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Abstract

In this paper, a supervised multi-class classification ap-

proach called Adaptive Selection of Information Compo-

nents (ASIC) is presented. ASIC has the facilities to (i)

handle both numerical and nominal features in a data set,

(ii) pre-process the training data set to accentuate the spa-

tial differences among the classes in the training data set to

reduce further computational load requirements, and (iii)

conduct supervised classification with the C-RSPM (Col-

lateral Representative Subspace Projection Modeling) ap-

proach. Experimental results on a variety of data sets have

shown that the proposed ASIC approach outperforms other

well-known supervised classification methods such as C4.5,

KNN, SVM, MLP, BN, RF, Logistic, and C-RSPM, with

higher classification accuracy, lower training and classi-

fication times, and reduced memory storage and processing

power requirements.

1. Introduction

Supervised classification is a fundamental component

in many data mining applications. For any classification

framework, in addition to high classification accuracy per-

formance, operational merits in terms of faster algorithmic

execution speed, lower requirements of memory and stor-

age, among others, are also crucial performance evaluation

measures. Unfortunately, most of the existing supervised

classification methods have difficulty in providing both sat-

isfactory classification accuracy and operational merits. In

particular, real-world applications usually involve a large

number of classes and/or features, and their computational

complexity typically increases correspondingly. Therefore,

advanced techniques to address this high dimensionality is-

sue to achieve operational merits is needed.

In the literature, techniques such as PCA (Principal

Component Analysis) [10] and MDA (Multiple Discrimi-

nant Analysis) have been widely employed to handle high

dimensionality issues. PCA is a linear transformation that

computes an orthogonal coordinate system for a data set

such that the greatest variance by any projection of the data

set comes to lie on the first axis (known as the first princi-

pal component), the second greatest variance on the second

axis, and so on. One of PCA’s most desirable features is

its provision of data dimensionality reduction capabilities,

which is especially useful in applications where the em-

ployment of high-dimensionality feature vectors is required,

such as in face recognition [14], SIMCA [23], RSIMCA [1]

and other applications [24]. After the execution of PCA,

different distance measures can be defined in the trans-

formed projection space to facilitate the classification task.

On the other hand, MDA adopts a perspective similar to that

of PCA, but can be used to define spatial patterns and to as-

sist in the meaningful interpretation of these patterns. In

[5], a probabilistic MDA approach, integrated with the Ex-

pectation Maximization (EM) framework, was proposed to

determine class discriminating features to improve classifi-

cation performance in content-based image retrieval. The

experimental results showed both an improved image re-

trieval precision and a reduced database search time. In an-

other study, a recursive partition tree was proposed where

MDA is applied to each local tree node to facilitate a faster
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tree structure search process [3]. In [13], an effective finger-

print classification method was proposed based on MDA,

where features were calculated from Gabor filtered images

and the derived feature vectors were classified into one of

five classes.

In this paper, a novel supervised multi-class classi-

fication approach called Adaptive Selection of Informa-

tion Components (ASIC) is proposed which incorporates

a WMCA/MDA-based data pre-processing method and

the effective C-RSPM (Collateral Representative Subspace

Projection Modeling) approach with the attempt to achieve

both favorable operational merits and high classification

accuracy. ASIC consists of two levels. The core of the

Global level is our proposed WMCA/MDA-based data pre-

processing method which includes the WMCA (Weighted

Multiple Correspondence Analysis) and MDA techniques.

The main functionality of the WMCA component is to

broaden ASIC’s generality by facilitating it with the ca-

pability of handling both numerical and nominal features

which occur commonly in real-world applications. WMCA

replaces the traditional MCA (Multiple Correspondence

Analysis) technique [8] that utilizes only a sequential, lim-

ited, and static number of principal components in scal-

ing value computations with the introduction of a principal

component similarity information extraction method, while

also providing a higher efficiency of utilization of available

derived statistical information. In [17], MCA was used to

derive, using the first two principal axes, numerical scaling

values for all nominal features possessing two or more cat-

egories. The MDA component aims at maximizing the ratio

of the inter-class scatter to the intra-class scatter while also

reducing a data set’s dimensionality to C−1, where C is the

number of classes in the data set, resulting in an improved

execution of C-RSPM in the Local level. The core of the

Local level is the C-RSPM approach which adaptively se-

lects representative and possibly non-consecutive principal

components and was shown to achieve good performance in

classification accuracy and operational merits [16].

