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Abstract—SIFT-like local feature descriptors are ubiquitously employed in such computer vision applications as content-based retrieval,

video analysis, copy detection, object recognition, photo-tourism and 3D reconstruction. Feature descriptors can be designed to be

invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations.

However, real transformations that an image can undergo can only be approximately modeled in this way, and thus most descriptors

are only approximately invariant in practice. Secondly, descriptors are usually high-dimensional (e.g. SIFT is represented as a 128-

dimensional vector). In large-scale retrieval and matching problems, this can pose challenges in storing and retrieving descriptor data.

We map the descriptor vectors into the Hamming space, in which the Hamming metric is used to compare the resulting representations.

This way, we reduce the size of the descriptors by representing them as short binary strings and learn descriptor invariance from

examples. We show extensive experimental validation, demonstrating the advantage of the proposed approach.

Index Terms—Local features, SIFT, DAISY, binarization, similarity-sensitive hashing, metric learning, 3D reconstruction, matching.

✦

1 INTRODUCTION

Over the last decade, feature point descriptors such
as SIFT [1] and similar methods [2], [3], [4] have be-
come indispensable tools in the computer vision commu-
nity. They are usually represented as high-dimensional
vectors, such as the 128-dimensional SIFT or the 64-
dimensional SURF vectors. While the descriptor’s high
dimensionality is not an issue when only a few hundreds
points need to be represented, it becomes a significant
concern when millions have to be on a device with lim-
ited computational and storage resources. This happens,
for example, when storing all descriptors for a large-scale
urban scene on a mobile phone for image-based loca-
tion purposes. Not only does this require tremendous
amounts of storage, it also is slow and potentially unreli-
able because most recognition algorithms rely on nearest
neighbor computations and computing Euclidean dis-
tances between long vectors is neither cheap nor optimal.

Consequently, there have been many recent attempts
at compacting SIFT-like descriptors to allow for faster
matching while retaining their outstanding recognition
rates. One class of techniques relies on quantization [5],
[6] and dimensionality reduction [7], [8]. While helpful,
this approach is usually not sufficient to produce truly
short descriptors without loss of matching performance.
Another class [9], [10], [11], [?] takes advantage of train-
ing data to learn short binary codes whose distances are
small for positive training pairs and large for others.
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This is particularly promising because not only does
binarization reduce the descriptor size, but partly also
increases performance as will be shown.

Binarization is usually performed by multiplying the
descriptors by a projection matrix, subtracting a thresh-
old vector, and retaining only the sign of the result. This
maps the data into a space of binary strings, greatly
reducing their size on the one hand, and simplifying
their similarity computation (now becoming the Ham-
ming metric, which can be computed very efficiently on
modern CPUs) on the other. Another class of locality
sensitive hashing techniques (LSH) and their variants
[9], [12] encode similarity of datapoints as collision prob-
ability of their binary codes. While such similarity can
be evaluated very efficiently, these techniques usually
require a large number of hashing functions to be con-
structed in order to achieve competitive performance.
Also, families of LSH functions have been constructed
only for classes of standard metrics such as the Lp norms
and do not allow for supervision.

In most supervised binarization techniques based on
a linear projection, the matrix entries and thresholds
are selected so as to preserve similarity relationships in
a training set. Doing this efficiently involves solving a
difficult non-linear optimization problem and most of
existing methods offer no guarantee of finding a global
optimum. By contrast, spectral hashing [13] does offer
this guarantee for simple data distributions and has
proved tvery successful. However, this approach is only
weakly supervised by imposing a Euclidean metric on
the input data, which we will argue is not a particularly
good one in our case.

To better take advantage of training data composed
of interest point descriptors corresponding to multiple
3D points seen under different views, we introduce a



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. *, NO. *, MONTH 20?? 2

global optimization scheme that is inspired by an earlier
local optimization one [10]. In [10], the entries of the
projection matrix and thresholds vectors are constructed
progressively using AdaBoost. Given that Adaboost is
a gradient-based method [14] and that the algorithm
optimizes a few matrix rows at a time, there is no
guarantee the solution it finds is optimal. By contrast,
we first compute a projection matrix that is designed
either to solely minimize the in-class covariance of the
descriptors or to jointly minimize the in-class covariance
and maximize the covariance across classes, both of
which can be achieved in closed-form. This being done,
we compute optimal thresholds that turn the projections
into binary vectors so as to maximize recognition rates.
In essence, we perform Linear Discriminant Analysis
(LDA) on the descriptors before binarization and will
therefore refer to our approach as LDAHash.

Our experiments show that state-of-the-art metric
learning methods based e.g. on margin maximization
[15], [16] achieve exceptional performance in the low
false negative rate range which degrades significantly
in the low false positive rate range. Binarization usually
only deteriorates performance. In large-scale applica-
tions that involve matching keypoints against databases
containing millions of them, achieving good perfor-
mance in the low false positive rate range is crucial to
prevent list of potential matches from becoming unac-
ceptably long. We use ROC curves to show that, in many
different cases, the proposed method has competitive
performance in the low false negative rage while sig-
nificantly outperforming other methods in the low false
positive range.

We also show that unlike many other techniques
where binarization produces performance degradation,
using our approach to binarize SIFT descriptors [1] ac-
tually improves matching performance. This is especially
true in the low false positive range with 64 or 128-
bits descriptors, which means that they are about ten
to twenty times shorter than the original ones. Further-
more, using competing approaches [10], [13], [17] to
produce descriptors of the same size as ours results in
lower matching performance over the full false positive
range.

