LDI Tree: A Hierarchical Representation for Image-Based Rendering

Chun-Fa Chang Gary Bishop Anselmo Lastra
University of North Carolina at Chapel Hill

ABSTRACT facts is that the information of the previously occluded area is

missing in the reference image. By using multiple reference im-

Using multiple reference images in 3D image warping has been ayqeq taken from different viewpoints, the disocclusion artifacts
challenging problem. Recently, the Layered.Depth Image .(LDI) can be reduced because an area that is not visible from one view
was proposed by Shade et al. to merge multiple reference image,,y pe visible from another. When multiple source images are
under a single center of projection, while maintaining the simplic- 5, qiiaple, we expect the disocclusion artifacts that occur while
ity of warping a single reference image. However it does not . rning one reference image to be eliminated by one of the other
consider the issue of sampling rate. . . . reference images. However, combining multiple reference images
We present the LDI tree, which combines a hierarchical space,,q ejiminating the redundant information is a non-trivial prob-
partitioning scheme with the concept of the LDI. It preserves the lem, as pointed out by McMillan in his discussion of inverse
sampling rates of the reference images by adaptively selecting a'?/varbing.
LDl in the LDI tree for each pixel. While rendering from the LDI Recently, the Layered Depth Image (LDI) wasgosed by
tree, we only have to traverse the LDI tree to the levels that aregpade et a

bl h i f th . We al 19] to merge many reference images under a single
comparable to the sampling rate of the output ‘|‘mage_._ "e alSOcenter of projection. It tackles the occlusion problems by keeping
present a progressive refinement feature and a “gap filling” algo-

. . N multiple depth pixels per pixel location, while still maintaining the
rithm implemented by pre-filtering the LDI tree. . simplicity of warping a single reference image. Its limitation is
We show that the amount of memory required has the samey,; yhe fixed resolution of the LDI may not provide an adequate
order of growth as the 2D reference images. This also bounds th%ampling rate for every reference image. Figure 1 shows two
complexity of rendering time to be less than directly rendering gyamples of such situations. Assuming the two reference images
from all reference images. have the same resolution as the LDI, the object covers more pixels

CR Categories; 1.3.3 [Computer Graphics]: Picture/lmage Gen- in reference image 1 than it does in the LDI. Therefore the LDI
eration - Viewing Algorithms; 1.3.6 [Computer Graphics] Meth- has a lower sampling rate for the object than reference image 1.
odology and Techniques - Graphics data structures and data typesimilar analysis shows the LDI has a higher sampling rate than

1.3.7 [Computer Graphics]: Three-Dimensional Graphics and reference image 2. If we combine both reference images into the
Realism. LDI and render the object from the center of projection of refer-

o))]) ence image 1, the insufficient sampling rate of the LDI will cause
Additional Keywords: image-based rendering, hierarchical rep- the object to look more blurry than it looks in reference image 1.

resentation When we render the object from the center of projection of refer-
ence image 2, the excessive sampling rate of the LDI might not
1. INTRODUCTION hurt the quality of the output. However, processing more pixels

than necessary slows down the rendering.

In this paper, we present th®| Tree, which combines a hi-
rchical space partition scheme with the concept of the LDI. It
preserves the sampling rate of the reference images by adaptively
selecting an LDI in the LDI tree for each pixel. While rendering

The 3D Image warping algorit4] proposed by McMillan and
Bishop uses regular single-layered depth images (which are calledelra
reference images) as the initial input. One of the major problems
of 3D image warping is the disocclusion artifacts which are

_caused by t.he areas that are oc_cluded in the (_Jriginal referenc?rom the LDI tree, we only have to traverse the LDI tree to the
image but V'S'b.le in the current view. Those artifacts appear as o, q|s that are comparable to the sampling rate of the output im-
b(\e/ars.or S tlhn Te hogtput |mfage|. tt‘ln Ma:jks P(;lgt-Renderlng age. Because each LDI also contains pre-filtered results from its
arping , (NE techniques of splalling and mesning are pro- .;q6n LDls, progressive refinement is easy to implement. The
posed to deal with the disocclusion artifacts. Both splatting andpre-filtering also enables a new “gap filling” algorithm to fill the

meshing are adequate for post-rendering warping in which thedisocclusion artifacts that cannot be resolved by any reference

current view does not deviate much from the view of the referenceimage
image. :

a the fund tal bl f the di lusi i The amount of memory required has the same order of growth
owever, the lundamental problem of the disocclusion artl- 4q the 2D reference images. Therefore the LDI tree preserves an