Experiments on a variety of data sets are conducted to

assess the performance of the proposed ASIC approach in

comparison to several well-known supervised classification

methods such as C4.5 [15], KNN (K-Nearest Neighbors)

[19], Bayes’ Nets (BN) [6], Multi-Layer Perceptrons (MLP)

[21], Random Forest (RF) [2], Logistic [9], and SVM (Sup-

port Vector Machines) [18] (all of them are available in

WEKA [21]), in addition to our previously proposed C-

RSPM approach [16]. The promising experimental results

have demonstrated that ASIC outperforms all the methods

in the comparison experiments in both classification accu-

racy and operational benefits.

The remainder of this paper is organized as follows. Sec-

tion 2 illustrates the motivations for the proposed approach.

Section 3 presents the proposed ASIC approach. The de-

tails of the experiments and comparative analysis of perfor-

mance evaluation are described in Section 4. Finally, Sec-

tion 5 concludes our study.

2. Motivation

In our earlier study [16], the C-RSPM classification ap-

proach was proposed to deal with high data dimensionality

classification tasks. C-RSPM is capable of adaptively se-

lecting nonconsecutive principal components from a train-

ing data set with the purpose of accurately modeling a rep-

resentative subspace for each class in the data set via a series

of collaterally executed RSPM (Representative Subspace

Projection Modeling) classifiers. Experimental results in

[16] showed that C-RSPM outperforms several supervised

classification methods. However, in spite of its good perfor-

mance, our further experiments with a larger variety of data

sets have revealed the following limitations:

• Ineffective classification with data sets possessing a

very high number of classes. C-RSPM sometimes did

not perform as well as expected for a data set with a

relatively large number of classes, especially when the

classes’ distributions are very similar. Hence, a more

effective method that can identify and accentuate the

differences among classes is more desirable.

• Ineffective classification with data sets possessing a

low number of training data instances. C-RSPM re-

quires the number of training data instances in each

class to be at least as large as the number of features

in the data set to successfully model each class. How-

ever, in many real-world applications, it may be very

difficult to provide sufficient training data instances

for each class. Several examples can be found in the

data sets in [11][20]. Currently, this issue is resolved

by simply duplicating randomly selected existing data

instances, which inevitably leads to the “over-fitting”

problem to some extent.

• Relatively high initial computational load in each

RSPM classifier. PCA is employed in each RSPM

classifier in a manner that an eigenspace transforma-

tion step takes place first, without any prior dimen-

sionality reduction, followed by the adaptive princi-

pal component selection technique that captures the

representative and possibly nonconsecutive principal

components to model the training data classes. Conse-

quently, each RSPM classifier needs to load all the di-

mensional information of the training data set in train-

ing, although most of such information is discarded

after the eigenspace transformation and representative

component selection steps. This results in a relatively

high initial computational load.
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It has been inferred that PCA maximizes the variance in

all dimensions and is thus capable of modeling the degree

of similarity among the data classes, just as is performed

in C-RSPM. On the other hand, MDA is mathematically

different from PCA in terms of what dimensional features

it attempts to maximize. That is, MDA attempts to maxi-

mize the distance between class data clusters; while PCA

does not take into account any class information in its vari-

ance maximization process. To capitalize the advantages of

both PCA and MDA, some research studies have been de-

veloped. For example, in [4], a novel two-layer PCA/MDA

scheme for hand posture recognition was proposed, where

the PCA layer acts as a crude classifier, followed by apply-

ing local MDA for more precise classification. As a result,

the dimensionality of the fingerprint feature patterns ana-

lyzed by each local MDA is substantially reduced, leading

to a better overall classification performance.

These observations inspired us to develop a new and en-

hanced supervised classification approach. In contrast to

[4], our proposed approach employs WMCA and MDA

in the Global level for the purpose of crude data pre-

processing, while harnessing the benefits of our previously

proposed C-RSPM for a more precise classification at the

Local level. In this manner, each RSPM classifier is able

to both model the characteristics of their corresponding

classes more accurately and discriminate among different

class data instances more precisely. Furthermore, since

MDA reduces the dimensionality of a training data set prior

to dispatching the data to the local RSPM classifiers, it also

relaxes PCA’s requirements for the number of data instances

in each class, which consequently reduces the possibility

of ”over-fitting”. Moreover, the employment of MDA also

lightens the initial storage load requirements in each local

RSPM classifier due to the reduced data dimensional infor-

mation, which further improves ASIC’s overall operational

benefits.

