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We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes) for
channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the
LDGMencoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding
possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting
performance is very close to the theoretical limits.
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1. INTRODUCTION

The introduction of turbo codes [1] and low-density parity
check (LDPC) codes [2, 3, 4, 5] has been one of the most im-
portant milestones in channel coding during the last years.
Provided that the information block lengths are long enough,
performance close to the Shannon theoretical limit can be
achieved for different channel environments. However, in
practical applications, complexity issues have to be carefully
considered, since both schemes present either high encod-
ing or high decoding complexity. Specifically, for the case of
turbo codes the encoding complexity is very low, but the de-
coding complexity is high. Compared with turbo codes, stan-
dard LDPCs present a higher encoding complexity, but the
decoder is simpler.

In this paper, we first show that it is possible to achieve a
channel coding performance comparable to that of standard
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LDPC and turbo codes by utilizing systematic linear codes
with low-density generator matrices [6] (LDGM codes1).
LDGM codes present a complexity advantage over standard
LDPC and turbo codes. Specifically, because of the sparseness
of the generatormatrix, the amount of processing required in
the encoder is linear with the block size and similar to that of
turbo codes. Moreover, since the parity check matrix of sys-
tematic LDGM codes is also sparse, such codes are in fact a
subset of LDPC codes and can be decoded in the same man-
ner and with the same complexity as standard LDPC codes.
Notice, however, that in order to facilitate the development
of the paper, we will derive the decoding algorithm utilizing
the graph corresponding to the generator matrix.

In the second part of the paper, we will focus on the use of
LDGM codes to perform joint source-channel coding of cor-
related sources, which includes the case of pure source coding
as a particular case. The problem of coding for multitermi-
nal correlated sources has important practical applications
(e.g., in the context of sensor networks [9]). Since compres-
sion and joint source-channel coding of correlated sources
can be considered as a problem of channel coding with side
information [10, 11], the use of powerful channel codes, such
as LDGM codes, should produce very good results in this

1As indicated in [7], concatenated single parity check codes [8] are par-
ticular examples of LDGM codes.
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context. The first schemes for compression of multitermi-
nal correlated sources using channel codes were proposed in
[12, 13, 14], and the use of turbo-like codes in this problem
was proposed in [15, 16]. However, although as shown in
[17, 18] the separation principle between source and channel
coding holds for transmission of correlated sources over sep-
arated noisy channels, it is not straightforward to implement
a practical system based on this concept. One of the reasons
is that, in spite of some previous work (see [14, 19] and the
references therein), the problem of designing good practical
codes for correlated sources from a source coding perspective
is still open. Moreover, the separation between source and
channel coding may lead to catastrophic error propagation.
Previous work in joint source-channel coding using iterative
decoding schemes (turbo and LDPC codes) for the cases in
which only one source is corrupted by noise (and the spe-
cial case of joint source-channel coding for single sources)
can be found in [20, 21, 22, 23, 24]. The case in which both
sources are transmitted through separated noisy channels has
appeared only in [25, 26], where turbo codes were proposed
to perform joint source-channel coding of correlated sources.

The contents of this paper are as follows: Section 2 in-
troduces systematic LDGM codes and presents the decoding
algorithm in relation with that of standard LDPC codes. The
proposed concatenated scheme, required to eliminate the er-
ror floor in both channel coding and joint source-channel
coding, is introduced in Section 3. Section 4 contains sim-
ulation results for the case of channel coding with LDGM
codes over binary symmetric channels (BSC), and additive
white gaussian noise (AWGN) and Rayleigh fading channels.
The rest of the paper deals with the problem of joint source-
channel coding of correlated sources. The theoretical limits
for this problem are presented in Section 5, and the ratio-
nale for using turbo-like codes in this context is explained
in Section 6. Section 7 specifies the proposed system and the
correlation model utilized in this paper for joint source-
channel coding of correlated sources. Simulation results are
provided in Section 8. Finally, Section 9 concludes the pa-
per, and a comparison between the decoding complexity of
LDGM and turbo codes is provided in the appendix.

2. SYSTEMATIC LDGM CODES
FOR CHANNEL CODING

2.1. Encoding

Systematic LDGM codes are linear codes with a sparse gen-
erator matrix, G = [I P] with P = [pkm] and thus the
corresponding parity check matrix is H = [PTI]. We de-
note the information message that we want to transmit as
u = [u1 · · ·uK ]. These bits, together with the coded bits
generated as c = uP, with c = [c1 · · · cM], are transmit-
ted through a noisy channel. The corrupted sequence at the
decoder is denoted as [u′ c′], where c′m = cm + e1m and
u′k = uk + e2k, with e1m and e2k being the noise introduced by
the channel. Notice that the proposed code is systematic with
rate K/N , where N = K +M. In this paper, we will denote as
regular (X ,Y) LDGM codes those irregular systematic LDPC

c1 c2 c3

Qx
mk Rx

mk

u1 u2 u3 u4 u5 u6

Figure 1: Bipartite graph representing an LDGM code. {cm} repre-
sent the coded bits generated at the encoder (before being corrupted
by the channel). {uk} are the nodes corresponding to the systematic
bits. The figure shows the two different types of messages that are
propagated in the decoding process through the graph.

codes in which all the N −K check nodes have degree Y + 1,
all the K systematic bit nodes have degree X , and each of the
N − K coded bit nodes has degree 1 and is associated to its
corresponding check node. In other words, the parity matrix
P of an (X ,Y) LDGM code has exactly X nonzero entries per
row and Y nonzero entries per column. We will also abuse
this notation to include irregular LDGM codes whose average
degree distributions are also (X ,Y) (i.e., the average number
of nonzero entries per row and per column in their matrices
P is X and Y , resp.) In any case, it is obvious that the rela-
tionship between the code rate and the degree distributions
is given by