CB#3175 Sitterson Hall, Chapel Hill, NC 27599-3175, USA. important feature that image-based rendering has over traditional
{chang, gb, lastra}@cs.unc.edu http://www.cs.unc.edu/~ibr polygon-based rendering: the cost is bounded by the complexity
of the reference images, not by the complexity of the scene.

2. RELATED WORK

Permission to make digital or hard copies of all or part of this work for 2.1.Inverse War p In g
personal or classroom use is granted without fee provided that copies The image warping described 4] is a forward warping proc-
are not made or distributed for profit or commercial advantage and that ess. The pixels of the reference images are traversed and warped

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGGRAPH 99, Los Angeles, CA USA

Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

to the output image in the order they appear in the reference im-
ages. Some pixels in the output image may receive more than

291

Ref.2 LDI Ref.1 object

Figure 1: The LDI does not preserve the sampling rates of the reference images.

one warped pixel and some may receive none, which causes arti-
facts. i i

In McMillan proposed an inverse warping algorithm. 2.4. Image CaChmg for Rende“ng
For each pixel in the output image, searches are performed in all Polygonal Models
reference images to find the pixels that could be warped to theThe image caching techniques of Shade [18] and Schaufler
specified location in the output image. Although epipolar geome- et al.[[17] use a hierarchical structure similar to the LDI tree.
try limits the search space to a one-dimensional line or curve inEach space partition has an imposter instead of an LDI. The im-
each reference image and a quadtree-based optimization has begpster can be generated rapidly from the objects within the space
proposed ir [14], searching through all reference images is still partition by using hardware acceleration. However, the imposter

time consuming. has to be frequently regenerated whenever it is no longer suitable
for the new view
292 Layered Depth |mage In contrast, the information stored in the LDI tree is valid at

all times. By generating the LDI tree from the reference images

Another way to deal with the disocclusion artifacts of image jpstead of the objects within the space partitions, the LDI tree can

warping is to use the Layered Depth Image (EDIJ[19]. Given a pe sed for non-synthesized scenes as well.

set of reference images, one can create an LDI by warping all

reference images to a carefully chosen camera setup (e.g. center %

projection and view frustum) which is usually close to the camera - LDI TREE

of one of the reference images. When more than one pixel isThe LDI tree is an octree with an LDI attached to each octree cell

warped to the same pixel location of the LDI, some of them may (node). The octree is chosen for its simplicity but can be replaced

be occluded. Although the occluded pixels are not visible from by the other space partitioning schemes. Each octree cell also

the viewpoint of the LDI, they are not discarded. Instead, separatecontains a bounding box and pointers to its eight children cells.

layers are created to store the occluded pixels. Those extra pixel¥he root of the octree contains the bounding box of the scene to

are likely to reduce the disocclusion artifacts. However the fixed be renderetl The following is pseudo code representing the data

resolution of the LDI limits its use as discussed previously in structure:

section].

e P LDl _tree_node =

Lischinski and Rappoport used thr,ee parallel_-prOJectlon_ LDIs Boundi ng_box[X..Z, Mn..max]: array of

to form a Layered Depth Culfe [9Max’s hierarchical rendering real:

method[[12] uses the Precomputed Multi-Layer Z-Buffers which chi | dren[0..7]: array of pointer to

are similar to the LDIs. It generates the LDIs from polygons and LDl _tree_node;

the hierarchy is built into the model. LDl : Layered_dept h_i mage

. All LDIs in the LDI tree have the same resolution, which can
2.3.Volumetric Methods be set arbitrarily. The height (or number of levels) of the LDI tree

The LDI resembles volumetric representations. The main differ- Will adapt to different choices of resolution. In general, a lower
ences between an LDI-based representation and 3D volume datiesolution results in more levels in the LDI tree. Ultimately, we
are discussed [n [9]. can make the resolution of the LDI bellwhich makes the LDI

Curless and Levoy presented a volumetric method to extracttree resemble the volume data in the Hierarchical Spidttihg [6].
an isosurface from range imades| [3]. The goal of their work, ~ Note that each LDl in the LDI tree contains only the samples
however, was to build high-detail models made of triangles. The from objects within the bounding box of the cell. This is some-
volume data used in that method is not hierarchical and it relies onfimes confusing because the LDI originally proposed by Shade et
a run-length encoding for space efficiency. al. combines the samples from all reference images.