3. The ASIC approach

The proposed ASIC approach is composed of Global
and Local levels. Figure 1 illustrates the components of

each level and provides a top-down depiction of the execu-

tion flow. The core of the Global level is the proposed pre-

processing method including the WMCA and MDA com-

ponents. When a training data set is supplied to the Global
level, it is divided into numerical and nominal features. The

nominal features are then numerically scaled by WMCA

prior to being re-grouped with the numerical features. Next,

the generated new numeric feature set is then dispatched to

the MDA component which accentuates the spatial differ-

ences among the training classes, in addition to transform-

ing the number of features in the training data set to C − 1,

where C is the number of classes in the training set.

Figure 1. The proposed ASIC supervised

classification approach.

From Figure 1, it can be noted that both the WMCA

and MDA components store their derived scaling and trans-

formation parameters in the Global Level Parameter Stor-

age component, which symbolizes either a computer file or

physical memory, for future use with the testing data sets

(i.e., the red dotted arrow between WMCA and the stor-

age component and the red dotted arrow between MDA and

the storage component). This indicates that the parameters

can be stored into or retrieved from the storage component.

Finally, the transformed training data set is dispatched to

the Local level, where the C-RSPM component adaptively

trains C respective RSPM classifiers to recognize the C
classes in the training data set. Similar to the components in

the Global level, C-RSPM stores the derived classification

parameters of the C classifiers into the Local Level Param-

eter Storage component for future use. The classification

task follows naturally from the same descriptive order.

When a testing data set is supplied to the Global level,

the WMCA and MDA components retrieve their classifica-

tion parameters from the storage component and, respec-

tively, scale and transform the testing set prior to dispatch-

ing it to the Local level. Finally, C-RSPM’s Classification

Module retrieves the required classification parameters for

its C RSPM classifiers from the storage component, classi-

fies one testing instance at a time by individually dispatch-
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ing them to its collaterally executing RSPM classifiers, and

forwards their classification results to the Ambiguity Solver

Module. The Ambiguity Solver Module then intercepts clas-

sification conflicts that arise, employs the Compute Attach-

ing Proportion and Decision Rules components to solve

class ambiguity issues, and finally executes the Class La-

bel Assigner component to assign the corresponding class

label of the testing instance.

3.1. Global level

3.1.1 WMCA nominal feature handling

Both numerical and nominal features can carry valuable in-

formation about a data set that can crucially affect the per-

formance of a class discrimination algorithm, consequently

also affecting the overall performance of the classification

process. This leads us to search for an effective means of in-

corporating nominal features into our inherently numerical-

based methods. MCA [8] is a well-known method that

generates scaling values to capture the degree of similar-

ity among nominal feature values and to effectively ex-

press the relative significance of the features in a data set.

Our proposed Weighted Multiple Correspondence Analysis

(WMCA) method attempts to improve the information uti-

lization efficiency of the traditional MCA approach by uti-

lizing all the information acquired statistically from a data

set to generate numerical scaling values. WMCA is uti-

lized in conjunction with MDA at the Global level for pre-

processing purposes.

The main idea of WMCA is to first represent the nomi-

nal values in a data set numerically through the derivation of

a zero-one valued indicator matrix [7]. Next, an important

measure of correlation among the nominal feature values in

the data set is computed from a feature cross-tabulation de-

rived from the inner-product of the indicator matrix. The

resulting matrix carries the various degrees of similarities

among the nominal values in the data set. This naturally

leads to the application of Singular Value Decomposition

(SVD) onto this matrix in order to extract its eigenvalue-

eigenvector pairs which correspond to the values that max-

imize the derived correlative measure, namely, (λ1, E1),
(λ2, E2), . . . , (λp, Ep), where p is the number of nomi-

nal feature values in the data set. Unlike traditional MCA

which utilizes only the first major principal component in

numerical scaling value computations and discards the re-

maining eigenvector-eigenvalue pairs (thus under-utilizing

their information), WMCA combines all information into

a derived weighted measure. To accomplish that, a refined

eigenspace is derived by selecting only those eigenvector-

eigenvalue pairs satisfying Equation (1) which employs the

standard deviation to capture the degree of similarity among

the principal components, while discarding all others.