Rc = Y

X + Y
. (1)

2.2. Decoding algorithm

For the case of LDPC codes, the decoder goal is to iteratively
estimate the most probable solution of the equation s = eHT ,
where s represents the syndrome calculated from the received
sequence, H is the parity check matrix of the code, and e is
the error pattern that we are interested in calculating (the
sparsest one satisfying the equation above). Analogously, we
can see LDGM decoding as a method to find the most prob-
able solution for the equation c = uP, where c is the vector
of coded bits generated at the encoder (i.e., before they are
corrupted by the channel noise), G = [I P] is the generator
matrix of the code, and u is the information message that we
want to calculate. Figure 1 shows the graph associated with
the proposed code.

The decoding algorithm for LDGM codes can be derived
by applying belief propagation [27] (or factor graph decod-
ing [28]) over the graph described in Figure 1. The applica-
tion of belief propagation for the proposed codes presents an
important difference with respect to standard LDPC codes:
in standard LDPC codes, the syndrome nodes are fixed to a
deterministic value (i.e., for each position they are either 0
or 1). In the proposed codes, the coded bit nodes c are ran-
dom variables, with distribution calculated depending on the
received corrupted coded bits c′ and the distribution of the
noise vector e1 (i.e., c′m = cm + e1m).

Although this decoding procedure is only exact for net-
works without cycles, we will see in our simulations that the
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proposed codes achieve good performance. In order to facil-
itate the algorithm implementation, we present the decod-
ing method indicating only the modifications with respect to
the case of standard LDPC codes. Using the notation com-
monly utilized in the LDPC literature, we will denote by rxmk,
x ∈ {0, 1}, the message propagated from coded bit node cm
to systematic bit node uk (and by qxmk, x ∈ {0, 1} the message
propagated from systematic bit node uk to coded bit node
cm), if the standard LDPC decoding algorithm were to be di-
rectly applied over the graph shown in Figure 1. We now in-
dicate the modifications necessary to deal with LDGM codes.
The messages passed from coded bit nodes to systematic bit
nodes will be denoted by Rx

mk. Q
x
mk indicate the messages ex-

changed from systematic bit nodes to coded bit nodes.

(1) Initialization. Fix the probability of the systematic bit
nodes to its a priori value. For every (m, k) such that
uk and cm are connected, let Qx

mk = Px
k = 1 − pk if

u′k = x, and Qx
mk = Px

k = pk if u′k �= x, with x ∈
{0, 1}. pk denotes the probability that systematic bit uk
is received in error.

(2) Message passing from the coded bit nodes to the system-
atic bit nodes.
(i) For every (m, k) pair such that uk and cm are con-

nected, calculate rxmk as in standard LDPC decod-
ing (but using the parameters Qx

mk instead of qxmk).
(ii) Calculate Rx

mk as

R0
mk =

(
1− γm

)
r0mk + γmr

1
mk, (2)

R1
mk =

(
1− γm

)
r1mk + γmr

0
mk, (3)

where γm denotes the probability that coded bit cm
is received in error. The intuitive idea behind the
previous equations is that when the received coded
bit is in error (which occurs with probability γm)
the message to pass, Rx

mk, is not r
x
mk, but r

1−x
mk . If

the received coded bit is correct (which occurs with
probability 1− γm), Rx

mk = rxmk.
(3) Message passing from the systematic bit nodes to the

coded bit nodes. For every (m, k) pair such that uk and
cm are connected, calculateQx

mk in the same way as qxmk
is calculated in standard LDPC decoding. The only dif-
ferences are that now parameters Rx

mk should be used
instead of rxmk, and that the a priori probability for the
systematic bit node uk is Px

k = 1 − pk if u′k = x, and
Px
k = pk if u′k �= x, with x ∈ {0, 1}.

3. CONCATENATED LDGM SCHEMES

As shown in [29], and first recognized byMacKay [5], LDGM
codes are bad codes, since they present error floors that are
independent of the block length. Specifically, LDGM codes
with small degrees have high error floors but good conver-
gence thresholds, while the contrary occurs if the degrees
are high [29]. However, these error floors can be reduced
and practically eliminated. The reason is that, as explained
in [29] for BSCs, the number of errors for the blocks in er-
ror decays very fast, provided that the crossover probability

Outer LDGM code

Inner LDGM code

K/N1 N1/N

Figure 2: Concatenated scheme of LDGM codes to reduce the er-
ror floor. First, the information message is encoded by a high rate
K/N1 outer LDGM code. The output is encoded by a rate N1/N in-
ner LDGM code to produce a rate K/N overall code.

cout

cin

u

Figure 3: Graph associated with the concatenated LDGM codes
with cin as the inner coded bit nodes, cout as the outer coded bit
nodes, and u as the information (systematic) bit nodes.

is small enough (a similar behavior can be observed in other
channels when their quality improves).Moreover, the LDGM
decoder produces a good indication of where the residual er-
rors are located. Most of the systematic bits in error will have
a corresponding probability very close to 0.5, compared with
a probability close to 1 for the bits that have been success-
fully decoded. This means that the results obtained from the
decoding of an LDGM code can be seen as produced by an
equivalent channel introducing a small amount of “erasures”
at specific locations.