There has also been work related to octree generation from For simplicity, we use one face of the bounding box as the
range |magem] However the octree that is generated in prOJeCthn plane of the LDI. Ol’thographIC prOJeCtlon is used and
those methods is used to encode thesmccupancy information. the projection direction is perpendicular to the projection plane.
Each octree cell represents either completely occupied or com- ~An example of the LDI tree is shown in Figure 7 by viewing
pletely empty parts of the scene. the bouqdlng boxes from the top. The following sections discuss

The multi-resolution volume representation in the Hierarchi- the details of constructing the LDI tree from multiple reference
cal Splatting work [6] by Laur and Hanrahan can be considered asmages and of rendering a new view from the LDl tree.

a special case of the LDI tree in which the LDIs are>df feso-
lution. It is however built from a fully expanded octree (which is
called a pyramid in their paper). The octree to be traversed duringt For outdoor scenes, background textures can be added to the
the rendering is also predetermined and does not change with thg,ces of the bounding box. The bounding box can be extended
viewpoint. with little overhead if most of the space is empty.

292

done by splattinf [29] the pixel to the neighboring grid points. In

this paper we use a bilinear kernel. Four LDI pixels are updated
for each pixel of a reference image. More specifically, the alpha
values that result from the splatting are computed by:

R =By /Ny
Kernel (d,s):l—E
s

Figure 2: The camera model. E Kernel (]Xi - Xc|,S—X), Sy > Py
Wy = P (32)
X O . SX
3.1. Constructing the LDI Tree from ékeme' {xi- XC|’1)DPX » Sx <Px
Multiple Reference Images 0 S,
The LDI tree is constructed from reference images by warping H Kernel (]W _Yc|'p_)’ Sy >R
each pixel of the reference images to the LDI of an octree cell, Wy = XS (3b)
then filtering the affected LDI pixels to the LDIs of all ancestor Kernd (Yi- Yd,)0=%, S, <P
cells in the octree. H Px
In 3D image warping, each pixel of the reference images alpha= W, W, &)

contains depth information which is either stored explicitly as a

depth value or implicitly as a disparity value. This allows us to . L .

project the center of the pixel to a point in the space where theWhereBx andBy are the sizes of the LDI projection plane (which

scene described by the reference images resides. is a face of the boundlng_boxx)?(andNy are the resqlutlons of the
We observed that the sampling rate or the "quality” of a pixel LD!- ScandS, are as defined in equation 2¢c(Yc) is the center

of a reference image depends on its depth information. For exam©f SPlatting in the selected LDI an&i(Yi) is one of the grid

ple, if (part of) a reference image represents a surface that is faPOiNts covered by the splatting. The conditions in equations 3a

away, then those pixels that describe that surface do not provide?nd 3b guarantee that the splat size will not be smaller than the

enough detail when the viewer zooms in or walks toward that LDI grid size, which represents the maximal sampling rate of the

surface. Conversely, warping every pixel of a reference imageLDl- . i

taken near an object is wasteful when the object is viewed from A Pixel also contributes to the parent cell and all ancestor cells

far away. qf the octree cell that was initially chosen. This is done by sple_lt-
We characterize the reference image by a pinhole cameraing the pixel to the LDIs of all the ancestor cells. The result is

model using the notation adopted by McMillan TLA1151. Figure 2 that the LDI of a cell contains the samples within its descendants
9 .p y] 9 filtered down to its resolution. Therefore, later in the rendering

illustrates the camera modelC is the center of projection. Each stage, we need not traverse the children cells if the current cell
pixel of the reference image has coordinates)(and the vectors already provides enough detail.
We classify the pixels in the LDI tree into two categorigs:

a and b are the bases. Each pixel also contains the color infor- filtered and filtered. The unfiltered pixels are those that come
mation and a disparity valu® When a pixel is projected to the from the splatting to the octree cell that was initially chosen for a