In the following section, we briefly survey existing
approaches to binarization. In Section 3, we introduce
our own framework. In Section 4, we describe the
corresponding training methodology, training data and
analyze the impact of individual components of our
approach. Finally, we present our results in Section 5.

2 PRIOR WORK

Most approaches for compacting SIFT-like descriptors
and allowing for faster matching rely on one or more
of the following techniques:

Tuning. In [8], [18], [6], [19], [17], the authors use train-
ing to optimize the filtering and normalization steps that
produce a SIFT-like vector. The same authors optimize

in [17] over the position of the elements that make up a
DAISY descriptor [4].

Quantization. The SIFT descriptor can be quantized
using for instance only 4 bits per coordinate [5], [17],
thus saving memory and speeding up matching because
comparing short vectors is faster than comparing long
ones. Chandrasekhar et al. [19] applied tree-coding meth-
ods for lossy compression of probability distributions to
SIFT-like descriptors to obtain compressed histogram of
gradients (CHOG).

Dimensionality reduction. PCA has been extensively
used to reduce the dimensionality of SIFT vectors [20],
[6]. In this way, the number of bits required to describe
each dimension can be reduced without loss in match-
ing performance [6], [17]. In [21], a whitening linear
transform was proposed in addition to benefit from the
efficiency of fast nearest-neighbor search methods.

The three approaches above are mostly unsupervised
methods and sometimes require a complex optimization
scheme [19], [17]. Often they are not specifically tuned
for keypoint matching and do not usually produce de-
scriptors as short as one would require for large scale
keypoint matching.

Our formulation relates to supervised metric learn-
ing approaches. The problem of optimizing SIFT-like
descriptors can be approached from the perspective of
metric learning, where many efficient approaches have
been recently developed for learning similarity between
data from a training set of similar and dissimilar pairs
[22], [23]. In particular, similarity-sensitive hashing (SSH)
or locality-sensitive hashing (LSH) [9], [10], [13], [11], [?]
algorithms seek to find an efficient binary representation
of high-dimensional data maintaining their similarity in
the new space. These methods have also been applied
to global image descriptors and bag-of-feature represen-
tations in content-based image search [24], [25], [26],
[27], video copy detection [28], and shape retrieval [29].
In [30], [31], Hamming embedding was used to replace
vector quantization in bag-of-feature construction.

There are a few appealing properties of similarity-
sensitive hashing methods in large-scale descriptor
matching applications. First, such methods combine the
effects of dimensionality reduction and binarization,
which make the descriptors more compact and easier
to store. Second, the metric between the binarized de-
scriptors is learned from examples and renders more
correctly their similarity. In particular, it is possible to
take advantage of feature point redundancy and transi-
tive closures in the training set, such as those in Figure. 3.
Finally, comparison of binary descriptors is computation-
ally very efficient and is amenable for efficient indexing.

Existing methods for similarity-sensitive hashing have
a few serious drawbacks in our application. The method
of Shakhnarovich et al. [10] poses the similarity-sensitive
hashing problem as boosted classification and tries to
find its solution by means of a standard AdaBoost
algorithm. However, given that AdaBoost is a greedy
algorithm equivalent to a gradient-based method [14],
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there is no guarantee of global optimality of the solu-
tion. The spectral hashing algorithm [13], on the other
hand, has a tacit underlying assumption of Euclidean
descriptor similarity, which is typically far from being
correct. Moreover, it is worthwhile mentioning that
spectral hashing, similarity-sensitive hashing and similar
methods have so far proved to be very efficient in re-
trieval applications for ranking the matches, in which one
typically tries to achieve high recall. Thus, the operating
point in these application is at low false negative rates,
which ensures that no relevant matches (typically, only
a few) are missed. In large-scale descriptor matching, on
the other hand, one has to create a list of likely candidate
matches, which can be very large if the false positive
rate is high. For example, given a set of 1M descrip-
tors, which is modest for Internet-scale applications, and
1% false positive rate, 10K candidates would have to
considered. Consequently, an important concern in this
application is a very low false positive rate. As we show
in the following, our approach is especially successful
at this operating point, while existing algorithms show
poor performance.

3 APPROACH

Let us assume we are given a large set of keypoint de-
scriptors. They are grouped into subsets corresponding
to the same 3D points and all pairs within the subsets
are therefore considered as belonging to the same class.
The main idea of our method is to find a mapping from
the descriptor space to the Hamming space by means of
an affine map followed by a sign function, such that the
Hamming distance between the binarized descriptors is
as close as possible to the similarity of the given data
set. Our method involves two key steps:

Projection selection. We compute a projection matrix
that is designed either to solely minimize the in-class
covariance of the descriptors or to jointly minimize
the in-class covariance and maximize the covariance
across classes, both of which can be done in closed-form
(Sec. 3.3.1 and 3.3.2).

Threshold selection. We find thresholds that can be used
to binarize the projections so that the resulting binary
strings maximize recognition rates. We show that this
threshold selection is a separable problem that can be
solved using one-dimensional search. In the remainder
of this section, we formalize these steps and describe
them in more details.