STD(Eψ) ≤ MeanSTD(E). (1)

In Equation (1), matrix E is composed of all column

eigenvectors acquired through SVD, MeanSTD(E) is the

mean standard deviation value of all the eigenvectors,

STD(Eψ) corresponds to the standard deviation of the ψth

eigenvector satisfying Equation (1), and ψ ∈ W denotes

the refined eigenvector space comprised of all eigenvector-

eigenvalue pairs satisfying Equation (1). These eigenvec-

tors are then utilized to derive a single column vector H
(with p × 1 dimension) through a weighted average given

by Equation (2), where each eigenvector’s contribution to

the summation (i.e., their assigned weight) is based on the

magnitude of their respective eigenvalues.

H =
∑

ψεW

λψ

λt

Eψ (2)

In Equation (2), λψ is the eigenvalue corresponding to

the ψth eigenvector Eψ and λt =
∑

ψ∈W

λψ is the total sum

of the eigenvalues, all in the refined eigenspace ψ ∈ W.

Finally, the p elements in H are used to derive p numerical

scaling values for the p nominal feature values in the data

set, which correspond respectively to the p columns of the

derived indicator matrix.

3.1.2 MDA pre-processing

The MDA method is employed to maximize the ratio of the

inter-class scatter to the intra-class scatter with the purpose

of accentuating the differences among the classes in a given

data set. In the Global level, upon completion of MDA’s

global reshaping action onto the training data instances, the

data dimensionality has been reduced to C − 1, where C
is the total number of classes in the data set. This transfor-

mation allows each RSPM classifier in the Local level to

model more accurately the similarity information of a cor-

responding training class and to achieve better classifica-

tion accuracy performance in comparison with our previous

work in [16].

Geometrically speaking, the instances of a training data

set can be considered as point coordinates in a multidimen-

sional space. MDA determines discriminating axes in this

space which yield an optimal separation of the predefined

class data groups. The first discriminant function maxi-

mizes the differences between the values of the dependent

variable. The second function, based on the first factor, is

orthogonal and uncorrelated to it, maximizing the differ-

ences between the values of the dependent variable, and

so on. Though mathematically different, each discriminant

function is a dimension that differentiates a case into cate-

gories of the dependent variable based on its values on the
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independent variables. The first function is the most signif-

icant differentiating dimension. However, succeeding func-

tions may also represent additional significant dimensions

of differentiation.

For the multi-class case having, for instance, C total

classes and d-dimensional data instances, MDA yields a lin-

ear transformation that maps the original feature space to a

new l-dimensional feature space, where l < d, by maximiz-

ing the objective function given by Equation (3) [6].

J(W ) =
|W t

SBW |

|W tSW W |
, where (3)

• W is the transformation matrix;

• SB = Σc
i=1ni(mi−m)(mi−m)t is the between-class

scatter matrix;

• SW = Σc
i=1Σx∈xi

(x − mi)(x − mi)
t is the within-

class scatter matrix;

• x is a training data instance;

• xi is a training data instance in the ith class;

• mi is the mean value of all training data instances in

the ith class;

• m is the mean value of all training data instances; and

• ni is the number of training data instances in the ith

class.

Assume that a training data set is given by matrix X.

Its projection Y is obtained from the MDA transformation

through Y = W t
X, where the transformation matrix W is

not necessarily unique and the columns of an optimal solu-

tion of W are the generalized eigenvectors that correspond

to the largest eigenvalues in SBwi = λiSW wi [6].

Generally, MDA is employed with high-dimensional

data sets to demonstrate its dimensionality reduction fea-

tures. For instance, assume that a data set has a total number

of classes C < d. Then, l can be set to C − 1 as indicated

in [6]. This value of l is adopted for our implementation of

MDA for the proposed Global level.

3.2. Local level

The Local level primarily consists of C-RSPM. C-RSPM

has two modules, namely, the Classification and Ambigu-

ity Solver modules, which naturally correspond to the two

phases of a probabilistic supervised classification process.