3D object space, we get a point representing the center of thereference image pixel. Those pixels that come from the splattin
projected pixel and a “stamp size.” The center is computed as: g€ pIxel. P) p 9
to the ancestor cells are classified as filtered, because they repre-

c +(ua +Vvb + ¢)/o (1) sent lower frequency components of the unfiltered pixels. Note
that an unfiltered pixel may be merged with a filtered pixel during

and the stamp siz8is calculated by: the construction of LDI tree. The merged pixel is considered as

S=8x xSy @ filtered because better-sampled pixels are in the LDIs of some
Sy = |é| /1o children cells of the current octree cell.

The classification of unfiltered and filtered pixels is necessary
S, :‘5‘/5 for rendering the output images (as described in seftioh 3.2).

o . .) . _Imagine that a cell contains unfiltered pixels of a surface area that
To simplify our discussion, we do not consider the orientation s only visible from one of the reference images. When the cell

of the object surface from which the pixel is taken. We also ig- ang its children cells are processed during the rendering, we must
nore the slight variation of stamp size at the edges of the projecyyarp its unfiltered pixels but not its filtered pixels that are filtered

tion plane. , o from the children cells.
An octree cell is then selected to store this pixel. The center

location determines which branch of the octree to follow. The
stamp size determines which level (or what size) of the octree cell
should be used. The level is chosen such that the stamp size ap-
proximately matches the pixel size of the LDI in that cell.

After an octree cell has been chosen, the pixel can then be
warped to the LDI of that cell. The details of the warping are
described if [1]]. Usually, the center of the pixel will not fall

exactly on the grid of the LDI, so resampling is necessary. This is: Itis s_irr|1_ilar_ to how the subpixels are prefiltered in supersampling
or antialiasing.

293

Ref.1 Ref.1

Ref.2 / Ref.2
@ (b)

Figure 3: Illustrations of pixels that are warped to the same pixel location in an LDI. (a) Two pixels fevanoefimage 1
and a pixel from reference image 2 are taken from the same region of a surface. Blendintpisasbihe their contribu-
tion to the LDI pixel. (b) One of the pixels from reference image 2 is taken from a different surface.rateslager in te
LDl is created to accommodate its contribution to the same LDI pixel.

correspond to the corners of the bounding box. The corners of the
bounding box are obtained by placing the maximal and minimal
possible depth at the four corner pixel locations of the LDI. We
use equation 2 to compute the stamp size with the vettand

output octree cell

b of the output image and the disparity vafuebtained from the
warping. Note that a special case exists if the new viewpoint is
within the octree cell. When this happens we consider the cell as
not providing enough detail and the children are traversed.

The pseudo code for the octree traversal follows:

(Cctree)
If outside of view frustum
then return;

RLDI

Figure 4: To estimate the range of stamp size for all pixels
in the LDI, the corners of the bounding box are warped to
the output image.

Render
1.

An LDI pixel may get contributions from many pixels of the 2.
same surface. They may be ridigring pixels in the same refer-
ence image, or pixels in different reference images that sample theg'
same surface. The contributions from those pixels must bey
blended together. Figure 3a shows an example of those cases. An
LDI pixel can also get contributions from many pixels of different 5.
surfaces. In those cases, we assign them to different layers of the
LDI pixel. Figure 3b shows an example of those cases. To de-6-
termine whether they are from the same surface or not, we chec
the difference in their depth value against a threshold. We select
the threshold to be slightly smaller than the spacing between adja-

Estimate the stanp size of the LDI
pi xel s;
If LDl stanp size is too large or the
viewer is inside the bounding box then {
Call Render() recursively for each
child;
Warp the unfiltered pixels in LDl to
the Qutput buffer; }
el se {
Warp both unfiltered and filtered

pixels in LDl to the output buffer; }

cent LDI pixels, so that the sampling rate of a surface that is per-
pendicular to the projection plane of the LDI can be preserved.