3.1 Problem formulation

Our set of keypoint descriptors is represented as n-
dimensional vectors in R

n. We attempt to find their
representation in some metric space (Z, dZ) by means
of a map of the form y : R

n → (Z, dZ). The metric
dZ ◦ (y × y) parametrizes the similarity between the
feature descriptors, which may be difficult to compute
in the original representation. Our goal in finding such
a mapping is two-fold. First, Z should be an efficient

representation. This implies that y(x) requires signifi-
cantly less storage than x, and that dZ(y(x),y(x′)) is
much easier to compute than, e.g., ‖x − x′‖. Secondly,
the metric dZ ◦ (y × y) should better represent some
ideal descriptor similarity, in the following sense: Given
a set P of pairs of descriptors from corresponding points
in different images, e.g. the same object under different
view point (referred to as positives) and a set N of
pairs of descriptors from different points (negatives), we
would like dZ(y(x),y(x′)) < R for all (x,x′) ∈ P and
dZ(y(x),y(x′)) > R for all (x,x′) ∈ N to hold with high
probability for some range R.

Setting Z to be the m-dimensional Hamming space
H

m = {±1}m, the embedding of a descriptor x can be
expressed as an m-dimensional binary string. Here, we
limit our attention to affine embeddings of the form

y = sign(Px + t) , (1)

where P is an m × n matrix and t is an m × 1 vector;
embeddings having more complicated forms can be
obtained in a relatively straightforward manner by in-
troducing kernels. Even under the optimistic assumption
that real numbers can be quantized and represented by
8 bits, the size of the original descriptor is 8n bits, while
the size of the binary representation is m bits. Thus,
setting m ≪ n allows to significantly alleviate the storage
complexity and potentially improve descriptor indexing.

Furthermore, the descriptor dissimilarity is com-
puted in our representation using the Hamming metric
dHm(y,y′) = m

2
− 1

2

∑m
i=1

sign(yiy
′
i), which is done by

performing a XOR operation between y and y′ and
counting the number of non-zero bits in the result, an
operation carried out in a single instruction on modern
CPU architectures (POPCNT SSE4.2).

The embedding y is constructed to minimize the
expectation of the Hamming metric on the set positive
pairs, while maximizing it on the set of negative pairs.
This can be expressed as minimization of the loss func-
tion

L = αE{dHm(y,y′)|P} − E{dHm(y,y′)|N}, (2)

with respect to the projection parameters P and t. Here,
α is a parameter controlling the tradeoff between false
positive and false negative rates (higher α correspond to
lower false negative rates). In practice, the conditional
expectations E{ · |P}, E{ · |N} are replaced by averages
on a training set of positive and negative pairs of de-
scriptors, respectively.

3.2 LDAHash

Here, we note that up to constants, problem (2) is
equivalent to the minimization of

L = E
{

yTy′|N
}

− αE
{

yTy′|P
}

, (3)

or

L = αE
{

‖y − y′‖2|P
}

− E
{

‖y − y′‖2|N
}

, (4)
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attempting to make the correlation of the binary codes
as negative as possible for negative pairs and as positive
as possible for positive pairs. Direct minimization of L

is difficult since the terms y involve a non-differentiable
sign non-linearity. While in principle smooth approxima-
tion is possible, the solution of the resulting non-convex
problem in (m+1)×n variables is challenging, typically
containing thousands of unknowns.

As an alternative, we propose to relax the problem
removing the sign and minimizing a related function

L̃ = αE
{

‖Px− Px′‖2|P
}

− E
{

‖Px− Px′‖2|N
}

.(5)

The above objective is independent of the affine term t

and optimization can be performed over the projection
matrix P only, which we further restrict to be orthogonal.
Once the optimal matrix is found, we can fix it and
minimize a smooth version of (4) with respect to t.

3.3 Projection selection

Next, we describe two different approaches for comput-
ing P, which we refer to a LDA and DIF and that we
compare in Section 4 and 5.

3.3.1 Linear Discriminant Analysis (LDA)

We start by observing that

E
{

‖Px − Px′‖2|P
}

= tr
{

PΣPPT
}

,

where ΣP = E
{

(x − x′)(x − x′)T|P
}

is the covariance
matrix of the positive descriptor vector differences. This
leads to

L̃ = αtr
{

PΣPPT
}

− tr
{

PΣNPT
}

,

with ΣN = E
{

(x − x′)(x − x′)T|N
}

being the covari-
ance matrix of the negative descriptor vector differences.

Transforming the coordinates by pre-multiplying x by

Σ
−1/2

N turns the second term of L̃ into a constant for any
unitary P, leaving

L̃ ∝ tr
{

PΣ
−1/2

N
ΣPΣ

−T/2

N
PT

}

(6)

= tr
{

PΣPΣ−1

N
PT

}

= tr
{

PΣRPT
}

,

where ΣR = ΣPΣ−1

N
is the ratio of the positive and

negative covariance matrices. Since ΣR is a symmetric
positive semi-definite matrix, it admits the eigendecom-
position ΣR = USUT, where S is a non-negative diago-
nal matrix. An orthogonal m×n matrix P minimizing the
trace of PΣRPT is a projection onto the space spanned
by the m smallest eigenvectors of ΣR, L̃ is given by

PΣ
−1/2

N
= (ΣR)−1/2

m Σ
−1/2

N
= S̃−1/2

m ŨTΣ
−1/2

N
, (7)

where S̃ is the m×m matrix with the smallest eigenval-
ues, and Ũ is the n × m matrix with the corresponding
eigenvectors (for notation brevity, we denote such a pro-

jection by (ΣR)
−1/2

m ). This approach resembles the spirit
of linear discriminant analysis (LDA). A similar technique
has been introduced in [28] within the framework of
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Fig. 1. The probability density functions for the clas-
sification performance for positive and negative training

examples for the first two dimensions (a) and (b) for DIF.

boosted similarity learning. Note that the normalization
of columns of P is unimportant since a sign function is
applied to its output. However, we keep the normaliza-
tion by the inverse square root of the variances, which
makes the projected differences P(x − x′) normal and
white.

