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Urban Climatology Group, Department of Geography, Ruhr-University Bochum, Bochum, Germany

Since their introduction in 2012, Local Climate Zones (LCZs) emerged as a new

standard for characterizing urban landscapes, providing a holistic classification approach

that takes into account micro-scale land-cover and associated physical properties.

In 2015, as part of the community-based World Urban Database and Access Portal

Tools (WUDAPT) project, a protocol was developed that enables the mapping of cities

into LCZs, using freely available data and software packages, yet performed on local

computing facilities. The LCZ Generator described here further simplifies this process,

providing an online platform that maps a city of interest into LCZs, solely expecting

a valid training area file and some metadata as input. The web application (available

at https://lcz-generator.rub.de) integrates the state-of-the-art of LCZ mapping, and

simultaneously provides an automated accuracy assessment, training data derivatives,

and a novel approach to identify suspicious training areas. As this contribution explains all

front- and back-end procedures, databases, and underlying datasets in detail, it serves

as the primary “User Guide” for this web application. We anticipate this development

will significantly ease the workflow of researchers and practitioners interested in using

the LCZ framework for a variety of urban-induced human and environmental impacts.

In addition, this development will ease the accessibility and dissemination of maps and

their metadata.

Keywords: local climate zones, WUDAPT, google earth engine, urban form and function, web application

1. INTRODUCTION

Urbanization and climate change may be the two most important trends to shape global
development in the decades ahead. On the one hand, cities serve as engines of change, drive
economic progress and pull more people out of poverty than at any other time in history. On the
other hand, climate change could undercut all of this by exacerbating resource scarcity and putting
(vulnerable) communities at risk from a myriad of environmental challenges (e.g., heat waves,
droughts, floods, air quality, etc.) (Baklanov et al., 2018). The magnitude of this risk will increase in
the coming decades as it is predicted that global urban land will increase significantly (Chen et al.,
2020), and by 2050, almost 70% of the world’s population will be urban dwellers (UN, 2019). On
top, as earth’s climate will continue to change over the coming decades, projected global warming
and aggravated hydro-climatic extremes will hit urban centers especially hard, being a major threat
to the health and well-being of human populations and urban ecosystems (Costello et al., 2009).

Successful mitigation and adaptation to climate change will depend centrally on what happens
in cities, as urban areas house the majority of people, assets and infrastructure, and are responsible
for about 70% of the world’s energy-related CO2 emissions (Lucon et al., 2014). At the international
level, cities are becoming of increasing concern: the new United Nations Agenda and Sustainable
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Development Goals have a clear focus on urban resilience,
climate, and environment sustainability of smart cities. The
Intergovernmental Panel on Climate Change (IPCC) held its first
“cities and climate change” conference in 2018, and announced a
special report on cities which will be part of the panel’s seventh
assessment cycle (Bai et al., 2018). Finally, of the four challenges
identified by the World Meteorological Organization (WMO)
World Weather Research Program, two are urban related: high-
impact weather, including impacts in cities, and urbanization
(Creutzig et al., 2016; Masson et al., 2020).

Despite this new focus on cities as a critical scale for climate
change management, we know very little about most cities
on the planet—being generally ignorant of their extent, how
they are constructed and how they are occupied (Demuzere
et al., 2020a). First and foremost, climate-relevant urban data
consistent in coverage, scale, and content are needed to support
risk assessment and its management and to enable effective
knowledge transfer between cities. The right data at the right scale
are an essential prerequisite for developing fit-for-purpose urban
planning policies (Georgescu et al., 2015). A number of projects
have mapped the global urban extent at finer and finer detail
(e.g., Pesaresi et al., 2013; Corbane et al., 2017; Esch et al., 2017;
Gong et al., 2020), but these efforts need to be complemented
by a wider range of information-rich intra-urban classes that
describe different types of urban land covers and land uses: the
Local Climate Zone (LCZ) typology is a good example of such
classification scheme (Stewart and Oke, 2012; Demuzere et al.,
2020a; Reba and Seto, 2020).

Local Climate Zones refer to a classification system that
exists out of 17 classes, 10 of which can be described
as urban (Figure 1). The system is originally designed to
provide a framework for urban heat island studies, allowing
the standardized exchange of urban temperature observations
(Stewart and Oke, 2012). The LCZ classes are formally defined as
“regions of uniform surface cover, structure, material, and human
activity that span hundreds of meters to several kilometers
in horizontal scale,” exclude “class names and definitions that
are culture or region specific,” and are characterized by “a
characteristic screen-height temperature regime that is most
apparent over dry surfaces, on calm, clear nights, and in areas
of simple relief” (Stewart and Oke, 2012). Its universality has
important advantages, as it allows a systematic comparability of
global intra- and inter-urban heat island studies (e.g., Bechtel
et al., 2019a), provides a common platform for knowledge
exchange and the description of urban canopy parameters in
urban ecosystem processes, and supports model applications,
especially for cities with little or insufficient data infrastructure
(Stewart and Oke, 2012; Ching et al., 2018; Brousse et al., 2019,
2020b; Demuzere et al., 2020a; Varentsov et al., 2020).

In the early 2010s, Bechtel (2011) and Bechtel and Daneke
(2012) first proposed mapping entire cities into Local Climate
Zones. This procedure was formalized by Bechtel et al. (2015),
relying on an “off-line” workflow that integrates training areas
(TAs, a set of LCZ labeled polygons) and Landsat 8 (L8) imagery
within the SAGA software package (Conrad et al., 2015) over a
limited spatial domain. More specifically, each TA is identified
using Google Earth images aided by the visual and numerical

information provided in Stewart and Oke (2012). The TA dataset
is then used to extract spectral information from L8 images,
which in turn is used in a supervised random forest classifier
to categorize the entire region of interest into LCZ types. This
procedure was afterwards adopted by the World Urban Database
and Access Portal Tools (WUDAPT) community project to
create consistent LCZ maps of global cities (Ching et al., 2018).