3.2. Rendering the Output Images

We render a new view of the scene by warping the LDIs in the
octree cells to the output image. The advantage of having a hierar
chical model is that we need not render every LDI in the octree.

For those cells that are farther away, we can render them in Iesgio

detail by using the filtered samples that are stored in the LDIs
higher in the hierarchy.

To start the rendering, we traverse the octree from the top-
level cell (i.e. the root). At each cell, we first perform view frus-
tum culling, then check whether it can provide enough detalil if its
LDI is warped to the output imagef the current cell does not
provide enough detail, then its children are traversedLDI is
considered to provide enough detail if the pixel stamp size covers
about one output pixel. Therefore the traversal of the LDI tree
during the rendering will adapt to the resolution of the output
image. Note that we do not calculate the pixel stamp size for eac
individual pixel in an LDI. Because all the pixels in the LDI of an

Note the difference in stdd 5 and di¢p 7 of the pseudo code.
As mentioned in sectign 3.1, each LDI in the octree contains both
unfiltered and filtered pixels. When we warp both the LDI in a
parent cell and the LDI in a child cell, the filtered pixels in the
parent cell should not contribute to the output because the unfil-
tered pixels in the child cell already provide better sampling for

the same part of the scene.

One feature of the original LDI is that it preserves the occlu-
n compatible order in McMillan’'s 3D warping algorithm
However this feature is compromised in the LDI tree.
Although the back-to-front order can still be obtained within an
LDI and across LDIs of sibling cells of the octree, we cannot ob-
tain such order between LDIs of a parent cell and a child cell.
This causes problems when unfiltered samples exist in both parent
and child cells. In addition, the warped pixels are semi-
transparent due to the splatting process. Therefore, we need to
keep a list of pixels for each pixel location in the output buffer.
We implement the output buffer as an LDI. At the end of the
endering, each list is composited to a color for display. The de-

r
r}ails of the compositing are discussed next.

octree cell represent samples of objects that are within its bound-

ing box (as shown in Figure 4), we can estimate the range of
stamp size for all pixels of the LDI by warping the LDI pixels that

294

\ 2. A stencil (or coverage of pixels) is then built from the output

image.
3. Render the output image from the LDI tree again. But in this
) \ pass, splat only the filtered pixels.
4. Use the stencil from step 2 to add the image from step 3 to
\ the image from step 1.

The stencil from step 2 allows the filtered pixels to draw only
to the gaps in the output image from step 1. This assumes that the
output image, would be completely filled if no disocclusion arti-
fact occurred:

Our gap filling method produces different results from the
meshing method described in Mark’s Post-Rendering 3D Warping
Figure 5 shows an example of the gap that is caused by a
front surface occluding a back surface. In the meshingadet
the gaps are covered by quadrilaterals stretching between the front
surface and the back surface (figure 5a). In contrast, our gap fill-

3.3. Compositing in the Output Buffer ing method splats the filtered samples from aes that surround

. the gap in the output. As shown in figure 5b, the back surfaces
Given a list of semi-transparent pixels, we sort the pixels in depth make more contribution to the gap than they do in the meshing
and then use alpha blending starting from the front of the sortedmethod If we do not have additional swé ennectivity infor-
list. An Qxception is.that two pixels with similar depth should be mation .in the original reference image, we believe the methods
merged first and the!r alpha values_ summed tqgether before theSfike ours that are based on the filtering of existing samples are
are alpha-blended with the other pixels. That is because they are. ore robust
likely to represent sampling of the same surface. '

Therefore, the pixel merging is also performed in the output . .
LDI, which is similar to the pixel merging in the LDI of the octree 3.6. Analysis of Memory Requirement

cause the pixels can come from different levels of the LDI tree. noting that only a small subset of a complete LDI tree is used
This difficulty is solved by attaching the level of octree cell where \yhen it is constructed from reference images.

the pixel comes from to each pixel in the output LDI. The thresh- \when we construct the LDI tree from reference images, we
old value that is used for that level of octree is then used to detery4q a constant number of unfiltered LDI pixels to the octree cell