3.3.2 Difference of Covariances (DIF)

An alternative approach can be derived by observing
that

L̃ = tr
{

PΣDPT
}

,

where ΣD = αΣP − ΣN . This yields

P = (ΣD)−1/2

m , (8)

where at most m smallest negative eigenvectors are se-
lected. This selection of the projection matrix will be
referred to as covariance difference and denoted by DIF.
Note that it allows controlling the tradeoff between false
positive and negative rates through the parameter α,
which is impossible in the LDA approach.

The limit α → ∞ is of particular interest, as it yields
ΣD ∝ ΣP . In this case, the negative covariance does
not play any role in the training, which is equivalent
to assuming that the differences of negative descriptor
vectors are white Gaussian, ΣN = I. The corresponding
projection matrix is given by

P = (ΣP )−1/2

m . (9)

The main advantage of this approach is that it allows
learning the projection in a semi-supervised setting
when only positive pairs are available.

In general, a fully-supervised approach is advanta-
geous over its semi-supervised counterpart, which as-
sumes a sometimes unrealistic unit covariance of the
negative class differences. However, unlike the positive
training set containing only pairs of knowingly matching
descriptors, the negative set might be contaminated by
positive pairs (a situation usually referred to as label
noise). If such a contamination is significant, the semi-
supervised setting is likely to perform better.
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Fig. 3. Top row: Calibrated model of Lausanne with 4485
images and 1.264M 3D points that are computed from

9.9M feature points. Bottom row: Three sample images

from the dataset with a transitive closure indicated.

3.4 Threshold selection

Given the projection matrix P selected as described in
the previous section, our next step is to minimize a
smooth version of the loss function (3),

L = E
{

sign(Px + t)Tsign(Px′ + t)|N
}

(10)

−αE
{

sign(Px + t)Tsign(Px′ + t)|P
}

=

m
∑

i=1

E
{

sign(pT

i x + ti)sign(pT

i x′ + ti)|N
}

−αE
{

sign(pT

i x + ti)sign(pT

i x′ + ti)|P
}

,

with respect to the thresholds t, where pT

i denotes the i-
th row of P, and ti denotes the i-th element of t. Observe
that due to its separable form, the problem can be split
into independent sub-problems

min
ti

E
{

sign((pT

i x + ti)(p
T

i x′ + ti))|N
}

(11)

−αE
{

sign((pT

i x + ti)(p
T

i x′ + ti))|P
}

,

which in turn can be solved using simple one-
dimensional search over each threshold ti.

Let y = pT

i x and y′ = pT

i x′ be the i-th element of the
projected training vectors x and x′. The i-th bits of y

and y′ coincide if ti < min{y, y′} or ti > max{y, y′}, and

differ if min{y, y′} ≤ ti ≤ max{y, y′}. For a given value
of the threshold, we express the false negative rate as

FN(t) = Pr(min{y, y′} ≥ t or max{y, y′} < t|P)

= 1 − Pr(min{y, y′} < t|P) + Pr(max{y, y′} < t|P)

= 1 − cdf(min{y, y′}|P) + cdf(max{y, y′}|P) (12)

with cdf standing for cumulative distribution function.
Similarly, false positive rate can be expressed as

FP(t) = Pr(min{y, y′} < t ≤ max{y, y′}|N )

= 1 − Pr(min{y, y′} ≥ t or max{y, y′} < t|N )

= cdf(min{y, y′}|N ) − cdf(max{y, y′}|N ). (13)

We compute histograms of minimal and maximal values
of projected positive and negative pairs, from which the
cumulative densities are estimated. The optimal thresh-
old ti is selected to minimize FP + FN (or, alternatively,
maximize TN+TP, where TP = 1−FN and TN = 1−FP
are the true positive and true negative rates, respec-
tively). Figure 1 visualizes TP, TN and TP− FP for the
first two components i=1, 2 of the projections LDA and
DIF.

4 TRAINING METHODOLOGY

In this section, we first describe our ground truth train-
ing and evaluation data. We then evaluate different
aspects of our binary descriptors.

4.1 Ground Truth Data

To build our ground truth database, we used sets of
calibrated images for which we show the 3-D point
model and a member image in Figures 3, 4, 14, 15
and 16. These datasets contain images we acquired our-
self, such as those in Figures. 14 and 15, and sometimes
over extended periods of time (Figure. 3). Those of
Figures. 3, 4, 15 contain images downloaded from the
internet or are fully acquired from this source, as in the
case of Figure. 16.

We used our own calibration pipeline [32] to regis-
ter them and to compute internal and external cam-
era parameters as well as a sparse set of 3D points,
each corresponding to a single keypoint tracks. First,
pairwize keypoint correspondences are established using
Vedaldi’s [33] SIFT [1] descriptors that we compared
using the standard L2-norm. These are transformed into
keypoint tracks which are used to grow initial recon-
structions that have been obtained by a robust fit of
pairwize essenatial matrices. This standart procedure is
similar to [34] and we refer to this and our work [32] for
more information.

Because our dataset contains multiple views of the
same scene, we have many conjunctive closure matches
[35] such as the one depicted by the blue line in Fig-
ure 3 (bottom): a keypoint that is matched in two other
images, as depicted by the green lines, gives rise to
an additional match in these other two images. Since
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Fig. 2. Some of the keypoints from the same 3-D point for the Venice dataset in Figure 16 are shown as an example.