Notice however that this equivalent channel (consisting
of the concatenation of the channel and the LDGM code) is
not a standard erasure channel. The error locations are not
known with certainty, but, on the other hand, there is a priori
information about how the erasures should be filled. Specif-
ically, the LDGM decoder provides this a priori probability
for each of the systematic bits. This a priori probability can
be easily exploited if those systematic bits for the LDGM code
are in fact generated by another outer LDGM code. Then, the
outer LDGM decoder would use the a priori probability to
initialize its systematic and coded bit nodes in the decoding
process, which would reduce the number of residual errors.
The encoder diagram for the proposed concatenated scheme
is shown in Figure 2.

Figure 3 shows the graph representing the concatenated
scheme. Decoding can be easily performed by applying the
belief propagation algorithm [27] over the graph. Since the
network has cycles (more than for the case of single codes),
different activation schedules can lead to different results. In
order to define different activation schemes, we assume that
message passing is performed according to a global clock. At
each clock cycle, a group of nodes is activated. The activation
of a node is defined as the process in which the node reads
all its incoming messages from all its neighboring nodes,
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performs computation, and outputs all its outgoingmessages
to its neighbors. We follow the convention that once a mes-
sage is produced, it remains available to the corresponding
nodes until the message gets updated.

We define two different scheduling schemes for the case
of channel coding. The first one (decoding algorithm I) has
already been defined in [29]. It first proceeds with the decod-
ing of the inner code, and the last step is to reduce the resid-
ual errors by decoding the outer code. The second schedule
(decoding algorithm II) iterates between the inner and outer
code in each iteration. For notation purposes, we will assume
that nodes are activated serially by order of appearance in the
scheme definition, except when included in brackets (which
means that activation for those nodes is performed in paral-
lel within a clock cycle).2 Then, the two different schedules
can be expressed as follows.

(i) Decoding algorithm I [29]:

cout,

u, cin, . . . ,u, cin,

u, cout, . . . ,u, cout.

(ii) Decoding algorithm II: repeat

u, cin,u, cout.

It is possible to define other activation schedules by vary-
ing the number of times that the inner decoder is activated
per iteration in the outer decoder. In general, we have ob-
served that increasing the activation rate of the inner decoder
leads to slightly higher error floors, while more frequent ac-
tivations in the outer decoder slightly degrades the conver-
gence threshold. This observation is consistent with the func-
tioning of the concatenated scheme, since the inner code de-
termines the convergence threshold and the outer code re-
duces the error floor by taking care of the small number of
residual errors.

The concatenation of the two LDGM codes can be con-
sidered as a single irregular LDGM code of generator ma-
trix Gjoint = GouterGinner. Therefore, decoding can be per-
formed using the graph corresponding to Gjoint. Notice that
this graph can be easily obtained from Figure 3 by eliminat-
ing the connections between the inner and outer coded bit
nodes (connecting instead the systematic bit nodes directly
to the corresponding inner coded bit nodes). In this case,
a systematic bit node could be connected more than once
to the same inner coded bit node. Then, if the number of
connections is even, all connections cancel with each other
and no connection appears in the final graph, while if the
number of connections is odd, one of them is kept. However,
as we illustrate in the next section, the performance of the
“joint” scheme, Gjoint, is much worse than that of schedules I
and II.

2In this section, both schedules consist of serial activations. Some parallel
activation will occur in the case of joint source-channel coding of correlated
sources.

4. SIMULATION RESULTS OF LDGM CODES
FOR CHANNEL CODING

In all our simulations, the matrices Pinner and Pouter are gen-
erated in a pseudorandom way without introducing cycles
of length 4 or less. In all cases, at least 10 000 blocks are
simulated, and, for the decoding of each block, the iterative
process continues until 3 consecutive iterations produce the
same result for the systematic bits or 100 iterations are run.

We first encoded 9500 information bits with a regu-
lar (4, 76) outer LDGM code to produce a total of 10 000
bits. These bits were encoded again by a regular (6, 6) in-
ner LDGM code producing a total of 20 000 bits (i.e., over-
all rate Rc = 0.475). For the joint scheme, the node-degree
profiles (i.e., the percentage of nodes of a given degree) of
the code resulting from the concatenation of the inner and
outer codes (Gjoint = GouterGinner) are λ(x) = 0.0004x30 +
0.0277x32+0.9719x34 for the systematic bit nodes and ρ(x) =
0.697810x5 + 0.047619x75 + 0.000095x76 + 0.009429x78 +
0.215524x80 + 0.000667x151 + 0.012190x153 + 0.015048x155 +
0.000190x224+0.000762x226+0.000571x228+0.000095x230 for
the coded bit nodes. Considering an AWGN channel, even
for very high signal to noise ratios (4 dB above the Shan-
non limit), the residual BER for each block is always higher
than 10−2, and presents oscillations with the iteration num-
ber. This behavior can be explained by the existence in Gjoint

of a peculiar type of structure containing many short cycles
of length 4, which are produced as described below.

Figure 4a shows all the connections for a given outer
coded bit node (triangle) in the concatenated LDGM
scheme shown in Figure 3. Following the rules described in
Section 3, it is obvious that in the graph corresponding to
Gjoint, Figure 4a becomes the structure shown in Figure 4b.
Figure 4b assumes that there are no other connections (either
directly or through other outer coded bits) for the shaded
systematic and inner coded bit nodes in Figure 4a. As de-
scribed before, if an even number of connections between a
given systematic bit and a given coded bit were to exist, Gjoint

would present no connection between these two nodes. The
important point is that Gjoint has as many of the structures
shown in Figure 4b as outer coded bits (500). Even if some
of the links in the structures are eliminated (in this exam-
ple the probability of elimination of a link is less than 0.03),
these structures are highly regular, and each of the 76 system-
atic bits presents many loops of length 4 (21, i.e., 7 choose
2, in the case of no link elimination), all of them involving
the shaded bits in Figure 4b. The occurrence of this type of
structure explains the poor performance of Gjoint and the os-
cillating behavior in the decoding process. Notice that when
decoding is performed in the graph containing both the in-
ner code and the outer code (Figure 3), this type of cycles is
broken by the outer coded bit nodes (see Figure 4a).