The Classification module is based on a powerful predic-

tive model learning procedure known as RSPM. The num-

ber of classifier components in this module is adaptive to the

number of classes required by any application. Each classi-

fier is embedded with the RSPM algorithm and trained with

a set of data instances belonging to a particular class of a

given training set. As a result, each classifier either identi-

fies a testing instance as normal (i.e., belonging to the class

of its training instances) or abnormal. During the classifi-

cation stage, all classifier components are executed concur-

rently, receiving and classifying the same incoming testing

instance.

In brief, given a N × p-dimensional normalized training

data set matrix Z with N rows of instances and p columns

of features, the main idea of the Classification module con-

sists of (i) computing the robust estimate of the correlation

matrix, (ii) computing the p eigenvector-eigenvalue pairs

of the correlation matrix, that is, (λ1, E1), (λ2, E2), . . . ,

(λp, Ep), and (iii) projecting the normalized training data

instances into matrix Y, also known as the score matrix.

Then, all those principal components whose corresponding

score matrix column vectors do not satisfy Equation (4) are

discarded.

φ < STD(Rm) < a + b × (1 − exp(−α)), (4)

where φ is an adjustable coefficient set by default to the em-

pirical value of 0.0001, α is the desired pre-set false alarm

rate of the classifier, STD(Rm) is the standard deviation of

the (m)th score column vectors of Y, denoted by Rm, sat-

isfying the selection function and corresponding to the mth

eigenvector, a and b are both set to the mean of the stan-

dard deviation values of those score column vectors whose

standard deviation values are greater than φ, and finally, M
is defined as the row vector holding the indices of those

eigenvectors satisfying Equation (4) and forming a new re-

fined eigenspace. Utilizing the selected principal compo-

nents in the refined eigenspace, a class deviation measure is

computed for all training data instances, from which a class

threshold measure is derived for the process of distinguish-

ing normal and anomalous instances.

The Ambiguity Solver module captures and coordinates

classification conflicts. It is possible that an instance is clas-

sified as normal by multiple classifiers, or not recognized as

normal by any classifier. To handle the first issue of class

label ambiguity, the Ambiguity Solver module attempts

to estimate the true class membership of an ambiguous in-

stance by computing its Attaching Proportion measure with

respect to each of the classes of the k classifier components

claiming it as normal to their own training data sets. The

Attaching Proportion reflects the degree of normality of a

given ambiguous instance with respect to a training data set,

where a smaller value indicates a stronger resemblance be-

tween an instance and the spatial distribution of a training

data set. To handle the second issue, the module simply as-

signs an ”Unknown” class label to the instance. For a more

detailed description of C-RSPM, please refer to [16].
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4 Experimental results and discussion

4.1. Experimental setup

Various experiments are conducted to evaluate and vali-

date the performance and generality aspects of the proposed

ASIC approach. The data sets used in these experiments

exhibit different distributions, possess different quantities

of numeric and nominal features and data instances, and

are obtained from two well-known public data repositories,

namely, the UCI [11] and UCR [12] archives.

Five groups of data sets are used to conduct the compar-

ative analysis between the ASIC approach and other well-

known algorithms including C4.5, KNN (K=5), Bayes’

Nets (BN), Multi-layer Perceptrons (MLP), Random For-

est (RF), Logistic, Support Vector Machines (SVM), and

C-RSPM. In every experiment, a 10-fold cross-validation

process is utilized to better evaluate the performance of

all methods. The following describes the data groups em-

ployed in the experiments:

• Group 1: Xi (Face all) data set from the UCR Time Se-

ries Data Mining Archive [12]. It is composed of 2,250

instances within 14 classes and 131 numeric features.

From them, 40 instances are selected from each class

for training, corresponding to 2

3
of the data set being

randomly selected for training with cross-validation.

• Group 2: Leaf (Swedish Leaf) data set from the UCR

Time Series Data Mining Archive [12]. It is composed

of 1,125 instances within 15 classes and 128 numeric

features. From them, 500 instances, or 2

3
of the train-

ing data set, are randomly selected from each class for

training with cross-validation.

• Group 3: 19 types of network attacks with 34 numeric

and 7 nominal features, including Back, Teardrop,

Smurf, and Neptune, among others, from the KDD

CUP 1999 Data [11]. Different attack classes possess

different numbers of instances, and thus the training

data set is randomly selected for cross-validation pur-

poses.

• Group 4: Credit (Credit-card) data set from the UCI

KDD Archive [20]. It is composed of 690 instances

within 14 classes and having 6 numeric and 10 nomi-

nal features. From them, 2

3
of the instances from each

class are selected for training with cross-validation.