The red circle shows the keypoint (DoG) position and its scale. The track was extracted by consecutive SIFT L2

matching, which makes it possible to include keypoint pairs (conjunctive closures) that are quite different into the

training and evaluation set.

Fig. 4. Dresden dataset used for the evaluation in Fig-

ures 6 and 7 contains 4.551.124 positive and negative

matches, which are obtained by geometric verification
using the full calibration.

they may be quite different from each other, the L2

distance between the corresponding descriptors may be
large. Yet, the descriptors in all three images will be
treated as belonging to the same class, which is key
to learning a metric that can achieve better matching
performance than the original L2 norm. In our datasets,
these conjunctive closures partially build long chains for
which individual pairs can have quite large L2 norm as
one can see in Figure 2. In practice, we consider only
chains with 5 or more keypoints, i.e. 3-D points that are
visible in at least 5 images.

For the negative examples, we randomly sampled the
same number of keypoint pairs and checked that none
of them belonged to the positive set.

This training database is more specific than the one
used by [8], [18], where the authors use a calibrated

database of images and their dense multi-view stereo
correspondences. However, calibration and dense stereo
information is used to extract the image patches which
are centered around 3-D point projections and use these
to build a training database of positive matches. In our
framework, we use the calibration only to geometrically
verify SIFT matches as being consistent with the camera
parameters and with the 3-D structure. The 2-D position,
scale and orientation of the original interest points is
kept, such that we can perform learning on the data, that
is actually extracted by the combination of SIFT keypoint
detection (DoG) and description.

In [6], [17] stereo correspondences are used to build
a training database of positive keypoint pairs, similar
to ours. This approach has advantages if the computed
stereo correspondences are reliable even for image pairs
with strong appearance changes. However, it is likely
that ground truth correspondences for which SIFT al-
ready give good results are over-represented by this
strategy [17]. Here we put more effort to build long
chains of subsequent matches, that end up describing
the huge variability of features represented by the same
3-D point.

To train our descriptors we use the Lausanne dataset
of Figure. 3. Approximately 9.9M feature points are
extracted and their triangulation produced about 1.3M
3-D points, such as those depicted in the top of Figure 3.
The urban area represented here covers nearly 2 square
kilometers and encompasses the appearance statistics of
man-made scenes. Vegetation also appears but is not
extensively represented in this database. These training
database finally consists of about 72M positive and
negative matching pairs from nearly 8M keypoints. For
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Note, that our threshold selection outperforms the corre-
sponding SH formulation over the full false positive range.

testing we used the datasets in Figures 4, 14, 15 and 16 as
well as Lidar ground truth data and planar image pairs
as described Section 5.1.

4.2 Parameter Evaluation

In the following we evaluate the two steps in our
optimization: i) the computation of P, which results in
a dimensionality reduced floating point feature vector
and ii) the estimation of the thresholds that perform
the binarization. For this evaluation we use a set of
images from different cities of Figures 4, 14, 15 and 16.
These provide positive and negative matching examples,
which we use to compute the ROC statistics for different
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Fig. 8. Performance of DIF with varying number of bits on

the Karls bridge dataset of Prague [36]. As a reference
we include the original SIFT performance.

descriptor distances, i.e. L2-ball or Hamming cube. We
use the same negative samples in all cases.

All ROC curves are plotted in log scale for the FP rate,
since the operating point for large scale image retrieval
systems require very low FP rates. For example a value
of FP = 0.01 (1%) for the Dresden dataset with 4.5M
positive and negative matching examples will result in
45K false positives, which is far more than retrieval
systems could possibly handle. We are thus interested
in performance at FP ≪ 1%.

Throughout the paper, we use the following conven-
tion to the algorithms we compare: Metric-Projection-Size.
The metric can either be L2 (Euclidean) or H (Hamming
on the binarized vectors). Projection denotes the way
in which the projection matrix P is computed: LDA
(linear discriminant according to Equation (7)) or DIF
(difference of covariances according to Equation (8). Size
denotes the descriptor length in bits.

4.3 The choice of α in DIF projections

Figure 5 shows the performance of the DIF formulation
when the relative influence of positive and negative
training data is varied. This is achieved by α in Equa-
tion 8. α = 10 leads to the best results for both, 128
and 64 bit descriptors. Note that this experiments also
includes the case where only positive matches are taken
into account, i.e. the approach with α=∞. All remaining
results in this paper will therefore use α = 10 and we
denote the corresponding binarization by DIF.

4.4 Linear Projection

We estimated the parameters P of our projection matrix
of (1) to produce descriptors of size m=64 and 128 for
DIF and LDA. The projection by P results in floating
point descriptors y=Px which we compare in Figure 7
(left) to SIFT [1] [33] and to DAISY [6], [17]. For DAISY,
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Fig. 7. Left: Performance evaluation for the projection P for our methods (DIF and LDA) in comparison to the original

SIFT and to the DAISY descriptor on the Dresden dataset shown in Figure 4. Right: Performance evaluation for

various descriptors for the same dataset after binarization. We compare our binary descriptors with Locality Sensitive
Hashing by [10] (H-SSH-128), DAISY [6] (L2-DAISY-416), SIFT [1] (L2-SIFT-1024) and random orthogonal projections

(H-RANORT-128). Note, that binarization improves the performance for the interesting area of the ROC curves at a

low false positive rate.

we used software provided by Simon Winder, who also
suggested the optimal parameters.1

As shown in Figure 7 (left) LDA projections improve
the results when compared to SIFT. By contrast, DIF
projections performs worse than the original SIFT de-
scriptors. This effect is stronger when we reduce the
dimensions to 64. However, after binarization, these
results change as will be shown next.