While this framework is valuable (currently ∼150 cities
mapped), it will not result in a database that could support
urban decision-making globally in a reasonable time frame.
Therefore, Demuzere et al. (2019b,c, 2020a) developed a number
of strategies to expand LCZ coverage rapidly. The first recognizes
that much of the information contained in TA data for one city
is transferable to other cities for which no TA data is available.
The second employs Google’s Earth Engine (EE)—a cloud-based
platform for planetary-scale analysis (Gorelick et al., 2017)—
to use its computational power, access to a range of geospatial
datasets (Landsat, Sentinel, and others) and a large number of
predefined algorithms. Among others, this cloud-based approach
resulted in high-resolution Local Climate Zone maps for global
cities, Europe and the continental United States of America
(Bechtel et al., 2019a,b; Demuzere et al., 2019a,b,c, 2020a,b;
Brousse et al., 2020a).

The LCZ Generator web application described here further
simplifies this process, as it provides an online platform that
maps a city of interest into LCZs, solely expecting a valid TA
file and some metadata as input. The application integrates
all of the above-mentioned developments and procedures, and
simultaneously provides an automated accuracy assessment, TA
data derivatives and a novel approach to identify suspicious TAs.
As this contribution explains all front- and back-end procedures,
databases and underlying datasets in detail, it serves as the
primary “User Guide” for this web application.

2. LCZ GENERATOR DESIGN

The LCZ Generator web application consists out of three major
steps (Figure 2). In a first step, personal and training information
needs to be submitted via the web application (section 2.1). Upon
successful submission, the LCZ classification and quality control
is launched in the back-end, to produce a quality-controlled
LCZ map, metadata statistics, and labels for suspicious polygons
(sections 2.2 and 2.3). In a third and final step, compressed results
are sent to the user via e-mail, and simultaneously added to the
online submission table (section 2.4). Each of these steps are
discussed in more detail in the following sections.

2.1. User Input
When accessing the LCZ Generator, the user is directed to a
submission form that consists out of two sections: personal
information and TA information (Table 1). The personal
information consists out of the author’s first and last name and
e-mail address. The name information refers to the primary
author of the TA file, which can be acknowledged in case it is
used by others. The e-mail is required since the results of the
LCZ Generator are sent via e-mail. If the author consents, the
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FIGURE 1 | Urban (1–10) and natural (A–G) Local Climate Zone definitions (Stewart and Oke, 2012; Demuzere et al., 2020a).
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FIGURE 2 | The LCZ Generator flowchart.

TABLE 1 | Overview of the front-end input fields.

Field Explanation

Personal information

First Name* First name of the author of the TA set

Last Name* Last name of the author of the TA set

E-mail Address* Author e-mail address. Required, since results are send by e-mail.

TA information

Continent* Drop down menu listing seven continents: Africa, Asia, Europe, North America, Oceania, South America

Country* Drop down menu with the world’s countries

City name* Official name of the city to be mapped.

Upload file* Button to upload a Keyhole Markup Language (.kml) file or its zipped version (.kmz). The back-end expects a file

with a format similar to WUDAPT’s official TA template1.

Date* Date for which the TA polygons are representative

Reference Reference for TA file:

- DOI of published paper if available

- if not, full reference including link that points to the online resource

- blank in case no reference is available

Remarks Additional information on potential co-authors for the TA file (firstname, lastname) or any other information that

supports the interpretation of the TAs.

Fields denoted with * are required.

author’s first and last name are displayed in the publicly accessible
submission table and factsheet (see section 2.4).

The second section of the submission form queries about the
TA file. A user can select the continent and country via a drop-
down menu, and provide the name of the city of interest. The
date field refers to the date for which the training polygons are

representative. This is not necessarily the date on which the TA
file is created, but rather the date of the imagery (e.g., in Google
Earth, see Bechtel et al., 2015) on which the labeled TAs are
developed. The non-required “Reference” and “Remarks” fields
allow the user to provide additional metadata about the TA file.
The former can be the Digital Object Identifier (DOI) in case the
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TA set is published in a (peer-reviewed) paper, a reference to an
online resource, or left blank if none of the previous are available.
The latter allows free text and can e.g., be used to list additional
authors that contributed to the creation of the TA file, or any
other information that is relevant to understand the content of
the TA file.

Key to the submission is the TA file itself, that can be uploaded
via a button and can have any name. Yet upon submission, a
file-check is done to make sure it has not been uploaded before
and is compatible with the remainder of the LCZ Generator.
First of all it is important that the file extension is .kml or .kmz
[Keyhole Markup Language (.kml) or its zipped version (.kmz)
respectively]. In case of .kmz, the file is unzipped to .kml. Second,
it is checked whether the TA file can be read, and contains one
or more LCZ folders, as provided in the default WUDAPT LCZ
.kml template1. This strategy is chosen as users can provide any
label to a LCZ class (e.g., “LCZ 2a,” “compact midrise 1,” “not
sure about this one,” . . . ), making it difficult for the application
to assign an appropriate LCZ label required for the classification.
If folders are available, the folder names are used to rename
their underlying polygons. Third, if present, empty polygons
are removed (e.g., “Style Place Holders” that were not deleted
from the .kml template). Fourth, each polygon is provided with
a unique ID, which is required to perform the automated TA
quality control (see section 2.3). Finally, also the size of the region
of interest (ROI) is checked. The ROI is defined as the outer
extent of the TA polygons, currently with an additional buffer on
all sides of 10 km. In order to maintain computational efficiency,
the maximum allowed ROI size is currently set to 2.5◦ x 2.5◦.