The results presented in this section for the joint scheme
assume a codeG′joint with the same node-degree distributions
as Gjoint (in fact, with exactly the same number of nodes
with a given degree), but with random connection assign-
ments. In this way, the structures existing in Gjoint disappear
and the performance is expected to improve. Figure 5 shows
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Figure 4: (a) All the connections for a given outer coded bit node (triangle) in the concatenated LDGM schemewhen the graph is represented
as the concatenation of the inner and outer codes as in Figure 3 are shown. They get converted into (b) in the graph corresponding to the
joint scheme Gjoint.

0.130.120.110.10.090.08

BSC crossover probability

10−4

10−3

10−2

10−1

B
E
R

Decoding algorithm I
Decoding algorithm II
Joint scheme

Figure 5: Performance of the joint scheme and of the decoding al-
gorithms I and II when the proposed concatenated system is utilized
over BSCs. The overall rate of the code is 0.475. The Shannon limit
for this case is p = 0.118.

the performance of the proposed decoding algorithms over a
BSC as a function of the crossover probability, while Figure 6
illustrates the performance for AWGN channels as a func-
tion of Eb/N0 (where Eb is the energy per information bit
and N0 denotes the one-side spectral density). For schedules
I and II, no error floor appeared after simulating more than
10 000 blocks, and the resulting performance is very close to
the theoretical limits (which correspond to a crossover pa-
rameter 0.118 for the BSC case and Eb/N0 = 0.08 dB for the
AWGN channel assuming binary signaling [30]). These re-
sults are comparable to those obtained with turbo and ir-
regular LDPC codes [31, 32]. It is interesting to remark that
both activation schedules lead to similar results for AWGN
channels, while schedule II is slightly superior for BSCs. No-
tice that the performance of the “joint” scheme, G′joint, is

32.521.510.5
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Figure 6: Performance of the joint scheme and of the decoding al-
gorithms I and II when the proposed concatenated system is uti-
lized over AWGN channels. The overall rate of the code is 0.475.
The Shannon limit for this case (assuming binary signaling) is
Eb/N0 = 0.08 dB.

still worse than that of decoding algorithms I and II, but it
presents no oscillating behavior. This worse performance can
be explained by the existence of some short cycles in G′joint,3

and by noticing that random connection assignments lead
to a graph structure different from the specific one resulting
from the concatenation of the inner and outer codes (repre-
sented in Figure 3). This occurs because the graph in Figure 3
contains the outer coded bit nodes as additional variables
that (due to the random connections) do not have equiva-
lence in G′joint.

3In the construction process, we do not allow cycles of length 4 in Pinner
and Pouter. However, due to its non-low-density nature, it is not possible to
eliminate all cycles of length 4 in G′joint.
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Figure 7: Performance of the joint scheme and of the decoding al-
gorithms I and II when the proposed concatenated system is utilized
over fully interleaved Rayleigh fading channels with perfect CSI at
the receiver. The overall rate of the code (assuming binary signaling)
is 0.475. The Shannon limit for this case is Eb/N0 = 1.6 dB.

We also investigated the performance of LDGM codes
over Rayleigh fading channels. We assume that the received
sequence can be expressed as rk = ck yk+nk, where {yk} is the
binary transmitted sequence, {nk} is a set of statistically in-
dependent Gaussian random variables with zero-mean, and
{ck} is modeled as a Rayleigh process. We also assume an ide-
ally interleaved channel, so that the sequence {ck} is uncor-
related in time k, and perfect channel side information (CSI)
is available at the decoder (i.e., the value of ck is known).
Figure 7 shows the performance of the concatenated LDGM
code defined before in this Rayleigh fading environment. No-
tice that similar to the BSC and AWGN channels, no error
floor appears here and decoding algorithms I and II outper-
form the “joint” scheme, G′joint again. The theoretical limit in
this case (assuming binary signaling) is Eb/N0 = 1.6 dB [30],
and both schedules I and II achieve a performance within
1.3 dB from this limit.

5. SOURCE AND JOINT SOURCE-CHANNEL
CODINGOF CORRELATED SOURCES:
THEORETICAL LIMITS

Figure 8 illustrates the system proposed in this paper for joint
source-channel coding of correlated sources. For simplicity,
we consider only two sources, but the approach can be easily
extended to the case of more sources. The two sources are en-
coded independently from each other (i.e., for a given source
neither the realization from the other source nor the correla-
tion model are available at the encoder site) and transmitted
through two different noisy channels to a common decoder.
Since the correlation between the sources is exploited at the

H(U1,U2)

Source 1

Source 2

Encoder 1

Encoder 2

R1

R2

Channel 1

Channel 2

Joint
decoder

Û1

Û2

Figure 8: Proposed system for joint source-channel coding of cor-
related sources. Each source is encoded independently and trans-
mitted through a different noisy channel.

common receiver, the value of Eb/N0 corresponding to the
theoretical limit will be less than if the sources were inde-
pendent. In this section, we review the theoretical limits for
the case in which both channels are either noisy or noiseless
(which corresponds to the case of compression of correlated
sources).

5.1. Compression of correlated sources:
Slepian-Wolf limit

It is well known [33, 34] that two jointly ergodic sources
(U1,U2), defined over countably infinite alphabets, can be
compressed at rates (R1,R2), provided that

R1 ≥ H
(
U1
∣∣U2),

R2 ≥ H
(
U2
∣∣U1),

R1 + R2 ≥ H
(
U1,U2).