@ (b)
Figure5: This example shows the different results of gap
filling from the meshing method and the method pre-
sented in this paper. (a) The meshing method. (b) The
gap filling method using filtered samples.

mine whether two piXelS in the Output LDI should be mel’ged. chosen for each pixe' of reference images_ We a|soqu)j
filtered LDI pixels to the ancestor cells, whérés the number of
3.4. Progressive Refinement ancestors. That means the amount of memory taken by the LDI

. . . Ltr rows in th me order as the amount taken by the original
As discussed in secti¢n B.2, the traversal of the LDI tree du”ngreefgrgn?:esimagei Sc?nlyemf?sdb%u?wfjede amount taken by the origina

the rendering depends on the resolution of the output image. The We can further assume thats bounded because the maximal
simplest method to create the effect Qf progress_ive refipement isheight of the LDI tree exists. Létbe the longest side of bound-
to render the LDI tree to a low-resolution output image first, then ing box of the sceneN be the resolution of an LDH be the

increase the resolution gradually. However, this method does nOtsmaIIest feature in the scene the human eyes can discemn at a

utilize the coherence between the renderings of two different minimum distance, anHl be the maximal height of the LDI tree.

resolutions.
. . Then we have:
To utilize the coherence between two renderings, we can tag en we have
the octree cells that are traversed in the previous rendering and H = dog L O
skip them in the current rendering. Note that some filtered pixels 2 N de

may have been warped to the output buffer if they are fraom the
leaf nodes of the subtree traversed in the previous rendering
Those pixels must also be tagged so they can be removed from th
output buffer if the leaf nodes in the previous rendering become
interior nodes in the current rendering.

Although we do not include the memory overhead for main-
taining the octree, we also do not include the possible saving in
emory when pixels are merged in the LDIs. The experimental
results will be presented later in this paper to show that amount of
memory indeed grows at a slower rate than the number of refer-
ence images.

3.5. Gap Filling

When we construct the LDI tree from many reference images, 3.7. Rendering Time

chances are we havg eliminated mos.t of the .dlsoccl.usmn a(tlfactsAn advantage that image-based rendering has over traditional
However, it is possible that some disocclusion artifacts still re-

main. We propose a two-pass algorithm that uses the filteredpolygon-based rendering is that the rendering time does not grow

. . L : : with the complexity of the scene. That advantage is still pre-
g:gilﬁ‘tg:ntzﬁnl‘s?sltgi? tLOef;!)IIIEV\t/?r?ggsatlgSsm the output image. The served in the rendering from the LDI tree, even though more lay-

ers of LDIs must be rendered. Let us consider the worst case in
1. The first pass is to render the output image from the LDI tree Which we need to render every pixel in the LDl tree. As discussed
as discussed in section 3.2.

4 See previous footnotefor special cases such as the windows in
3 See line 7 of the pseudo code in section 3.2. the video and figure 11.

295

previously, the number of pixels grows in the same order as the Memory Usage
original reference images. Therefore the time complexity of ren-
dering from the LDI tree is of the same order as warping all refer- ;L
ence images in the worst case. Because larger cells are used for
farther objects, the worst case rarely happens and usually much
fewer pixels in the LDI tree are rendered. The experimental re-
sults are presented in the next section.

W
<]
3

Lo—r—

]
a
S

N
=1
3

=
1)
3

Memory (in MByte)
=
@
3

/
!
I

4. RESULTS 5
We implemented the LDI tree on a Silicon Graphics Onyx2 with 0
16 gigabytes of main memory. The machine has 32 250 MHz OB A mber of Reference mages