If any of the above checks fail, a red-framed message is
returned to the user upon submission, instructing about ways
to solve the issue. If all tests pass, a green-framed message is
returned, and the LCZ Generator is launched in the back-end.

2.2. LCZ Classification and Quality Control
Before the TAs are used in the classification procedure, they
undergo a final pre-processing step: the surface area of large
polygons (>1.5 km2) is reduced to a radius of approximately
350 m, in line with Demuzere et al. (2019b,c, 2020a) and the
minimum allowed surface area described in section 2.3. These
large polygons typically represent homogeneous areas such as
water bodies and forests, a characteristic that is neither needed
nor wanted, as it leads to more imbalanced TA data and
computational inefficiency of the classifier.

In addition to the TAs, one needs earth observation data and a
supervised classifier (Bechtel et al., 2015). The default WUDAPT
workflow relies on Landsat 8 data as input to the random forest
classifier, embedded as an “LCZ classification tool” in SAGA GIS
(Breiman, 2001; Bechtel et al., 2015; Conrad et al., 2015). Yet here,
the LCZ Generator builds further upon the findings of Demuzere
et al. (2019b,c, 2020a), Brousse et al. (2020a), in which additional
earth observations are used, in combination with the TAs, as
input to EE’s implementation of the random forest classifier.

1http://www.wudapt.org/wp-content/uploads/2020/08/
WUDAPT_L0_Training_template.kml

TABLE 2 | Earth observation input features currently available for the LCZ

Generator.

Sensor Band / Ratio / Indicator Reference

Landsat 8 Median composites for B2 (red), B3

(green), B4 (red), B5 (Near infrared), B6/7

(Shortwave infrared 1/2), B10/11 (Thermal

infrared 1/2)

See Demuzere et al.

(2019b) for details.

Median composites for BCI, NDBaI, EBBI,

NDWI, NDBI, NDVI

10 and 90th percentile composites for

NDVI

Sentinel 1 Single co-polarization (VV), dual-band

cross-polarization (VH), and their ratio

(VV/VH)

See Demuzere et al.

(2019b) for details.

Mean and standard deviation of VV and

VH combined

VVH indicator Li et al., 2020

Sentinel 2 Median composite Red edge bands (B5,

B6, B7)

Forkuor et al., 2018

Median composite NDVI Red Edge 1 and

2

Forkuor et al., 2018

Median composite S2REP, CSI, and SEI Kaplan and Avdan,

2018; Sun et al.,

2019

Other Global Forest Canopy Height (GFCH) See Demuzere et al.

(2019b) for details.

DTM, DEM, DSM

Landsat 8 and Sentinel 1/2 composites are derived over the period 01-01-2017 to 31-12-

2019. BCI, Biophysical Composition Index; NDBaI, Normalized Difference Bareness Index;

EBBI, Enhanced Built-Up and Bareness Index; NDWI, Normalized Difference Wetness

Index; NDVI, Normalized Difference Vegetation Index; S2REP, Sentinel-2 Red-Edge

Position Index; CSI, Combinational Shadow Index; SEI, Shadow Enhancement Index;

DTM, Digital Terrain Model; DEM, Digital Elevation Model; DSM, Digital Surface Model.

Currently, a total of 33 input features are available globally, on
a 100 m resolution, and are stored in EE’s online WUDAPT asset
folder (3 TB of data) (Table 2). They consist out of 16 features
derived from Landsat 8, 5 features from Sentinel-1, 8 features
from Sentinel-2, and four additional features reflecting terrain
and forest canopy height. Note that the list of input features used
in Demuzere et al. (2019b, 2020a) is expanded with Sentinel-2
red edge bands to improve the mapping of wetlands (Forkuor
et al., 2018; Kaplan and Avdan, 2018; Brousse et al., 2020a),
and a Sentinel-2-based combinational shadow index (CSI) and
shadow enhancement index (SEI) median composite (Sun et al.,
2019). The system is designed in such a way that, whenever
additional, new or improved global earth observation datasets
become available, they can easily be added to the asset folder and
activated in the classification procedure.

To ensure the quality of the resulting LCZmap, quality control
is a vital step (Verdonck et al., 2017). Hence, an automated cross-
validation approach using 25 bootstraps is applied (Bechtel et al.,
2019a). In each bootstrap, 70% of the TA polygons are used
to train and 30% to test; the polygons are selected by stratified
(LCZ type) random sampling, maintaining the original LCZ
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TABLE 3 | File structure and contents of the compressed (.zip) results send to the user via e-mail.

Folder File(s) Explanation

.