• Group 5: Soybean data set from WEKA. It is com-

posed of 683 instances within 19 classes and having

36 nominal features. From them, 2

3
of the instances

from each class are randomly selected for training with

cross-validation.

The α value, or false alarm rate, of each RSPM classi-

fier in the Local level is set to 0.1%, which is a low false

alarm rate value employed in many research areas [1][16].

In order to ensure fairness, all methods in the WEKA pack-

age had their parameters configured to promote their best

performance [22]. In fact, WEKA’s default parameter val-

ues are mostly appropriately configured for optimal per-

formance, and thus we hereby mention only those param-

eters that were modified. For C4.5, the reduced error prun-

ing option was set to true. For SVM, the polynomial ker-

nel was set to quadratic and the lowerOrderT erms op-

tion was set to true. The KNN classifier, implemented by

IBk in WEKA, was configured to perform data set nor-

malization. For RF, the number of randomly chosen at-

tributes was set to log2(#attributes + 1) [22], and the

number of trees was set to 20. For the Logistic method, the

ridge parameter was set to 1. For MLP, the decay parame-

ter was set to true, the number of hidden layers was set to

(#attributes+#classes)÷2, the training time parame-

ter was set to 1, 000, and the validationSetSize was set to

20%. Finally, for BN, the useADTree parameter was set to

true, the estimator algorithm was set to BMAEstimator
whose parameters useK2Prior was set to true, and the

searchAlgorithm was set to HillClimber whose param-

eter markovBlanketClassifier was set to true.

4.2. Performance evaluation

Table 1 displays the classification accuracy of the ASIC

approach in comparison to all the other methods with re-

spect to each group of data sets. The standard deviation

of the classification accuracy for each approach, resulting

from the 10-fold cross-validation process, is also included

in parentheses. A smaller standard deviation value indicates

that the specific approach performs with a consistent stabil-

ity, while a larger value indicates inconsistent or unstable

performance.

From the results in Table 1, it is clearly observable

that the ASIC approach outperforms all the other meth-

ods with accuracies above 95% for all data groups. This

is indicative that for classification tasks with a high num-

ber of classes, the MDA component of our proposed pre-

processing method allows the C-RSPM approach to dis-

tinguish among distinct classes with high accuracy, inde-

pendent of the number of features or instances in the data

set. In particular, the experiments with data Group 2 clearly

demonstrates the ASIC accuracy performance improvement

in comparison to that of C-RSPM. ASIC’s classification ac-

curacy is not only the highest (95.99%) but also signifi-

cantly larger than the classification accuracy of all the other

methods, which indicates obvious improvements of both

robustness and stability in classification tasks with a high

number of classes. The experiments with data Group 3
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Table 1. Classification accuracy comparison

among ASIC, C-RSPM, C4.5, KNN, BN, MLP,

RF, Logistic, and SVM. Standard deviations

are shown in parentheses.

Accuracy Group 1 Group 2 Group 3 Group 4 Group 5

ASIC 99.16% 95.99% 98.41% 96.37% 97.21%

(+0.07) (+1.96) (+1.12) (+1.76) (+1.04)

C-RSPM 99.05% 79.00% 98.28% 95.14% 95.63%

(+0.08) (+4.45) (+1.44) (+1.85) (+1.68)

C4.5 64.50% 78.63% 95.63% 67.38% 91.10%

(+7.19) (+6.21) (+1.86) (+8.84) (+1.08)

KNN 64.38% 78.61% 86.57% 41.65% 88.07%

(+5.22) (+6.54) (+7.72) (+13.59) (+1.19)

BN 68.47% 83.76% 91.25% 67.38% 92.34%

(+4.24) (+5.87) (+3.49) (+9.35) (+0.92)

MLP 81.38% 85.98% 93.77% 62.78% 89.50%

(+3.62) (+3.74) (+3.54) (+9.75) (+1.67)

RF 63.85% 78.46% 89.98% 69.06% 92.17%

(+4.81) (+4.32) (+3.03) (+11.55) (+1.53)

Logistic 73.69% 80.39% 90.87% 64.77% 88.25%

(+7.35) (+7.35) (+2.74) (+10.48) (+2.44)

SVM 71.93% 84.16% 95.92% 65.54% 90.03%

(+6.55) (+3.86) (+2.03) (+17.68) (+4.69)

demonstrate the potential advantages of the proposed ASIC

approach in the intrusion detection domain, which has re-

ceived a significant research attention in recent years.

