value for such kind of experiments (e.g., see [7]). Therefore, in 
our experimental analysis we set r to such a reference threshold. 
Furthermore, for each comparison technique, we tried our best to 
set the configuration of input parameters that respective authors 
consider the best in their papers, thus ensuring a fair experimental 
analysis. 
In our first kind of experiments, in order to study the accuracy of 
comparison techniques against average-sized data cubes, we 
considered the following data cubes: (i) CVA15, which is a fifteen-
dimensional CVA data cube defined on the range [40, 60], and 
occupying around 1.8 GB disk space; (ii) SKEW15, which is a 
fifteen-dimensional SKEW data cube defined on the parameter z 
= 0.5, and occupying around 1.9 GB disk space; (iii) CVA20, 
which is a twenty-dimensional CVA data cube defined on the 
range [70, 90], and occupying around 2.2 GB disk space; (iv) 
SKEW20, which is a twenty-dimensional SKEW data cube defined 
on the parameter z = 0.9, and occupying around 2.4 GB disk 
space. 
As regards the input of our experimental framework, we 
engineered the query population QS(A, v) which is composed by 
all the multidimensional range-SUM queries Q that can be 
defined on A by varying the query dimensional ranges and having 
a query selectivity ||Q|| equal to the v % of the entire volume of A, 
being v an integer parameter ranging on the interval [10, 100]. 
Formally, QS(A, v) is defined as follows: 
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As regards metrics, we considered the accuracy metrics defined 
by the Average Relative Error rel, whose definition is the 
following: 
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such that: (i) |QS(A, v)| denotes the cardinality of QS(v); (ii) Qk 
denotes the generic query belonging to QS(v); (iii) A(Qk) denotes 
the exact answer to Qk (i.e., the answer to Qk evaluated against A); 
(iv) )(~

kQA  denotes the approximate answer to Qk (i.e., the 
answer to Qk evaluated against the compressed representation H). 

 

Figure 6. Percentage variation of rel w.r.t. ||Q|| on data cube 
CVA15. 

 

Figure 7. Percentage variation of rel w.r.t. ||Q|| on data cube 
SKEW15. 

Experimental results presented in Figures 6-9 show that, with 
respect to the accuracy metrics, our proposed technique has 
generally performance comparable to those provided by the other 
comparison techniques, and better in some cases. 
In order to study the scalability and the space efficiency of our 
proposed technique, which are both two critical factors when 
dealing with massive high-dimensional data cubes, we carried out 
a second series of experiments on both types of synthetic data 
cubes (i.e., CVA and SKEW), still keeping r fixed to 10%, but 
ranging now the dimension number n of data cubes on the interval 
[15, 35]. This leads to the definition of the data cube classes CVAn 
and SKEWn, which differ from the previous classes (i.e., CVA and 
SKEW) for the fact that now the number of dimensions is an input 
parameter. On top of such classes, we obtained several data cube 
instances having a dimensionality higher than the one considered 
in the previous series of experiments. As regards the input query 
set, in order to take into account scalability and efficiency issues 
we considered a slightly modified version of the query population 

(22) in such a way as to generate a sub-set of queries against A 
larger than the one considered previously. This gives raise to the 
query population ),,(* AQ S

, which is defined as follows: 
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such that  and  are again input parameters. 

 

Figure 8. Percentage variation of rel w.r.t. ||Q|| on data cube 
CVA20. 

 

Figure 9. Percentage variation of rel w.r.t. ||Q|| on data cube 
SKEW20. 

In the second series of experiments, we fixed this query 
population, and varied the dimension number n of data cubes. 
From (24), the accuracy metrics (23) is slightly modified 
accordingly, as follows: 
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Experiments belonging to the second series are intended to 
compare the growth-in-space-complexity of our technique against 
the one of comparison ones, and in dependence on the increase of 
the number of dimensions of the target date cube. Indeed, from 
Figures 10-11 we observe that as the dimension number increases, 
the average approximation error of our technique becomes 
significantly smaller than the one of comparison techniques. 
Basically, this is due to the effectiveness of our bucket similarity 
detection technique that finally produces a substantial space 
saving by discarding similar buckets from the final partitioned 
representation of the input data cube. The saved space can 
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consequently be used to better represent (i.e., using a greater 
level of detail) worse-approximated regions of the data cube, thus 
obtaining a better “global” degree of approximation with respect 
to traditional approaches. This amenity ensured by LCS-Hist 
finally involves in a better scalability and a better efficiency on 
increasing-in-size-and-dimensionality data cubes, which are very 
popular in next-generation DW and BI systems. 

 

Figure 10. Percentage variation of *
rel  w.r.t. ||Q|| on data 

cube CVAn with  = 5 and  = 10. 

 

Figure 11. Percentage variation of *
rel  w.r.t. ||Q|| on data 

cube SKEWn with  = 5 and  = 10. 

10. CONCLUSIONS AND FUTURE WORK 
Starting from well-known limitations of traditional histogram-
based data cube compression techniques on massive high-
dimensional data cubes, in this paper we have presented a 
complex methodology that combines intelligent data modeling 
and processing techniques in order to tame the compression of 
such kind of data cubes, which are very popular in next-
generation DW and BI systems. 
We have formally presented all the tasks of the proposed 
methodology, along with theoretical formalizations of main 
problems arising in this approach. The result is represented by a 
complete framework that encompasses several points of 
innovation in the OLAP data cube compression research field, and 
the novel multidimensional histogram LCS-Hist. Another 
contribution of our work has been represented by a 
comprehensive experimental evaluation of accuracy, scalability 
and space efficiency of our technique in comparison with similar 
approaches. This evaluation has clearly demonstrated the benefits 
coming from applying LCS-Hist to DW and BI contexts 
characterized by massive sizes and high dimension numbers. 
Future work is mainly focused on multiple directions: (i) devising 
and testing different partitioning constraints, e.g. what happens if 

nested buckets are allowed? (ii) investigating the problem of 
efficiently handling data updates that can occur in the relational 
data sources alimenting the target data cube; (iii) embedding 
within the proposed framework probabilistic guarantees over the 
degree of approximation of the retrieved answers, following 
approximate query answering paradigms appeared in literature 
recently (e.g., [9]). 
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