ID_factsheet.html Webpage containing visual summary of the results (section 2.3)

ID.tif Geotif with three bands: “lcz,” “lczFilter,” and “classProbability” (section 2.2)

qgis_lcz_colormap.txt /

arcgis_lcz_colormap.lyr

Colormaps to be used in QGIS / ArcGIS

data/

ID.kml Original TA file (converted to .kml in case of .kmz) (section 2.1)

ID_TA_statistics.csv TA geometry statistics (section 2.3)

ID_auto_qc_polygon.shp TA auto quality control (polygons) (section 2.3)

ID_auto_qc_point.shp TA auto quality control (points) (section 2.3)

ID_cm_average_formatted.csv Average formatted confusion matrix (section 2.2)

figures/

ta_freq.png Figure with number of TAs (section 2.3)

lcz_map.jpg Figure displaying final filtered LCZ map (section 2.2)

lcz_oa.jpg Accuracy boxplot figure (section 2.2)

factsheet_files/ Source files required to render the ID_factsheet.html page

ID refers to the unique identifier given to each submission (section 2.5.1).

class frequency distribution. This procedure is repeated 25 times
allowing us to provide confidence intervals around the accuracy
metrics. In addition, this approach also allows the creation of a
probability map, which indicates how often (in %) the mode was
mapped in the iterative procedure.

The resulting LCZ map provided to the user is based on all
TAs (100% of the TA polygons) and input features. A filtered
version is also provided using the morphological Gaussian filter
described in more detail in Demuzere et al. (2020a). This
is preferred over the WUDAPT’s traditional majority post-
classification, as it accounts for the distance from the center
of the kernel and differences in the typical patch size between
classes. For example, linear features like rivers are typically
removed by the majority filter. The LCZ map, its Gaussian-
filtered version and the probability map are provided to the
user as a single .tif with three bands: “lcz,” “lczFilter,” and
“classProbability,” respectively.

The accuracy metrics used follow previous work (see
Demuzere et al., 2020a, and references therein): overall accuracy
(OA), overall accuracy for the urban LCZ classes only (OAu),
overall accuracy of the built vs. natural LCZ classes only (OAbu),
a weighted accuracy (OAw), and the class-wise metric F1. The
overall accuracy denotes the percentage of correctly classified
pixels. OAu reflects the percentage of classified pixels from the
urban LCZ classes only, and OAbu is the overall accuracy of
the built vs. natural LCZ classes only, ignoring their internal
differentiation. The weighted accuracy (OAw) is obtained by
applying weights to the confusion matrix and accounts for the
(dis)similarity between LCZ types (Bechtel et al., 2017, 2020). For
example, LCZ 4 is most similar to the other open urban types
(LCZs 5 and 6), leaving these pairs with higher weights compared
to e.g., an urban and natural LCZ class pair. This results
in penalizing confusion between dissimilar types more than
confusion between similar classes. Finally, the class-wise accuracy

is evaluated using the F1 metric, which is a harmonic mean of the
user’s and producer’s accuracy (Verdonck et al., 2017). Accuracy
results are provided to the user in two ways: average confusion
matrix over the 25 bootstraps (_cm_average_formatted.csv),
including Overall, User and Producer Accuracy (in %) and a
boxplot figure (_cm_oa_boxplot.jpg) depicting the range of all
accuracy metrics over all bootstraps.

2.3. Automated TA Quality Control
Sections 2.1 and 2.2 are at the core of the LCZ Generator
application, explaining how a user’s TA dataset combined with
a wealth of earth observation input feeds the random forest
classifier, resulting in a quality-controlled LCZ map. Yet an
additional automated 3-step TA quality control is added, that
aims to facilitate the revision of the original TA submission and
resulting LCZ map, since previous work by Bechtel et al. (2017,
2019a) and Verdonck et al. (2019) highlighted that multiple
iterations can significantly improve the overall accuracy of the
LCZ map, and are thus recommended.

Stewart and Oke (2012) suggested that the typical horizontal
scale of a Local Climate Zone—reflecting an area of uniform
surface cover, structure, and material—spans hundreds of meters
to several kilometers. In addition, the number of TAs selected
for each zone can be an indicator for zones which are hard to
classify, and the WUDAPT protocol suggests to digitize compact
and simple TA sets, characterized by a shape ratio close to
one (Bechtel et al., 2019a; Verdonck et al., 2019). Therefore,
a summary table (_TA_statistics.csv) is added to the output,
providing, for each available LCZ class, the number of polygons
(Count, C), the average and total surface area (Avg. / Total
area, km2), the perimeter (km), the shape (-), and number of
vertices (-).

Subsequently, a 3-step automated quality control (QC) is
applied to label suspicious TA polygons. In a first step (qc_step1),
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FIGURE 3 | Factsheet example for Saint Petersburg. Note that in reality, the factsheet also contains a “Terms of Service” and “Attribution” section (see section 2.5.4).

These sections are omitted here for clarity.
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polygons with a surface area below 0.04 km2 (too small)
or a shape ratio 3 (too complex shape) are flagged. In a
second step (qc_step2), the non-parametric density-based spatial
clustering of applications with noise (DBSCAN) (Ester et al.,
1996; Schubert et al., 2017) is used to identify whether the
average spectral value of a polygon of LCZ class i is considered
as an outlier compared to the average spectral values of all
other polygons of that class i. The method requires two
parameters: ǫ, which is the maximum distance between two
samples for one to be considered as in the neighborhood of
the other, and MinPoints, the number of minimum samples in
a neighborhood for a point to be considered as a core point.
Here, ǫ is set to 0.3 and MinPoints to Ci/10, based on a
number of iterations and expert judgement. Since this method
is efficient on large, multi-dimensional datasets, it is applied
simultaneously on all earth observation input features discussed
in section 2.2.

A third and final QC step (qc_step3) considers all individual
pixel values of all polygons in each LCZ class i compared
to the polygon average approach from qc_step2. The same
parameter values for ǫ and MinPoints are used, and the
procedure is also applied on all available input features
simultaneously. The pixel’s latitude and longitude coordinates
here serve as an unique identifier to tag suspicious points
within polygons.