(4)

As explained before, compression is performed indepen-
dently for each source and the decoder jointly acts over the
compressed versions of the sources to recover the original se-
quences.

5.2. Transmission of correlated sources
over independent noisy channels

It has been recently shown [17, 18] that the separation princi-
ple between source and channel coding applies to the case of
transmission of correlated sources over separated noisy chan-
nels. In other words, the theoretical limit for the transmis-
sion of two sources generating i.i.d. random pairs can be ob-
tained by performing first distributed data compression up
to the Slepian-Wolf limit followed by channel coding. There-
fore, assuming that both sources are encoded at the same rate
(R1 = R2 = R/2), the theoretical limit in communications for
a fixed transmission rate of R/2 information bits/channel use
would then be achieved for each source when the two cor-
related sources are first compressed up to the joint entropy
(H(U1,U2)) and then a capacity achieving channel code of
rate R′c = R/2 is used for each of them. By taking into ac-
count that the energy per generated source bit (Eso) can be
related with the energy per information bit (Eb) by using the
relation 2Eso = H(U1,U2)Eb, the theoretical limit for Eso/N0

(for the case of two independent channels with capacity C)
can be obtained by solving the equation R/2 = C [18].

The previous separate source and channel coding ap-
proach would achieve the theoretical limit if two conditions
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are met. On the one hand, optimum source coding for cor-
related sources should be utilized. On the other, capacity
achieving channel codes are necessary. The problem with
this approach in practical systems is twofold. First, it is nec-
essary to design good practical source codes for correlated
sources. Moreover, in practical systems, errors introduced by
the channel decoder could be catastrophic for the source de-
coder. Besides, in our approach, it does not seem reasonable
to first use LDGM codes to compress the sources and then
some other LDGM codes to add redundancy, since the use of
one LDGM code (per source) can perform the combined op-
eration. In order to avoid these problems, we propose a joint
source-channel coding scheme which in practical situations
achieves performance very close to the theoretical limits. In
our approach, each of the correlated binary sources is not
source encoded, but directly channel encoded with a channel
code of rate Rc. The information rate transmitted through
the channel in this case is R1 = R2 = R/2 = H(U1,U2)Rc/2
information bits/channel use. Notice that in order to keep the
information rate per source (R/2), the code used in our joint
source-channel coding approach (of rate Rc) has to be less
powerful than in the separate source and channel coding
scheme (code of rate R′c = R/2).

Specifically, the relation between R′c and Rc to keep the
same information rate through the channel, R/2 = R′c, is
given by R′c = H(U1,U2)Rc/2. The “weakness” of the code
in the joint source-channel coding approach will be compen-
sated by exploiting the correlation between sources in the de-
coder. Notice that the proposed joint source-channel coding
approach allows a channel code of a single rate to be used
in combination with sources having arbitrary joint entropy
rates, with the modifications to maintain efficient coding in-
volving only processing in the decoder.

6. TURBO-LIKE CODES FOR CORRELATED SOURCES:
RATIONALE

As indicated in the introduction, compression (or joint
source-channel coding) of multiterminal correlated sources
can be seen as a problem of channel coding with side infor-
mation. This is illustrated in Figure 9. To simplify the de-
scription, we assume that the information from source 2 is
perfectly available at the decoder and that U1 is the sequence
generated by source 1 that we want to compress. In order
to do so, U1 is encoded by a systematic channel encoder, so
that the nonsystematic coded bits, C1, constitute the com-
pressed sequence for source 1 (i.e., the systematic bits are
eliminated). The decoder utilizes the compressed sequence
for source 1 (O1 = C1) plus the information proceeding from
the other source (U2). Notice that, because of the correlation
between sources, U2 can be used as a side information for
source 1. In fact, U2 can be thought as the corrupted ver-
sion of the systematic bits in source 1 when U1 is transmit-
ted through a channel model defined by the correlation be-
tween sources. Therefore, recovery of U1 can be interpreted
as performing channel decoding over the corrupted version
of U1 (U2) and the redundant/uncorrupted nonsystematic

Channel coding
+ systematic
symbols
eliminated

Noiseless
or

noisy
channel

Channel
decoding

Noisy
channel
p(y|x)

U1 C1 O1 Û1

U2

Figure 9: Source coding as a problem of channel coding with side
information.U1 is encoded by a systematic channel encoder, so that
the nonsystematic bits,C1, constitute its compressed version.U2 can
be thought of as the corrupted version of U1 when U1 is transmit-
ted through a channel model defined by the correlation between
sources, and is used by the decoder together with O1 = C1 to re-
cover the original sequence U1.

bits O1 = C1 proceeding from U1. In the case in which U2

were not perfectly available at the receiver, the decoder would
consist of two blocks as the one shown in Figure 9 (one for
source 1 and the other for source 2). Then, decoding for U1

would use an estimate of U2 as side information, and pro-
vide the resulting estimate of U1 as side information for the
decoding of U2, with this process continuing iteratively. The
interpretation of joint source-channel coding of correlated
sources as a problem of channel coding with side informa-
tion is also straightforward. The only differences with respect
to the case of pure source coding described above are: (i) se-
quence C1 may include systematic bits, and (ii) sequence C1

is corrupted by the channel noise, producing sequence O1,
which is available at the decoder.