MIPS R10000 processors but we did not exploit its parallel proc-
essing capability in our implementation.
We tested our program with a model of the interior of Pal- Rendering Time
ladioss 1l Redentore in Venide [16]. The reference images are 4
generated by ray tracing using the Rayshade prom [5]. Each 3;m
reference image has 54212 pixels and 90-degree field of view. o] Tree, e
Figure 6 shows one of the reference images. ST e a6 e mages
In synthesized scenes, an LDI can be generated directly by ray M Lo reteres e
tracing[[19]. We do not include it in our framework because it 1 e elerence mages
does not apply to the reference images acquired from non-
synthesized scenes, such as the depth images that are acquired by
a laser range finder. s 1 15 2 25 30
Figure 7 shows the top view of the bounding boxes of the LDI frame number
tree after two of the reference images are processed. Each cell has Chart 2: The rendering time.
an LDI of 64x64 resolution. The left face of each cell is also the
projection plane of its LDI. Note that the cells near the center of
projection of a reference image have more levels of subdivision.
Figure 8 shows a new view rendered from the LDI tree. We dis-
abled the gap filling to let the disocclusion artifacts appear in blue
background color. Figure 8 has severe disocclusion artifacts be-
cause only four reference images from the same viewpoint are
used. Figures 9 and 10 show the same view but with 12 and 36
reference images (from 3 and 9 viewpoints) respectively. Figure
11 is generated from the same LDI tree as figure 10 but with the
gap filling enabled. o
The memory usage of the LDI trees is shown in chart 1. The O e s P
first reference image consumes about 30 Mbytes (MB) of mem- —
ory. About 15 MB is the overhead of the octree. The resampling Chart 3: The average rendering time per frame.
and filtering (described in sectijn_$.1) generates about 5 LDI
pixels for each input pixel. As more reference images are added
the growth of the memory size slows. The last 60 images add les
than 1 MB per image in average. Note that the growth of the
memory size does not stop completely. That is because mor
detail near each new viewpoint is still being added to the LDI

Tree. We have assumed that each pixel of reference images pro-

Chart 2 shows the rendering time for various numbers of ref- vides only the color and depth information. No surface normal or

erence images. Each line represents t.he rendering “”?es. alpng thSrientation information has been considered. A direction for fu-
path for a given number of reference images. The priority in our

. tis th t Theref litt] timizati OIture work is to incorporate the surface orientation into our frame-
experiment 1S the Correctness. erelore fitle optimizalion and for use in the splatting and the calculation of stamp size.

hardware acceleration were used to speed up the rendering. For When a surface is sampled in multiple reference images, we

example, the splatting operation is implemented completely in should be able to get better sampling of theagierthan what we
software simulation. - ; asiertn

. . _can get from any single image. How to explore this type of cross-

Chart 3 shows the grovvth_of the _(averaged) rendering tlrneimage supersampling is another direction of future work.
when the number of reference images increases. It shows that the Like the original LDI, pixels that fall into the same pixel lo-
rendering time grows evendsio\lllver é:larzj tfhe Slzqutf. melmorfy be'cation and have similar depth values are merged together. That is
Fggszssggigtnnriﬁ?zg d er.‘;f]" Str?e r:n derr(')r:n additional referenclaqeq on the assumption that the surface is diffuse and little view-
imag P S uring Ing. dependent variance can occur. How to extract view-dependent
properties of the surface is yet another direction for future work.

Chart 1. The memory usage of LDI trees.

;

nN
Noa

=
o

CPU time (in second)

s

o
o

=)

Average Rendering Time

IS

L

w
o

w
x:

N
@

=
o

CPU time (in second)
N
o

-

o
@

combines multiple reference images into a hierarchical represen-
tation and preserves their sampling rate of the scene. The LDI
Sree allows the efficient extraction of the best available samples
for any view and uses filtered samples in the hierarchy to reduce
Ghe rendering time. The filtered samples also enable the gap fill-
ing method presented in sect3.5.

5. CONCLUSION AND FUTURE WORK

Using multiple reference images in 3D image warping has been a
challenging problem. This paper describes the LDI tree, which

296

6. ACKNOWLEDGEMENTS [18] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony
DeRose and John Snyder. Hierarchical Image Caching for

We thank David McAllister for generating the reference im- Accelerated Walkthrough of Complex Environments. In
ages used in this paper, Nathan O’Brien for creating the excellent Proceedings of SIGGRAPH 1996, pages 75-82)
model of Il Redentore and the permission to use it, and the SIG-[19] Jonathan Shade. Steven Gortler L’i-wei Heand.Richard Sze-

GRAPH reviewers for their valuable comments. This work is liski. Layered Depth Images. In Proceedings of SIGGRAPH
supported by DARPA ITO contract number E278 and NSF MIP- 1998, pages 231-242.