If polygons are identified as suspicious, the user receives
two shapefiles containing the results of the automated quality
control procedure. The first shapefile (ID_auto_qc_polygon.shp)
contains all polygons flagged as suspicious in at least one of
the tree steps. Since qc_step3 returns points, each polygon
that intersects with at least one of these flagged points is
added. All shapes in this file contain additional metadata fields
characterizing their geometry (area, perimeter, shape, vertices)
and a boolean value for each of the three QC steps: True
(1) / False (0) in case a TA passed / failed one of the three
QC tests. The second shapefile (ID_auto_qc_point.shp) contains
the individual flagged points, which might provide additional

insights into why certain polygons are flagged as suspicious.
In case no polygons or points are labeled as suspicious,
the same files are created yet only contain a point with a
dummy identifier and a geometry indicating the center pixel of
the ROI.

2.4. Generated Output
If the LCZ Generator successfully completes all processes, the
user is notified via e-mail, that contains a compressed (.zip)
archive as attachment. This archive (Table 3) contains the various
outputs described in sections 2.2 and 2.3.

The output is listed in an online search- and sortable
submission table including information about the city,
country, continent, date of the submission, overall
accuracy, and a button (Show Factsheet) linking to the
factsheet that provides a visual summary of all results.
In case a user did not agree to display his/her name
(see section 2.1), the Author field is left blank in both
the submission table and factsheet. By checking one or
multiple entries using the left-hand side check-boxes of the
submission table, one can also download the corresponding
.zip archive(s).

The submission table is structured as follows. If a user
submitted multiple TAs for one city, only the submission having
the best overall accuracy is displayed. In case multiple users
submit TAs for the same city, only the best result is displayed, but
this time for each individual user. A button (Show all submissions)
allows the user to view and download all submissions including
those where one author submitted multiple versions of TAs
for the same city. This structure ensures that only results with
the best possible quality are directly available for download,
but also that this web application can be used for learning
purposes and improving the TA creation technique without
adding multiple previous submissions of minor quality to
the table.

In the event the LCZ Generator fails after successfully
submitting the TAs, the user is notified via e-mail as well. In this

FIGURE 4 | Training areas for (A) Bamako, (B) Saint Petersburg, and (C) Havana. Color scheme as in Figure 1.
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FIGURE 5 | Information contained in the geotif output file, for all cities (columns): final LCZ map (Top), final filtered LCZ map (Middle), and probability map (Lower).

case, the developers automatically receive a message, and can use
the log stored in the back-end to solve the issue.

2.5. Technical Information, Terms of
Service, and Attribution Guidelines
2.5.1. Database
All data including the author and submission information, as
well as the processing outputs are stored with a unique ID in a

PostgreSQL database. The TAs are stored in a PostGIS table as
individual polygons.

2.5.2. Versioning
The LCZ-Generator code will be versioned according to
semantic versioning2: breaking changes to the application
programming interface (API)—including changes to the input
features (Table 2)—will be indicated by an incremented major

2https://semver.org/
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FIGURE 6 | Accuracies for (A) Bamako, (B) Saint Petersburg, and (C) Havana. The purple colors in the box plots refer to the overall accuracy metrics, while the LCZ

colored boxes reflect the class-wise F1 metric. Mean and median are depicted by a white dot and black line respectively, boxes indicate the interquartile range and

whiskers the 5 to 95th quartile range.

version. After the release of version 1.0.0, and for each next
release, all changes will be described in a changelog, available
on the issue page (section 2.5.3). The version used for creating
each LCZ map is stored for each submission and included in the
corresponding factsheet.

2.5.3. Support
Guidance in how to use the LCZ Generator is provided via
the “Getting started” and “Frequently Asked Questions (FAQ)”
pages, accessible via the navigation bar of the web application.
If users run into issues while using the LCZ Generator, they
can open a public issue on the application’s Github issue
tracker3. In case security bugs are found, we ask the user to
not create a public issue but instead reach out to us directly via
lcz-generator@rub.de.

2.5.4. Terms of Service and Attribution Guidelines
The web application uses the CC BY-SA 4.0 license4 for
all submissions made. The terms of service5 need to be
accepted upon submission. In addition, attribution guidelines6

are provided on how to acknowledge the materials produced
by the LCZ Generator, the authors of the TAs or any of
the underlying methods used in the Generator’s classification
procedures. This information is also embedded at the end of the
factsheet (see also section 3.1).

2.6. Test Samples
In this paper, the performance of the LCZ Generator web
application is demonstrated via three new TA samples, compiled
by three student assistants at the Ruhr University Bochum
(Germany). The samples are from different urban ecoregions—
which stratify urban areas based on general climate and

3https://github.com/RUBclim/LCZ-Generator-Issues
4https://creativecommons.org/licenses/by-sa/4.0/
5https://lcz-generator.rub.de/tos
6https://lcz-generator.rub.de/attribution

vegetation characteristics, regional differences in urban topology,
and the level of economic development (Schneider et al., 2010)—
and include Saint Petersburg (Russia, “Temperate forest in Asia”),
Bamako (Mali, “Tropical, sub-tropical Savannah in Africa”), and
Havana (Cuba, “Tropical broadleaf forest in South America”).
The TAs are a first version, and did not undergo a manual review
by an experienced operator (Bechtel et al., 2019a).