Turbo-like codes are very well suited to be applied in
the context described in Figure 9. The reason is two fold.
First, they are pseudorandom codes, and therefore adequate
to achieve the theoretical limits corresponding to random
codes (by using one turbo-like code as encoder for each of the
correlated sources). Second, turbo-like codes are very well
prepared to exploit side information. In order to do so, the
known probabilistic description of the different sequences
available at the decoder can be easily incorporated in the de-
coding process, which will be (in general) represented by a
graph. Moreover, even if the correlation model is not avail-
able at the decoder, it is still possible to estimate it jointly
with the decoding process (in many occasions with little per-
formance degradation). Sections 7 and 8 develop these ideas
for the case of LDGM codes. Although the simulation results
presented there focus on the case of joint source-channel
coding, the particularization of the proposed schemes for the
case of pure source coding results in performances very close
to the Slepian-Wolf limit [16].

7. LDGM CODES FOR CORRELATED SOURCES:
PROPOSED SYSTEM

As explained in Section 5, although the theoretical limits for
transmission of correlated sources over noisy channels can be
achieved by separation between source and channel coding,
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c1,out

c1,in

c2,out

c2,in

u1

u2

Figure 10: Graph representing the joint source-channel decoder for
transmission of correlated sources over separated noisy channels.

it may be advantageous in practical applications to use a
joint source-channel coding approach, such as the one pre-
sented in this paper and shown in Figure 8 [35, 36]. This ap-
proach can be particularized into some special cases such as
source coding of a single source (by ignoring the other source
and considering noiseless channels), distributed source cod-
ing (by considering noiseless channels) [37, 38], and joint
source-channel coding of single sources (by ignoring the
other source).

For the development contained in this paper, we denote
the two correlated binary information sequences as U1 =
u11u

1
2 . . . and U2 = u21u

2
2 . . . with u

j
k ∈ {0, 1}. The correlation

model is established by first generating the symmetric i.i.d.
sequence U1 (P(u1k = 0) = P(u1k = 1) = 1/2). Then, the se-
quenceU2 is defined as u2k = u1k⊕ek, where⊕ indicates mod-
ulus 2 addition and ek is a random variable which takes value
1 with probability p and value 0 with probability 1− p. Each
source is independently encoded with a system composed of
a serial concatenation of two LDGM codes.4 For source j,
the coded bits generated by the outer encoder, c j,out, and the
information bits, uj , constitute the systematic bit nodes for
the inner encoder, which further generates the inner coded
bits c j,in. After encoding, the resulting bits are sent through
the corresponding noisy channel, and decoded in the com-
mon receiver by applying the belief propagation algorithm
over the graph representing both decoders, which is shown
in Figure 10.

Several activation schedules can be utilized in the decod-
ing process, and, since the graph presents cycles, they can lead
to different performance. We consider the five different acti-
vation schedules shown below, where each repetition consti-
tutes one iteration. Notation is consistent with the channel
coding case explained in Section 3.

4The use of a single LDGM code results in intolerable error floors.

(i) Schedule 1 (flooding): repeat

[
u1, c1,in, c1,out,u2, c2,in, c2,out

]
.

(ii) Schedule 2: repeat

u1,
[
c1,in, c1,out

]
,
[
c1,in, c1,out

]
,u1,

u2,
[
c2,in, c2,out

]
,
[
c2,in, c2,out

]
,u2.

(iii) Schedule 3: repeat

u1, c1,in, c1,out,u1,u2, c2,in, c2,out,u2.

(iv) Schedule 4: repeat

u1, c1,in,u1, c1,out,u1,u2, c2,in,u2, c2,out,u2.

(v) Schedule 5 (see [35]):

[
c1,out, c2,out

]
.

Repeat u1, c1,in,u2, c2,in.

Repeat
[
u1,c1,out,u2,c2,out

]
, without exchanging information

between u1 and u2.

8. SIMULATION RESULTS FOR JOINT
SOURCE-CHANNEL CODING
OF CORRELATED SOURCES

In this section, we first analyze the performance of the five
activation schedules introduced in last section when each
source is independently channel encoded by the serial con-
catenation of a (6.5,6.5)5 inner LDGM code and a regular
(4, 76) outer LDGM code (i.e., overall rate Rc = 0.475) and
transmitted through a noisy channel. The length of the in-
formation sequences is assumed to be L = 9500 and the cor-
relation parameter is fixed to p = 0.1. Figure 11 shows the
BER versus Eso/N0 when AWGN channels are considered. For
schedules 1 to 4, no errors were observed at Eso/N0 = −0.7 dB
after simulating more than 10 000 blocks. Since the theoret-
ical limit in this case corresponds to Eso/N0 = −1.85 dB, the
proposed system is within 1.15 dB from this limit. Similar re-
sults for the case of ideally interleaved Rayleigh fading chan-
nels with perfect CSI at the receiver are shown in Figure 12.
In this case, the gap with respect to the theoretical limit is
around 1.5 dB. Notice that, for both figures, schedules 1 to
4 have very similar performances and their curves basically
overlap. For schedule 5, which decodes first the inner code
and then tries to eliminate the error floor with the outer code
(without further exchange of information between the outer
and the inner codes), the gap from the theoretical limit is
larger.

Table 1 shows the maximum, minimum, and average
numbers of iterations required to achieve convergence at

5By a noninteger degree such as 6.5, we mean that half of the nodes have
degree 6 and half of them have degree 7. All the fractional degrees utilized
in this paper are generated from the proper combination of two consecutive
integers.
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−0.4−0.5−0.6−0.7−0.8−0.9
Eso/N0
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10−4
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Schedule 1
Schedule 2
Schedule 3

Schedule 4
Schedule 5

Figure 11: For the proposed joint source-channel coding scheme
consisting of the serial concatenation of a (6.5,6.5) inner and a
(4,76) outer LDGM code (overall rate Rc = 0.475), performance of
different activation schedules for correlation parameter p = 0.1 and
AWGN channels is presented. For schedules 1 to 4, no errors were
observed at Eso/N0 = −0.7 dB after simulating more than 10 000
blocks.

some values of Eso/N0 in Figures 11 and 12. Notice that each
iteration in schedule 2 corresponds roughly to two iterations
in schedules 1, 3, and 4 (most of the complexity is produced
in the activation of the coded bit nodes). Taking this into ac-
count, we can observe that in average schedules 1 to 4 re-
quire approximately the same number of iterations. Notice
that the number of iterations required for schedule 5 are ob-
tained at different values of Eso/N0 than those of schedules 1
to 4, which means that the comparison between schedule 5
and the other schedules is not very significant.