Moreover, it can also be concluded from the experiments

with data Group 4 where the number of nominal features

is much larger than that of numeric features, and espe-

cially data Group 5 where the data set is composed en-

tirely of nominal features, that the proposed WMCA com-

ponent in the pre-processing method effectively derives nu-

merical representations of nominal features. This allows

ASIC to yield satisfactory classification results. Please note

that ASIC’s accuracy for these data groups is just as high

as for those data groups with primarily numerical features

(namely, data groups 1, 2 and 3). Thus, equipped with our

proposed WMCA approach, ASIC can perform well with

data sets where symbolic, rather than numeric, or mixed

features are employed.

Furthermore, during the experimental process, ASIC has

been observed to require significantly lower training and

classification times than those of all the other methods. In

comparison to C-RSPM, which has been observed as the

fastest algorithm in [16], ASIC’s overall required process-

ing time is about 1/7 for Group 1 and Group 2 data sets,

about 2/5 for Group 3 data set, about 3/5 for Group 4

data set, and about 1/3 for Group 5 data set. Table 2

shows the average combined time in seconds for the train-

ing and classification tasks, and for all the approaches un-

der the same execution environment. The combined time

measure was selected since it has been observed that the

classification time for all methods is relatively negligible in

comparison to the training time, except for KNN which is

an instance-based method and does not generate predictive

models but rather spends most of their effort in the clas-

sification task. From Table 2, it is clearly observable that

the proposed ASIC approach presents a significantly lower

combined time than those of all other methods and for all

groups of data, which supports the high applicability of the

proposed method in real-time demanding applications.

Table 2. Average combined training and clas-

sification times, in seconds, for ASIC, C-

RSPM, C4.5, KNN, BN, MLP, RF, Logistic, and

SVM.

Times Group 1 Group 2 Group 3 Group 4 Group 5

ASIC 2.3 2.7 6.2 1.6 1.9

C-RSPM 15.6 18.5 15.3 2.7 5.9

C4.5 88.3 96.4 28.9 17 14

KNN 16000 18000 14000.0 4.3 5.7

BN 29.6 33.4 16.8 2.5 2.1

MLP 22000 23000 21000 327.4 1290.5

RF 62.8 73.2 18.5 8.3 7.1

Logistic 389.4 432.7 354.7 41.6 174.2

SVM 407.2 459.6 320.5 91.4 161.4

It was also observed from the experiments that the

ASIC approach requires less memory storage and process-

ing power to acquire the components attained during the

training phase and required by the classification task. This

is achieved by the employment of MDA in the Global level,

which results in a low initial computational load by each

RSPM classifier. Finally, the diverse experiments with dif-

ferent data sets demonstrate that ASIC is a highly accu-

rate, multi-class supervised classification approach present-

ing favorable operational merits such as low training and

classification times and a lightweight characteristic. It per-

forms better in both aspects of classification accuracy and

operation benefits in comparison with our previously pro-

posed C-RSPM [16] approach. All these characteristics and

advantages make ASIC a desirable and powerful tool for

various processing power & memory constrained real-world

demanding applications.

5 Conclusion

In this paper, a novel ASIC supervised multi-class clas-

sification approach is proposed. The ASIC approach adopts

the adaptive selection of information components and is fa-

cilitated with the capabilities of dealing with both nomi-

nal and numerical features and reducing the dimensional-

ity of the data set in the Global level, and the capability

of classifying data instances in the Local level. The func-

tionality of the Global level is achieved via the proposed

WMCA/MDA-based data pre-processing method; while the

functionality of the Local level is achieved via our previ-

ously proposed C-RSPM approach. The classification ac-

curacy and operational performance of the proposed ASIC

approach were evaluated through comparison experiments
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with various well-known supervised classification methods.

The promising experimental results have demonstrated that

ASIC maintains an average accuracy of over 95% on all

cross-validation based experiments, revealing its superior

stability in the task of generating predictive models capable

of capturing even the smallest differences among different

training classes and achieving several operational merits in-

cluding faster algorithmic execution and low requirements

on storage, memory, and processing power.
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