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LDNE: a program for estimating effective population 
size from data on linkage disequilibrium

ROBIN S .  WAPLES and CHI  DO
Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112, USA

Abstract

LDNE is a program with a Visual Basic interface that implements a recently developed bias
correction for estimates of effective population size (Ne) based on linkage disequilibrium
data. The program reads genotypic data in standard formats and can accommodate an arbitrary
number of samples, individuals, loci, and alleles, as well as two mating systems: random
and lifetime monogamy. LDNE calculates separate estimates using different criteria for
excluding rare alleles, which facilitates evaluation of data for highly polymorphic markers
such as microsatellites. The program also introduces a jackknife method for obtaining
confidence intervals  that appears to perform better than parametric methods currently in use.
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Genetic methods are increasingly being used to estimate
effective population size (Ne) in natural populations. By far
the most common approach for estimating Ne is called the
temporal method (Nei & Tajima 1981; Waples 1989; Wang
2001) because it requires two or more samples, separated in
time, from the same population. In contrast, methods for
estimating effective size that require only a single sample
[the linkage disequilibrium (LD) method (Hill 1981) and
the heterozygote excess method (Pudovkin et al. 1996)]
have seen relatively little use. This is curious, because
any implementation of the temporal method involves two
samples, each of which could be used to estimate Ne
using a single-sample estimator. The standard linkage
disequilibrium method (Hill 1981) was recently shown
to be biased when sample size is less than the true
(unknown) effective size (England et al. 2006). Waples
(2006) developed an empirical correction that effectively
eliminates the bias, but this bias correction is not
implemented in currently available software for estimating
Ne (Peel et al. 2004). Furthermore, the LD method has seen
relatively few practical applications, and its performance
has not been evaluated with highly polymorphic genetic
markers (such as microsatellites) that are commonly used
today (but see Russell & Fewster in press and Tallmon et al.

2007). Here, we describe a computer program ldne that
implements the bias-correction method of Waples (2006).
ldne reads genotypic data in standard formats (genepop,
Raymond & Rousset 1995; fstat, Goudet 2001) and can
accommodate an unlimited number of populations,
individuals, loci, and alleles.

Calculation of linkage disequilibrium and estimation of Ne

ldne uses Burrows’ Δ, the most common method for
estimating linkage disequilibrium, which has several
attractive features: it is simple to calculate; it does not
depend on the assumption of random mating; and it does
not require haplotype data, which is not routinely available
for most natural populations. We used Weir ’s (1979)
unbiased estimator of Δ,  , which adjusts for
effects of sampling a finite number (S) of individuals. Δ can
be standardized to adjust for the effect of allele frequencies,
yielding a correlation coefficient (rΔ), which forms the basis
for estimating Ne. Separate values of  rΔ are calculated for
each pair of alleles at each pair of loci. For a comparison
of allele A at locus i with allele B at locus j, the estimator
of rΔ  is (Weir 1996; Waples 2006)

(eqn 1)Correspondence: Robin Waples, Fax: (206) 860 3335; E-mail:
robin.waples@noaa.gov
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where hi and hj are the observed frequencies of AA and BB
homozygotes at loci i and j, respectively, and p and q are
sample frequencies of alleles A and B.

The expected value of  is a function of Ne, S, the re-
combination rate between loci, and the mating system.
Although it is possible to estimate Ne from data for
physically linked markers (Hill 1981), such information is
rarely available for natural populations. ldne therefore
assumes that the loci under consideration are freely recom-
bining. Waples (2006) empirically derived bias-corrected
estimators for Ne for two mating systems (random mating
and permanent pair bonds = monogamy), and those for-
mulae (Table 1) are used in ldne.

Ne is estimated from the overall mean  averaged
across multiple loci and alleles, which is computed as
follows. For each pair of loci i and j, with ki and kj alleles,
respectively,  is computed (equation 1) for each of the
ki*kj allelic combinations, and a mean of these allele-pair
estimates ( ) is calculated for that pair of loci. If L loci
are used, there are L(L−1)/2 different  values. Next,
two factors are considered in determining the proper
weights to give to each   value in calculating the over-
all mean : the number of independent alleles and the
sample size. Since a locus with k alleles has the equivalent
of k – 1 independent alleles, each  is based on the
equivalent of ni,j = (ki – 1) * (kj – 1) independent comparisons.
With missing data, the sample size Si,j can differ among
locus pairs (see next section), and  values based on
larger sample sizes should receive greater weight. ldne
uses weights that are inversely proportional to variances.
Hill (1981) provided an approximate formula for the
coefficient of variation of Ne based on linkage disequilibrium
data. For unlinked loci, and using the current notation, this

can be rearranged to provide an approximate variance
for Ne associated with :

(eqn 2)

Equation 2 is a function of the true (unknown) Ne. However,
if we assume that sample size is small compared to effective
size, the last term in brackets dominates, leading to

(eqn 3)

Inverting and ignoring the constant leads to the following
proportional weights for each  value: wi,j ∝ ni,j (Si,j)2.