In order to further assess the performance of the pro-
posed system, we consider different values of the parame-
ter p and study the system performance utilizing schedule
1. As before, the length of the information sequence is fixed
to L = 9500. For different values of p, we use the same
(4,76) outer LDGM code as before, but we consider dif-
ferent inner codes in order to optimize performance. Sim-
ulation results are presented in Table 2 for AWGN chan-
nels and in Table 3 for ideally interleaved Rayleigh fading
channels with perfect CSI at the receiver. In both cases, the
optimum degree of the inner code decreases with param-
eter p. For all different values of p, at a bit error rate of
10−5, the gap between the theoretical limit and the pro-
posed system is within 1.8 dB for the AWGN channel and
within 2.2 dB for the Rayleigh fading channel. Notice that
this gap increases when p gets smaller, which was already
pointed out in previous related work [21, 25, 26]. The
gain of the proposed system is evident if we realize that,
when the source correlation is not exploited in the decod-
ing process, the achievable theoretical limits for Eso/N0 are

1.110.90.80.70.60.50.40.3

Eso/N0

10−5

10−4

10−3

10−2

B
E
R

Schedule 1
Schedule 2
Schedule 3

Schedule 4
Schedule 5

Figure 12: For the proposed joint source-channel coding scheme
consisting of the serial concatenation of a (6.5,6.5) inner and a
(4,76) outer LDGM codes (overall rate Rc = 0.475), performance
of different activation schedules for correlation parameter p = 0.1
and ideally interleaved Rayleigh fading channels with perfect CSI at
the receiver is presented.

0.08 dB and 1.6 dB for the AWGN and Rayleigh fading chan-
nel, respectively. The proposed approach achieves a perfor-
mance (in terms of convergence threshold) similar to the
system proposed in [25, 26] for joint source-channel coding
of correlated sources over separated AWGN channels using
turbo codes. Moreover, after simulating the same number
of blocks as in [25, 26], no error floor could be observed
here. As shown in the appendix, the use of LDGM codes
instead of turbo codes leads to a lower decoding complex-
ity.

9. CONCLUSION

We proposed the use of LDGM codes for channel coding and
joint source-channel coding of correlated sources over noisy
channels. In order to avoid error floors, it is necessary to
utilize concatenated schemes. However, they should not be
decoded utilizing the equivalent LDGM code resulting from
the concatenation, but by combining the graphs of the con-
stituent codes. In terms of encoding/decoding complexity,
the proposed scheme presents complexity advantages with
respect to turbo and standard LDPC codes. For channel cod-
ing, the performance over BSCs, AWGN channels and ideally
interleaved Rayleigh fading channels with perfect CSI at the
receiver is comparable to that of turbo codes and standard
irregular LDPC codes, and close to the theoretical limits even
without much code design optimization. In the case of cor-
related sources, where previous work is almost nonexistent,
the proposed system also achieves a performance close to the
theoretical limits and similar to those of turbo codes.
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Table 1: Minimum, average, and maximum number of iterations required to achieve convergence for the schemes considered in Figures 11
and 12, consisting of the serial concatenation of a (6.5,6.5) inner and a (4,76) outer LDGM codes (overall rate Rc = 0.475).

Schedule 1 Schedule 2 Schedule 3 Schedule 4 Schedule 5

AWGN

Eso/N0(dB) −0.7 −0.7 −0.7 −0.7 −0.3
Min 18 11 18 15 37

Average 30.9 17.3 29.5 25.7 59.5

Max 77 59 97 75 97

Rayleigh

Eso/N0(dB) 0.8 0.8 0.8 0.8 1.1

Min 18 11 17 16 19

Average 27.8 15.7 26.3 23.4 29.0

Max 54 31 49 50 90

Table 2: For AWGN channels and different correlation parame-
ters p, theoretical limit for Eso/N0 in dB ([Eso/N0]l, taken in steps
of 0.01 dB), value of Eso/N0 in dB for which the proposed system
achieves a BER less than 10−5 ([Eso/N0]s), and gap (taken in steps of
0.05 dB) between the theoretical limit and the performance of the
proposed system.

p [Eso/N0]l [Eso/N0]s Gap Inner code

0.2 −0.96 0.06 < 1.00 (6.5,6.5)

0.1 −1.84 −0.69 < 1.15 (6.5,6.5)

0.05 −2.56 −1.21 < 1.35 (6.25,6.25)

0.025 −3.07 −1.57 < 1.50 (6,6)

0.01 −3.47 −1.72 < 1.75 (5.75,5.75)

APPENDIX

CODING COMPLEXITY: LDGMVERSUS TURBO CODES

The encoding of a systematic LDGM code involves compu-
tation of the parity bits, each of which only depends on a fi-
nite number of systematic bits. Hence, similar to turbo codes,
LDGM codes are encodable in linear time. From now on we
will focus on the comparison between the two in terms of
decoding complexity.