4.5 Binarization

In Figure 6, we compare our supervised threshold opti-
mization with the spectral hashing approach [13], which
has been shown to outperform many other hashing
approaches such as restricted Boltzmann machines and
locality-sensitive hashing [13]. Spectral hashing first ap-
plies a PCA projection of the feature space. Then the
bounding box of all feature vectors is computed and
the binarization is realized by looking at the sign of
the analytical eigenfunctions in that box for each dimen-
sion. The SH approach selects the m smallest of those
eigenfunctions. Instead of applying PCA projections, we
show the performance of this particular binarization
scheme for DIF and LDA projections, denoted as H-
DIFSH-128 and H-LDASH-128. This is compared to our
supervised threshold optimization (H-DIF-128 and H-
LDA-128) in Fig. 6. One can see that our superwized
binarization scheme, as described in Section 3.4 does in-
crease performance substantially over the corresponding
unsuperwized spectral hashing formulation. Note also
that SH binarization is related to feature discretization,

1. The DAISY parameters used: i) the keypoint scale, which trans-
forms the SIFT scale parameter to DAISY scale, was set to 1.6 and
ii) the descriptor T2 4 2r6s making up a 52 dimensional feature
representation of unsigned char values was used in all experiments.
For additional details, see [6], [17].

which tries to approximate floating point feature vec-
tors by fewer bits in each dimension. Without sorting
the m smallest eigenfunctions, or equally scaling each
dimension of the feature space to the same range, SH
corresponds to a discretization of each feature dimension
into several bits2. Un-supervised feature discretization,
as used by Brown et.al. [17], will therefore show a similar
behavior as SH binarization does.

4.6 Combined Comparison

In Figure 7 (right) we show the final result of our
binarized descriptors in comparison to other approaches.
One can see that if the data are transformed according
to the covariance structure of the feature space (by LDA
or DIF), we get a significant performance boost by using
the Hamming metric on binarized descriptors. This can
be seen even for H-DIF-128, for which the un-binarized
version L2-DIF-4096 performs worse than SIFT. If, on
the other hand, the feature space is not aligned with
the covariance structure, binarization does not improve,
e.g., for random orthogonal projections H-RANORTH-
128. Figure 7 also shows the results of similarity-sensitive
hashing proposed by [10] and used in [39], the results
of DAISY [6], [17] and spectral hashing [13]. Our ap-
proach shows significantly better performance in the
interesting area of low false positive rates and reaches
the performance of the other descriptors for high true
positive rates with a much smaller descriptor size. In the
next sections (5.1 and 5.2) we show similar or a better
behavior on more difficult datasets of our approach on
many other test sequences.

Note also, the improvement of the binarization with
respect to the un-binarized projection by comparing

2. The number of bits depends on the frequency of the harmonic
eigenfunctions and can be chosen (see [13] for more details).
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(a) (b) (c) (d) (e) (f)

Fig. 9. Images used for quantitative evaluation. Dense ground-truth correspondences are available from LIDAR

measurements for fountain-P11 (top) and Herz-Jesu-P8 (bottom) [37]. The matching performance of the image pairs
a-b and a-c as well as d-e and d-f are shown in Figures 10 and 11. The data is publically available [38]

Figures 7 (left) and (right) for LDA and DIF. An
improvement by quantization was also reported by
Brown et.al. [17], where the range of each descriptor
coordinate has been binarized to fit various bit sizes.

In Figure 8 we show the performance with varying
number of bits for DIF binarization and we compare it
to the SIFT baseline performance.

5 EXPERIMENTAL EVALUATION

In this section, we compare the performance of our ap-
proach to metric learning against state-of-the-art meth-
odss [10], [13], [17] and use SIFT [1] as a baseline.
We first do this using image pairs for which LIDAR
data, and therefore ground truth correspondences, are
available. We then move on to the large scale datasets
presented in Section 5.2 to validate our approach in a
more challenging context.

5.1 LIDAR ground truth evaluation

We evaluated the performance of our binarized descrip-
tor on publicly available datasets [40], [37], for which
camera parameters and the ground truth 3D model are
available. The dense ground-truth cloud of 3D points
was obtained by using LIDAR and was registered to
the images, making it easy to find the corresponding
pixel in any image to a pixel in any other. Occluded
areas can by identified, and have been excluded from
the evaluation, by geometric visibility reasoning. This
high precision evaluation data does contain real 3-D
distortions which is different from the well know dataset
of Mikolajczyk et.al. [2], where the images are related by
a single homography. It does therefore allow to evaluate
more realistic scenarios.

We focus on two pairs of the Fountain-P11 and the
Herz-Jesu-P8 datasets depicted in Figure 9. For both
dataset we present the results for a small baseline and a
wide baseline setting. These datasets and the evaluation
procedure will be publically available [38]. In addi-
tion, we show results on the standard graffiti and wall
datasets of Mikolajczyk et.al.[2], which consists of planar
scenes, making it easy to establish dense correspondence
by a homography. In Figures 10, 11 and 12, we plot
ROC and precision-recall curves that summarize the
corresponding matching performance using the various
descriptors. These curves were obtained as follows: First,

SIFT keypoints were detected in all images. From these,
we filtered out all keypoints for which there were no
ground truth matches, either due to missing LIDAR data
or occlusions. For each of the remaining keypoints in
one image, we search for the corresponding keypoint in
the other image and check whether it is less than two
pixels3 away from the ground truth LIDAR match. To
enforce consistency, we switched the roles of the images
and performed the same operation. This provided us
with ground truth keypoint correspondences and we
further did the evaluation only on those keypoints. By
varying the matching threshold on either the L2-norm
or Hamming distance, we counted the number of true
and false positives to obtain the ROC curves. By using
the same set of keypoints the recall is defined by the
relative amount of true positives and precision by the
number of true positive relative to the total number of
retrieved keypoints.