3. RESULTS

This section presents and discusses all contents of the resulting
.zip archive in more detail. Note that all LCZ results in this paper
are displayed with labels 1–10 for the urban classes, and A to
G for the natural classes, in line with Stewart and Oke (2012)
(Figure 1). However, all underlying files output by the LCZ
generator use integers, with labels 11 to 17 for the natural classes.

3.1. Submission Table
Figure 3 provides a factsheet example for the city of Saint
Petersburg. It summarizes author, submission, TA and LCZ
map & accuracy information. In addition to the author’s
input discussed in section 2.1, the submission information also
contains the submission date, the software version, and the ID.
The software version tag is linked to the software’s version in
GitHub, so that at any point in time it is clear with which code and
parameters each submission is produced (section 2.5.2). The TA
information section lists the content of the ID_TA_statistics.csv,
that is also linked. In addition, a figure is added that displays the
number of TAs per available LCZ class. This figure is stored as
ta_freq.png. Finally, the LCZ map & accuracy section provides
quick access to all four overall accuracy scores, together with an
image of the actual filtered LCZ map (stored as lcz_map.jpg).
Hyperlinks to all underlying data files are provided as well, e.g., by
clicking the “boxplot figure with accuracies” link, the author can
directly see the full accuracy assessment, including information
from all bootstraps and class-wise F1 scores.
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FIGURE 7 | All TA polygons tagged as suspicious during the first quality control step, for Saint Petersburg. Color scheme as in Figure 1.

3.2. LCZ Map and Accuracies
Feeding the random forest in a bootstrapping manner with
the submitted TAs (Figure 4) and the earth observation input
features (Table 2) results in a raw and filtered LCZ map, a
pixel probability map (Figure 5) and overall accuracy metrics
(Figure 6). Combined with the information from the factsheet
(Figure 3) and the ID_TA_statistics.csv file, one can directly
assess the amount and distribution of TA polygons. For
Saint Petersburg, a total of 310 TA polygons are available,
with the highest / lowest frequencies for LCZ 6 (Open

lowrise) and 14 (Low plants) / LCZ 9 (Sparsely built) and 10
(Heavy industry).

The raw and filtered LCZ maps (Figure 5) differ mainly in
their fine-scale heterogeneity: as single pixels do not constitute
an LCZ class, the Gaussian filter procedure is able to remove this
granularity. Since the Gaussian parameters (standard deviation
and kernel size) are currently derived by experts, and expected
to differ between cities and continents (Demuzere et al., 2020a),
they deserve further attention and potential adjustments in future
versions of the LCZ Generator. The probability maps in Figure 5
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FIGURE 8 | A selection of TA polygons tagged as suspicious during the second quality control step, for Bamako. Color scheme as in Figure 1.

indicate how often (in %) themode LCZ class wasmapped during
the bootstrapping procedure. In general, areas covered by TAs
are often mapped as the same LCZ class more than 80% of the
time (>20/25 iterations). Areas at the boundaries of the ROI, e.g.,
southern edge of theHavana domain, or east of Bamako, are often
characterized by lower probability scores. Such information helps
authors to identify where confusion exists in their ROI.

Finally, the accuracy of the lcz map can be assessed using
the accuracy metrics discussed in section 2.2 and displayed in
Figure 6. For all three cities, the average overall accuracy metrics
reach values above 0.5, a minimum accuracy level proposed by
Bechtel et al. (2019a) to pass the automated quality control.
Lowest class-wise F1 metrics can be seen for LCZs 9 and 10
in Saint Petersburg (corresponding to the LCZs with the lowest
TA polygon frequencies), and LCZ 6 in Havana. Note that
no F1 metric is available for LCZ 7 in Bamako, even though
one TA polygon is available in the TA set (Figure 4A). This is
because a single polygon does not suffice to perform a quality
assessment due to the stratified random sampling of the TAs
in training and test data. This is in line with the results of
the HUMan INfluence EXperiment (HUMINEX, Bechtel et al.,
2017; Verdonck et al., 2019) indicating that, when the number of
TAs for a specific zone is low, the representativeness of this TA

might be low, leading to lower accuracies. This is often caused
by (inexperienced) authors spending a lot of time searching for
TAs for all seventeen LCZs, even though some of the zones are
not large enough or occur too sparsely in the city to constitute
a LCZ.

3.3. Automated TA Quality Control
In total, 36 (25%), 80 (25%), and 27 (16%) polygons are flagged as
suspicious in at least one of the quality control steps, for Bamako,
Saint Petersburg, and Havana, respectively. Some examples from
all cities and for each quality control step are described in more
detail below.

Figure 7 displays all polygons from Saint Petersburg flagged
as suspicious during the first quality control step. Two polygons
are flagged because they have a surface area below the 0.04 km2

threshold (Figures 7C,H), the remainder because of their shape
exceeding the maximum allowed value of 3. The latter polygons
typically correspond to linear (narrow and very long) shapes,
often pointing to rivers (LCZ 17, Figures 7E,G,I) or complex
shapes not adhering to the guidelines of digitizing simple block
shapes (Figures 7A,B). While these are not necessarily wrong,
complex shapes may lead to a suboptimal sampling of the satellite
input features, or may lead to a mixed spectral signature in
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FIGURE 9 | Normalized polygon-averaged spectral input values (gray dots), for all LCZ classes shown in Figure 8, for Bamako. Pink circles denote the mean over all

polygons, other markers in corresponding LCZ colors refer to the polygons shown in Figure 8.

case polygons are too narrow and/or are close to other land
covers/uses (Verdonck et al., 2019). More information on best
practices for digitizing TAs is available in Verdonck et al. (2019)
and on the WUDAPT webpage7.