Complexity per decoding iteration

Reference [39] provides a detailed analysis on the decoding
complexity of turbo codes. The main result is that for a turbo
code with constituent encoders having rate k/n and S states,
the total number of additions/subtractions (additions) and
multiplications/divisions (multiplications) per information
bit and per iteration are given by

(i) additions [turbo (S,n)] = 4(3S + n− 4),
(i) multiplications [turbo (S,n)] = 2(8S + 2n + 5).
We now analyze the decoding complexity of an (X ,Y)

LDGM code by following the development in [5] and our
definitions of Qx

mk and Rx
mk. Because of their lower com-

plexity, we will disregard operations consisting of addi-
tions/multiplications by constants (notice that [39] disre-
gards table look ups and maximum operations). We proceed
in two steps. First, we calculate the number of operations
required in the processing of a coded bit node. Second, we

Table 3: For ideally interleaved Rayleigh fading channels with per-
fect CSI at the receiver and different correlation parameters p, the-
oretical limit for Eso/N0 in dB ([Eso/N0]l, taken in steps of 0.01 dB),
value of Eso/N0 in dB for which the proposed system achieves a BER
less than 10−5 ([Eso/N0]s) and gap (taken in steps of 0.05 dB) be-
tween the theoretical limit and the performance of the proposed
system.

p [Eso/N0]l [Eso/N0]s Gap Inner code

0.2 0.41 1.76 < 1.35 (6.5,6.5)

0.1 −0.74 0.76 < 1.50 (6.5,6.5)

0.05 −1.62 −0.02 < 1.60 (6.25,6.25)

0.025 −2.23 −0.38 < 1.85 (6,6)

0.01 −2.71 −0.51 < 2.20 (5.75,5.75)

look at the complexity in an information bit node. The total
number of operations per information bit and per iteration
will be the sum of the operations required in all the coded
bit nodes plus the operations performed in all the informa-
tion bit nodes divided by the total number of information bit
nodes.

In order to calculate the number of operations in each
coded bit node, notice that in (2) and (3) in this paper R1

mk =
1−R0

mk . Therefore, once (2) is calculated, (3) can be obtained
without any additional complexity. Following the notation
in [5], we define δQmk = Q0

mk − Q1
mk = 1 − 2Q1

mk. We also
define Dm = (−1)cm ∏k∈L(m) δQmk. Then, (49) in [5] can be
calculated as δrmk = Dm/(1 − 2Q1

mk). In this way, since as
indicated in [5] r0mk = (1 + δrmk)/2 and r1mk = (1 − δrmk)/2,
(2) in this paper can be expressed as

R0
mk=

(
1− γm

)1+Dm/
(
1−2Q1

mk

)
2

+γm
1−Dm/

(
1−2Q1

mk

)
2

= 1
2
+
Dm
(
1− 2γm

)
2
(
1− 2Q1

mk

) , k = 1 · · ·Y.
(A.1)

In order to calculate R0
mk, we first calculate Dm, which re-

quires Y −1 multiplications. Then, we utilize one more mul-
tiplication to obtain Dm(1 − 2γm), and finally we calculate
R0
mk for k = 1 · · ·Y , which requires Y more multiplications.
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Therefore, we just need 2Y multiplications to perform all the
processing required in a coded bit node. Since there are a to-
tal of N(1 − Rc) coded bit nodes and NRc information bits
(where Rc = Y/(X + Y) as indicated in this paper), the total
amount of processing in the coded bits divided by the num-
ber of information bits is 2Y(1 − Rc)/Rc = 2X multiplica-
tions.

In order to calculate the number of operations performed
in an information bit node, we follow (50)–(53) in [5].
Notice that Q0

mk = αmkQ
0
k/R

0
mk, m = 1 · · ·X . By forcing

Q0
mk + Q1

mk = 1, Q0
mk can be calculated as Q0

mk = 1/(1 +
(Q1

k/Q
0
k)(R

0
mk/(1− R0

mk))). Therefore, after calculating αkQ
0
k

and αkQ
1
k , which requires 2X multiplications, and Q1

k/Q
0
k ,

which requires anothermultiplication, the calculation ofQ0
mk

for a fixed m (counting an inversion as a multiplication) can
be performed with 2 divisions. Therefore, the total number
of operations to calculate allQ0

mk,m = 1 · · ·X , is 4X+1mul-
tiplications/divisions. Since Q1

mk = 1 − Q0
mk, no additional

operations are required in an information bit node. Hence,
the number of operations per information bit and per itera-
tion in an (X ,Y) LDGM code is as follows

(i) additions [LDGM (X ,Y)] = 0,
(ii) multiplications [LDGM (X ,Y)]=2X+4X+1=6X+1.
For instance, a (6,6) LDGM code performs 37 multipli-

cations per information bit and per iteration, while a serial
concatenated LDGM scheme with codes (6,6) and (4,76) per-
forms 62multiplications. A turbo code with comparable per-
formance (S = 8 and n = 2) requires 88 additions and 146
multiplications (plus the table look ups and maximum oper-
ations which are disregarded).

Total number of decoding iterations

The total number of iterations required for convergence can-
not be predicted through analysis. Table 1 in this paper shows
the number of iterations required to achieve convergence
for different activation schedules of the concatenated LDGM
scheme in the case of joint source-channel coding. This num-
ber is greater than the one usually required in turbo cod-
ing schemes, but it is not enough to compensate the ad-
vantage of LDGM codes in each iteration. Compensation
does not occur in the channel coding case either. For in-
stance, for the concatenated scheme used over AWGN chan-
nels ([(6,6)(4,76)] with block size 20 000), the average num-
ber of iterations at an Eb/N0 of 0.8 dB above the Shannon
limit is 21.7, which is about twice the number of iterations
required in a comparable turbo code.
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