In the fountain-P11 and Herz-Jesu-P8 datasets (Fig-
ures 10 and 11) the 128-bit binary descriptors sig-
nificantly outperform SIFT. This performance boost is
achieved with a descriptor size which is 8 times less
than the number of bits original SIFT requires (1024).
Even if we halve the size of our descriptors to 64
bits we get results that are similar and in some cases
superior to those of SIFT in accuracy, while being 16
times more compact. This dependence of the descritor
size is depicted in Figure 13. These experiments show
a significant improvement of DAISY when compared to
SIFT, which was also reported by their authors in [6],
[17]. When compared to current state of the art hashing
approaches [13] spectral hashing (SH) and similarity-
sensitive hashing (SSH), using the same descriptor size
(128 bits) we can appreciate a performance boost over the
full precision/ FP range. Our DIF projections are slightly
better than LDA projections and perform still very well
with only 64 bits. On the Mikolajczyk datasets 12 the
results do not show a clear direction. This is grounded
in the small number of ground truth matches (680 and
375) that make matching confusions less likely and on
the fact that the image pairs are relatively easy.

3. We used this value, since we are primary interested in high
precision matches which are needed for calibration purposes. We
checked also different values and obtained very similar results.
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Fig. 10. ROC curves for binarized and original SIFT as well as DAISY, SH and SSH on the fountain image pairs
shown in Figure. 9. When using 128 bit descriptors we systematically outperform all other methods and perform at

least similarly when using 64 bit descriptors. Precision v.s. recall curves are show in [36]
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Fig. 11. ROC curves for binarized and original SIFT as well as DAISY, SH and SSH on the Herz-Jesu image pairs
shown in Figure. 9. When using 128 bit descriptors we systematically outperform all other methods and perform at

least similarly when using 64 bit descriptors. Precision v.s. recall curves are show in [36]

5.2 Large Scale Ground Truth Evaluation

To test our hashing scheme for large scale keypoint
retrieval on substantially different images, we calibrated
four other datasets depicted in Figures 14, 15 and 16
using SIFT L2-norm matching as described in Section 4.1.
The first dataset consists of 71 aerial images (41M pixels),
and the other three of 192, 107 and 310 urban images.
All datasets contain millions of matching examples and
especially the Venice dataset with about 13 million data
points covers also interesting situations with strong
light and scale changes. The ROC curves are shown in
Figs. 14, 15 and 16. Overall, we get an improvement
in performance for these large scale datasets, which
indicates that our learning scheme generalizes properly
and scales well.

The first three datasets are relatively easy. Baselines

in these datasets are small and many of the images are
taken under similar light conditions, which is especially
true for the aerial dataset in Fig. 14. As a result the
improvement of our metric learning is less pronounced
than in the last example of Venice (Fig. 16). This dataset
contains images from photo community collections take
by many different users at different times. One can notice
here a significant improvement for 128 bit LDA and DIF
projections as well as for 64 bit DIF projections for low
false positive rates. More particular, as can be conducted
from the graphs, we retrieve the correct keypoint in
83% (78%) of the cases with 128 (64) bits at FP = 0.001
(corresponding to 12796 false positives in total), which is
substantially better that SIFT and DAISY-416 with 56%
and 69%, respectively. At the same time we need only
12.5% (6.25%) of the space and bandwidth to store and



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. *, NO. *, MONTH 20?? 11

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1e-05  0.0001  0.001  0.01  0.1  1

tr
u

e
 p

o
s
it
iv

e
 r

a
te

false positive rate

L2-SIFT-1024
L2-DAISY-416

H-DIF-128
H-LDA-128
H-SH-128

H-SSH-128
H-DIF-64

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05  0.0001  0.001  0.01  0.1  1

tr
u

e
 p

o
s
it
iv

e
 r

a
te

false positive rate

L2-SIFT-1024
L2-DAISY-416

H-DIF-128
H-LDA-128

H-SH-128
H-SSH-128

H-DIF-64

(a) wall img1-img2 with 680 matches (b) graffity img1-img2 with 375 matches

Fig. 12. ROC curves for binarized and original SIFT as well as DAISY, SH and SSH. on the image pairs of wall (a)
and graffiti (b) (top) from [2]. Precision v.s. recall curves are show in [36]
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Fig. 13. Descritor performance as a function of their size

for the fountain dataset in Figure 10 (top-left) for various
false positive rates.

transfer the descriptors for processing. The difference is
much more outspoken if we go to more realistic, lower
values of the false positive rate.

If we compare the performance of the descriptors with
128 bits and less, we outperform the other approaches
SSH, SH and DAISY-128 over the full false positive
range.

The improvement of our metric learning scheme can
be explained by the large amount of conjunctive closure
matches in our training set. They are true matches,
in that they correspond to the projection of the same
physical 3-D point, but may be relatively far apart
when compared by SIFT L2 norm. Our hashing scheme
accounts for that and brings those keypoints closer in
the Hamming space. This results in an even greater
performance boost over SIFT when wide-baseline and
small-baseline is compared as seen in Figures 10 and 11
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Fig. 14. ROC curves for our binary descriptors to-

gether with original SIFT, DAISY [6], spectral hashing [13]

and boosted learning by [10] on an aerial image set
with 6,375,139 positive and negative matching examples.