Missing data

Since E( ) and Ne depend on sample size, the effective
size for each sample has to be adjusted to account for
missing data. For each pair of loci i and j, the sample size
Si,j was computed as the number of individuals with scored
genotypes for both loci. The overall effective sample size
was computed as the weighted harmonic mean of the Si,j,
with the weights proportional to the ni,j. This weighted-
harmonic-mean sample size was used in the formulae in
Table 1 to estimate Ne. Although ldne can handle arbitrary
amounts of missing data, as a quality control measure
users might want to eliminate loci or individuals that
cannot be consistently and reliably scored.

Allele frequency

Allele frequencies close to 0 or 1 can affect  and hence
Ne (Waples 2006), but this topic has not been studied in any
comprehensive way. A feature of ldne facilitates evaluation
of the effects of allele frequency: as a default, the program
returns separate estimates after excluding all alleles
with frequencies less than three different critical values
(Pcrit = 0.05, 0.02, 0.01). The user can choose additional or
different Pcrit values (up to six total) as an option.

Confidence intervals

Parametric confidence intervals for Ne can be computed
based on the premise that Φ ≈ 2/n (Hill 1981), where

 is the squared coefficient of variation
of  and n = Σni,j is the total number of independent
comparisons the estimate is based upon. ldne computes
parametric 95% CIs for Ne using equation 12 in Waples
(2006). However, the locus pairs are not entirely
independent (Hill 1981), which means that n overestimates
the number of independent comparisons, and as a

Table 1 Parameters for estimating Ne for large and small sample
sizes (S) under two mating systems.  is the
empirical r2 after subtracting the expected contribution from
sampling for that model and sample size. Modified from Waples
(2006).
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consequence these parametric CIs are too narrow (Waples
2006). In an attempt to correct this problem, we implemented
a jackknife option in ldne that provides an empirical
estimate of the effective number of independent compari-
sons (n′) associated with an overall mean . New values
of  were computed after eliminating in turn each of the
L(L−1)/2 pairs of loci, and these new data were used to
estimate Var( ) (as described in Efron & Gong 1983) and
hence Φ. We calculated the effective number of independent
comparisons as n′ = 2/Φ and used the result to calculate
adjusted parametric CIs using n′ and the original .

An example

We evaluated performance of ldne with simulated data
generated using a different model than the one used by
Waples (2006), which provided an independent test of the
efficacy of the empirical bias correction. easypop (Balloux
2001) was used to simulate genotypic data for ideal
populations of fixed size, with discrete generations,
equal sex ratio, and random mating. The mutational
model approximated that of microsatellites (mutation
rate μ = 5 × 10–4; 10 possible allelic states). Each simulation
was initiated with maximal diversity and Ne = 500 and run
for 128 generations before taking a sample of S individuals
for genetic analysis, at which point average heterozygosity
was about 0.8 (comparable to that seen for microsatellites
in many natural populations).

Figure 1 shows results of 1000 replicate simulated popu-
lations with true Ne = 500, sample sizes of S = 50 or 200,
and data for 20 gene loci. The mean  was computed
across all replicates and the result was used to estimate
Ne using the equations for random mating and S > 30 in
Table 1. The top panel shows that bias, measured as the
ratio of Ne to true Ne, was negligible when  was based on
alleles with frequency ≥ 0.1 and increased as lower frequency
alleles were included in the analysis. The upward bias in
Ne  was more pronounced for S = 50, reaching 30% when
alleles at frequency as low as 0.01 were used. The second
panel depicts the coefficient of variation of the replicate

 values, which is a measure of precision. As expected,
precision increased as more alleles were included in the
analysis. It is apparent, therefore, that users of the LD method
are faced with a tradeoff between bias and precision in
dealing with highly polymorphic markers. Lowering Pcrit
allows more allelic combinations and increases precision
of  but also increases the upward bias of Ne.

Another measure of performance is the percentage of
CIs that contain the true Ne. Table 2 shows the fraction of
95% CIs of Ne that contained the true value (Ne = 500) for
the simulations shown in Fig. 1. In agreement with Waples
(2006), parametric CIs were consistently too narrow and
included the true Ne only 84–91% of the time. Adjusted CIs
using the jackknife method performed as well as or better

than the parametric method in all scenarios considered;
however, the jackknife CIs still contained the true Ne less
than the nominal 95% of the time (Table 2). For both
methods, performance declined slightly with lower Pcrit,
presumably because the point estimate is slightly biased
when low frequency alleles are used.