Some examples for the second quality control step are shown
in Figure 8. They are all natural LCZ classes consisting out of
LCZ 11 (or A, Dense trees), 12 (or B, Scattered trees), 16 (or
F, Bare soil or sand) and 17 (or G, Water). The true color
RGB satellite information reveals that the dense tree polygon
(Figure 8A) might be closer to LCZ B (Scattered trees). This is
supported by the spectral profiles in Figure 9A, with e.g., lower
values for the forest canopy height (GFCH), and higher values for
Landsat’s red (L8_B4) and thermal infrared (L8_B10/B11) bands,
when compared to the expected spectral value space for all LCZ
11 polygons. For the LCZ 12 polygons (Figures 8B,C), the true
color satellite imagery reveals a rather heterogeneous landscape,
covered by patches of dense and scattered trees, agricultural
fields, bare soils, small settlements or sparsely built areas, and
a small (seasonal) river. The latter two are captured by the
higher than expected value for Landsat’s NDWI (L8_NDWI) and
a lower than expected enhanced built up and bare soil index
(L8_EBBI), where lower EBBI values refer to built-up areas (As-
syakur et al., 2012) (Figure 9B). The polygon in Figure 8D is
labeled as bare soil or sand, even though the man-made land
use pattern suggest this area to be farm land, which should
thus be labeled as LCZ 14 (or D, Low plants). This is also

7http://www.wudapt.org/create-lcz-training-areas/

visible from Landsat’s median, 10 and 90th percentile normalized
difference vegetation index values (L8_NDVI(_P10/_P90) being
higher than the expected LCZ 16 values (Figure 9C). Lastly, the
LCZ 17 polygons in Figures 9E,F represent two sections of the
Niger river, characterized by strong fluctuations in water levels
according to the rainy and dry seasons. Using the Global Surface
Water Explorer8 (Pekel et al., 2016) or Google’s timelapse tool9,
one can infer that these polygons are mapped in sections of the
river that are seasonal and thus only have water for some time
of the year. This is supported by the Landsat’s NDVI and NDWI
values for the LCZ 17 polygons (Figures 9D, 10): while all LCZ
17 polygons are sampling from the Niger river (Figure 4A), the
NDWI values for the polygons in Figures 8E,F are significantly
lower than those from the other polygons. The same but opposite
observation can be made for the NDVI values.

The third quality control step performs a similar analysis as
the second step, yet this time on the pixel level. Figure 11 displays
a selected number of polygons over Havana, together with the
pixels flagged as suspicious. The first polygon (Figure 11A)
is labeled as LCZ 9 (Sparsely built), reflecting the small or
medium-sized buildings widely spaced across a landscape with
abundant vegetation. Yet the polygon also includes a water
body large enough to be detected by the 100 m input feature
pixels. Visualizing the NDWI values of these pixels against e.g.,
the combined shadow index derived from Sentinel-2 (S2_CSI)

8https://global-surface-water.appspot.com/map
9https://earthengine.google.com/timelapse/
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FIGURE 10 | Average Landsat’s NDVI and NDWI values for all LCZ 17

polygons, for Bamako. Suspicious polygons from subplots E and F in Figure 8

are shown in red.

reveals the outlier position of these pixels (Figure 12A). A similar
analysis can be done for the other selected polygons: the LCZ 14
polygon in Figure 11B mostly constitutes agricultural land, yet
also contains a farm flagged as suspicious. The compact lowrise
LCZ 3 polygon in Figure 11C contains a park in the middle
surrounded by trees, being flagged as suspicious. Figure 11D
is labeled as LCZ 13 (Bush and scrub) even though it should
probably be LCZ D (Low plants). The flagged dots in this
case refer to areas with seasonal waters, which can again be
visualized using Google Earth’s historical imagery tool. Finally,
Figures 11E,F are two additional examples of compact lowrise
polygons. And even though some of the spectral signatures tend
to be outliers compared to all other pixel values for this LCZ
class (Figures 12E,F), it is not self-evident to pin-point the exact
reasons for the polygons to be flagged. In Figure 11E, a pixel is
flagged with abundant vegetation, yet elsewhere in the polygon
similar areas can be found that are not flagged. The polygon in
Figure 11F represents a homogeneous neighborhood in terms
of urban form, yet here the flagged pixel is on top of a large-
scale warehouse, potentially large enough to influence the pixel’s
spectral values with its different radiative characteristics.

4. DISCUSSION AND CONCLUSIONS

Since their introduction in 2012 (Stewart and Oke, 2012),
Local Climate Zones (LCZs) emerged as a new standard
for characterizing urban landscapes, providing a holistic
classification approach that takes into account micro-scale land-
cover and associated physical properties (Demuzere et al., 2020a).

This is reflected by the growing number of scientific publications
having “LCZ” or “Local Climate Zones” listed as keywords:
according to Web of Science, as of February 4 2021, a total
of 139 papers were published, 38 of them in 2020 alone. The
default LCZ mapping procedure, adopted as Level 0 (lowest
level of detail) by the WUDAPT grass-root effort, and relying
only on open-source data (Landsat 8) and software (SAGA
GIS, Conrad et al., 2015), was certainly instrumental to this
success (Bechtel et al., 2015; Ching et al., 2018). However, some
features of this default procedure inhibit global up-scaling in
a reasonable time, e.g., the need to download and pre-process
Landsat 8 data from the United States Geological Survey (USGS)
Earth Explorer, the processing of the LCZ classifier embedded
in SAGA GIS on your local computer, the unavailability of
an automated cross-validation, and the manual review by an
experienced operator before the data is made publicly available
(Bechtel et al., 2015, 2019a).