9612643. Generous equipment support was provided by the Intetzo] Lee Westover. SPLATTING: A Paralld . Feed-Forward

Corporation. Volume Rendering Algorithm. Ph.D. Dissertation. Technical
Report 91-029, University of North Carolina at Chapel Hill.
7. REFERENCES 1991.

[1] C. H. Chien, Y. B. Sim and J. K. Aggarwal. Generation of
Volume/Surface Octree from Range Data. The Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 254-60, June 1988.

[2] C. I Connolly. Cumulative Generation of Octree Models
from Range Data. Proceedings, Intl’ Conf. Robotics, pages
25-32, March 1984.

[3] Brian Curless and Marc Levoy. A Volumetric Method for
Building Complex Models from Range Images. In Proceed-
ings of SIGGRAPH 1996, pages 303-312.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski and
Michael F. Cohen. The Lumigraph. In Proceedings of SIG-
GRAPH 1996, pages 43-54.

[5] Craig Kolb. Rayshade.
http://www-graphics.stanford.edu/~cek/rayshade/.

[6] David Laur and Pat Hanrahan. Hierarchical Splatting: A
Progressive Refinement Algorithm for Volume Rendering.
Computer Graphics (SIGGRAPH 91 Conference Proceed-
ings), volume 25, pages 285-288.

[7]1 Marc Levoy and Pat Hanrahan. Light Field Rendering. In
Proceedings of SIGGRAPH 1996, pages 31-42.

[8] A.LiandG. Crebbin. Octree Encoding of Objects from
Range Images. Pattern Recognition, 27(5):727-739, May
1994.

[9] Dani Lischinski and Ari Rappoport. Image-Based Rendering
for Non-Diffuse Synthetic Scenes. Rendering Techniques
‘98 (Proc. 9th Eurographics Workshop on Rendering).

[10] Robert W. Marcato Jr. Optimizing an Inverse Warper.
Mastets of Engineering Thesis, Massachusetts Institute of
Technology, 1998.

[11] William R. Mark, Leonard McMillan and Gary Bishop.
Post-Rendering 3D Warping. Proceedings of the 1997 Sym-
posium on Interactive 3D Graphics, pages 7-16.

[12] Nelson Max. Hierarchical Rendering of Trees from Precom-
puted Multi-Layer Z-Buffers. Rendering Techniques ‘96
(Proc. 7th Eurographics Workshop on Rendering), pages
165-174.

[13] Leonard McMillan. A List-Priority Rendering Algorithm for
Redisplaying Projected Surfaces. Technical Report 95-005,
University of North Carolina at Chapel Hill, 1995.

[14] Leonard McMillan and Gary Bishop. Plenoptic Modeling.

In Proceedings of SIGGRAPH 1995, pages 39-46.

[15] Leonard McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. Ph.D. Dissertation. Tech-
nical Report 97-013, University of North Carolina at Chapel
Hill. 1997.

[16] Nathan O'Brien. Rayshade - || Redentore.
http://www.fbe.unsw.edu.au/exhibits/rayshade/church/

[17] Gernot Schaufler and Wolfgang Sturzlinger. A Three-
Dimensional Image Cache for Virtual Redlity. In Proceed-
ings of Eurographics’ 96, pages 227-236. August 1996.

297

Figure 7: Top view of the octree cells after com-
bining two reference images.

Figure 8: A new view generated from four ref- Figure 9: A new view generated from 12 refer-
erence images (at the same position). ence images (at three different positions).

Figure 10: A new view generated from 36 ref- Figure 11: A new view generated from 36 ref-
erence images (at 9 different positions). erence images. Gap filling is enabled.

298

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Inverse Warping
	Layered Depth Image
	Volumetric Methods
	Image Caching for Rendering Polygonal Models

	LDI TREE
	Constructing the LDI Tree from Multiple Reference Images
	Rendering the Output Images
	Compositing in the Output Buffer
	Progressive Refinement
	Gap Filling
	Analysis of Memory Requirement
	Rendering Time

	RESULTS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