Note, that this test image set is very different from our

terrestrial image training set also in that more vegetation
is present. The performance H-DIF-16 and H-LDA-16

indicates a good generalization of our learning procedure.
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Fig. 15. ROC curves similar to Figure 14 on the urban

dataset of Prague with 2,027,389 positive and negative

matching examples.

and when the images contain strong appearance changes
as in the Venice dataset shown in Figure 16. We note
that the use of a single global projection of the data
is potentially limiting full exploitation of the the wide-
baseline data. Training a sequence of projections where
a subsequent projection is trained on the errors of the
previous ones could allow circumventing this limitation.

Our evaluation confirms earlier results on the perfor-
mance of the (52-dimensional) DAISY descriptor [6], [17]
when compared to SIFT, which is visible especially in
the large scale datasets. To build the DAISY descriptor
an extensive optimization of the filter locations, that are
used to fill up the descriptor bins, has been performed.
This was not done here. Surprisingly, the good low false
positve performance of our descriptors when compared
to DAISY-416 is consistent and could be explained by the
difference in generation the training data (as discussed
in Section 4.1) and by the fact that DAISY does not use
supervision for its last, quantization step. We think that
this is important and show here, as seen in Figure 6,
that it leads to a larger performance boost than the un-
supervised quantization strategy used by DAISY.

Our experiments show that DIF projections perform
slighly better that LDA projections.

5.3 Dependence on Keypoint Detector

Local keypoint descriptors are often highly coupled
to keypoint detectors, since computation time can be
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Fig. 16. ROC curves for our learned binary descriptors

together with original SIFT, DAISY [6], [17], spectral hash-

ing [13] and boosted learning by [10] on the flickr dataset
of Venice with 12,796,971 positive and negative matching

examples. This dataset contains images taken by different
cameras and with different light, weather and seasonal

conditions. For this reason and for its size it is the most

challenging dataset.

saved by this strategy. For all evaluation so far we
used the SIFT related keypoint detector with is based
on Difference of Gaussians (DoG) [1]. DAISY [6] and
SURF [3] use other keypoint detectors, which are based
on Laplacians and Hessians, respectively. An evaluation
on the matching performance for SIFT, DAISY and SURF
with their own keypoint detectors is shown in Figure 17.
For a fair comparison we sampled for each keypoint
detector a constant number of 5000 matches for the
fountain (a-b) dataset in Fig. 9. The results show that the
DoG keypoint detector performs best and that DAISY
gives better results on those keypoints when compared
to its own keypoint detections.

6 CONCLUSIONS

We presented a novel and simple approach to produce
a binary string from a SIFT descriptor. Our approach
first aligns the SIFT descriptors according to the prob-
lem specific covariance structure. In the resulting vector
space, all SIFT descriptors have diagonal covariance. We
can then estimate reliable thresholds that perform the
binarization according to an appropriate cost function.
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Fig. 17. ROC curves for the performance of the descrip-

tors on their own keypoint detector with L2-SIFT-1024
and H-DIF-128 using DoG keypoints, L2-DAISY-416 using

Laplacian Keypoints [6] and L2-OSURF [3] using Hessian

keypoints. We use 5000 ground truth keypoints on the
fountain dataset depicted in Fig. 9 (a-b).

This approach is very fast and can be used for many
other applications for which similar training data is
available.

We showed in this paper that this very simple and
general approach leads to outstanding matching results
with a very compact descriptor. Our resulting binary
descriptor performs better than original SIFT [1], [33]
and DAISY [6], [17] in the low false positive range, which
is the interesting range for large scale keypoint retrieval
applications. Thereby our 128 bit version requires only
≈ 10% of the size SIFT uses to (≈ 25% of the DAISY size,
respectively) to describe keypoints. When compared to
locality-sensitive hashing [10] and spectral hashing pro-
posed by Weiss et.al. [13], which use the same number of
bits to encode keypoints, our descriptors perform better
in the whole false positive range. This is also true if we
compare to a reduced size DAISY with 128 bits.

Very good performance for low false positive rates can
be obtained by using as few as 64 bits (H-DIF-64), which
makes is possible to search efficiently in a large database.
Matching is very fast for binary descriptors even for
exhaustive search, since only a XOR followed by a bit
count is needed to compute the Hamming distance (in
some modern CPUs, bit counting is implemented as a
single instruction). Moreover, binary descriptors with the
Hamming metric can be indexed efficiently on existing
database management systems, a direction we intend to
explore in future research. We believe that matching of
our binary representations can be performed very fast
even on mobile devices, and release our binarizations
for SIFT into the public domain [41].

Philosophically, our approach addresses the gap be-
tween modeling and learning in feature descriptor design.
The recent trend in computer vision literature has been to
construct feature descriptors that would theoretically be

invariant to certain transformations such as rotations or
affine transformations. However, such transformations
are only approximations of the real image formation
model, and thus the descriptor is never truly invariant.
Augmenting it with a metric learning approach, it is pos-
sible to learn invariance to typical transformations that
may appear in a natural scene. It would be interesting to
explore the tradeoff between how much effort should be
invested in modeling invariance versus learning it from
examples.

Interesting further research could look at other de-
scriptors such as DAISY [6], SURF [3] or BRIEF [42],
which are faster to compute and to learn a similar
binarization. We also plan to investigate the performance
of an additional network layer to reduce the size of our
current binary descriptors even further and without loss
in performance.
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