The LCZ Generator addresses these shortcomings, by
adopting well-tested and -documented cloud-based LCZ
mapping strategies using Google’s earth engine (Gorelick et al.,
2017; Brousse et al., 2019, 2020a,b; Demuzere et al., 2019b,c,
2020a,c; Varentsov et al., 2020). The result of this is an online
platform, that maps a city of interest into LCZs, solely expecting
a valid TA file and some metadata as input. The web application
simultaneously provides an automated accuracy assessment,
in line with the cross-validation procedure detailed in Bechtel
et al. (2019a). To date, this bootstrap-based accuracy assessment
was not available in the SAGA GIS context, often leading to
insufficiently robust accuracy assessments during the production
of LCZ maps (Verdonck et al., 2017). In addition, the novel
3-step TA quality control facilitates the revision of the original
TAs, allowing the user to revise the initial submission, and
re-submit to the LCZ Generator, as previous work highlighted
the importance of additional iterations (Bechtel et al., 2017,
2019a; Verdonck et al., 2019). Results in this study reveal for
example that users should be more careful when digitizing TAs
(e.g., compact shapes, scales, and borders), and should take into
account seasonal properties of the underlying land cover/use.
Note however that this TA quality control implementation is still
experimental, and was successfully tested on a limited number of
TA samples only. The LCZ Generator can assist in this respect
to gather more TA samples in order to populate a spectral LCZ
library across urban (eco)regions (Jackson et al., 2010; Schneider
et al., 2010; Demuzere et al., 2019c), enabling a better assessment
of spectral outliers.

The LCZ Generator should be considered as a dynamic
application, that will be updated whenever new scalable
mapping techniques and globally-available input features become
available. In case updates occur in the future, they will be
tracked via the software version number and described in the
changelog available on the Github Issue page. For example,
some successfully tested the use of object-based image analysis
(Collins and Dronova, 2019; Simanjuntak et al., 2019), others
obtained promising results using (residual) convolutional neural
networks (Qiu et al., 2019, 2020; Yoo et al., 2019; Liu and Shi,
2020; Rosentreter et al., 2020; Zhu et al., 2020). Yet to date, the
feasibility of such procedures for large-scale LCZ mapping has
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FIGURE 11 | As Figure 8, but for the third quality control step, for Havana. White circles refer to the centroids of the actual pixels flagged in this quality control step.

not yet been demonstrated (Demuzere et al., 2020a). Many others
have developed GIS-based approaches using datasets from e.g.,
city administrations or derived from crowd-sourced cartographic
services such as OpenStreetMap (Lelovics et al., 2014; Quan
et al., 2017; Samsonov and Trigub, 2017; Wang et al., 2018;
Hidalgo et al., 2019; Quan, 2019; Oliveira et al., 2020; Zhou
et al., 2020). The latter study also proposes an extension to
the default WUDAPT accuracy assessment, by integrating GIS
data (e.g., building footprints and heights, and pervious surface
fraction). While all these efforts are considered valuable, they
have one thing in common limiting their implementation into
the LCZ Generator: the underlying datasets are to date not
globally available.

We anticipate that the LCZ Generator will ease the
production, quality assessment and dissemination of LCZ maps
and related products. This easy-to-use and accessible online
platform should therefore continue to support researchers
and practitioners in using the LCZ framework for a variety
of applications, such as urban heat (risk) assessment studies
(Demuzere et al., 2020a, and references therein), climate
sensitive design and urban planning (policies) (Perera and
Emmanuel, 2016; Vandamme et al., 2019; Maharoof et al., 2020),
anthropogenic heat and building carbon emissions (Wu et al.,

2018; Santos et al., 2020), quality of life (Sapena et al., 2021),
multi-temporal urban land change (Vandamme et al., 2019;
Wang et al., 2019), and urban health issues (Brousse et al., 2019,
2020a). This development will in addition accelerate the key aim
ofWUDAPT, that is “to capture consistent information on urban
form and function for cities worldwide that can support urban
weather, climate, hydrology and air quality modeling” (Ching
et al., 2018, 2019). Examples of modeling systems currently
using LCZ information are the Surface Urban Energy and Water
Balance Scheme (SUEWS, Alexander et al., 2016), ENVI-met
(Bande et al., 2020), the urban multi-scale environmental
predictor (UMEP, Lindberg et al., 2018), MUKLIMO_3 (Bokwa
et al., 2019; Gál et al., 2021), COSMO-CLM and the WUDAPT-
TO-COSMO tool (Wouters et al., 2016; Brousse et al., 2019,
2020b; Varentsov et al., 2020), and the Weather Research and
Forecastingmodel (WRF, Brousse et al., 2016; Hammerberg et al.,
2018; Wong et al., 2019; Patel et al., 2020; Zonato et al., 2020).
While WRF currently uses the WUDAPT-to-WRF tool to ingest
LCZ information (Brousse et al., 2016), its next release expected
in spring 2021 should offer this compatibility by default (A.
Zonato, personal communication).

To conclude, and in line with the assessment of Creutzig
et al. (2019), we firmly believe that this LCZ Generator
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FIGURE 12 | Spectral values for all pixels in one LCZ class, corresponding to the subplots of Figure 11 (gray dots). Pixels flagged as outliers by DBSCAN are shown

in red. Remaining pixels from the pixel’s parent polygon are shown in green.

has the potential to become a key part in mainstreaming
and harmonizing urban data collection, upscale urban climate
solutions and effect change at the global scale.
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