Collectively, these results are encouraging for several
reasons and suggest that the LD method can be generally
useful for estimating Ne with highly polymorphic markers.
First, including uncommon alleles at highly polymorphic
markers considerably enhances precision with relatively
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Fig. 1 Results of estimating Ne from simulated data for 1000
replicate populations, each with true Ne = 500, data for 20
‘microsatellite-like’ gene loci, and samples of S = 50 or 200
individuals. Pcrit is the minimum frequency for alleles to be
included in the analysis. Top panel: dotted line is the expected
result for an unbiased estimator of Ne. Results shown are based on
the harmonic mean Ne across replicates. Bottom panel: CV is the
coefficient of variation of  values across replicates.¼Δ

2

Table 2 Percentage of putative 95% confidence intervals that
contained the true Ne (500) for the simulations depicted in
Figure 1. Pcrit is the minimum frequency for alleles to be included
in the analysis

Pcrit Parametric Jackknife

S = 50 0.1 91.4 94.0
0.05 89.0 91.5
0.02 90.3 90.7
0.01 88.5 88.5

S = 200 0.1 87.2 92.1
0.05 86.5 91.9
0.02 86.4 90.6
0.01 84.1 86.9
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modest increases in bias. Second, the jackknife method for
generating CIs appears to be partially effective in dealing
with nonindependence of  values for different over-
lapping pairs of loci; however, the method does not eliminate
this effect entirely. It must be stressed that these results
represent only a small subset of the wide range of condi-
tions that the LD method might be applied to. General
conclusions about performance of the method (and the
jackknife option) must await a more extensive set of evalua-
tions that considers a wider range of values of S and Ne, as
well as different mutation models and numbers of loci
and alleles. We are presently conducting some of these
evaluations as part of another project (Waples and Do, in
preparation).

Assumptions

The LD method and the standard temporal method are
both based on some simplifying assumptions (selective
neutrality; closed populations; discrete generations) that
might not apply to many natural populations. The con-
sequences of violating these assumptions have not been
rigorously evaluated for the LD method, but this topic is
discussed in Waples (2006). The LD method estimates Ne
in the parental generation for the individuals sampled
(Waples 2005), although the estimate can also be affected
by Ne in the recent past if population size has changed.
The method for weighting pairwise  assumes that Ne
is large compared to S, which will not always be the case.
We expect that violation of this assumption is not likely
to have a substantial effect on Ne, but this should be
evaluated with a range of S and Ne values.

ldne is a FORTRAN 95 program with a Visual Basic
interface, written for a personal computer. The FORTRAN
code was compiled with the Lahey FORTRAN 95 compiler,
version 7.1. The ldne program, User’s Manual, and example
data sets can be downloaded from http://fish.washington.
edu/xfer/LDNE/.

Acknowledgement

We are grateful to James Russell for useful discussions about
calculation of mean  with missing data and variable numbers
of alleles per locus.

References

Balloux F (2001) easypop version 1.7: a computer program for
population genetics simulations. Journal of Heredity, 92, 301–
302.

Efron B, Gong G (1983) A leisurely look at the bootstrap, the
jackknife, and cross-validation. American Statistician, 37, 36–48.

England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G
(2006) Estimating effective population size from linkage dis-
equilibrium: severe bias in small samples. Conservation Genetics,
7, 303–308.

Goudet J (2001) fstat, a program to estimate and test gene diver-
sities and fixation indices. Version 2.9.3. Available from http://
www2.unil.ch/popgen/softwares/fstat.htm.

Hill WG (1981) Estimation of effective population size from data
on linkage disequilibrium. Genetical Research, 38, 209–216.

Nei M, Tajima F (1981) Genetic drift and estimation of effective
population size. Genetics, 98, 625–640.

Peel D, Ovenden JR, Peel SL (2004) NEESTIMATOR: software for
estimating effective population size, Version 1.3. Queensland
Government, Department of Primary Industries and Fisheries.
Available at http://www2.dpi.qld.gov.au/fishweb/13887.html.

Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for
estimating the effective number of breeders from heterozygote-
excess in progeny. Genetics, 144, 383–387.

Raymond M, Rousset F (1995) genepop version 1.2.: population
genetics software for exact tests and ecumenicism. Journal of
Heredity, 86, 248–249.

Russell JC, Fewster RM Inferences on estimating linkage disequi-
librium effective population size. Environmental and Ecological
Statistics, in press.

Tallmon DA, Koyuk A, Luikart G, Beaumont MA (in press) onesamp:
a program to estimate effective population size using approxi-
mate Bayesian computation. Molecular Ecology Resources, in press.

Wang J (2001) A pseudo-likelihood method for estimating effec-
tive population size from temporally spaced samples. Genetical
Research, 78, 243–257.

Waples RS (1989) A generalized approach for estimating effective
population size from temporal changes in allele frequency.
Genetics, 121, 379–391.

Waples RS (2005) Genetic estimates of contemporary effective
population size: to what time periods do the estimates apply?
Molecular Ecology, 14, 3335–3352.

Waples RS (2006) A bias correction for estimates of effective
population size based on linkage disequilibrium at unlinked
gene loci. Conservation Genetics, 7, 167–184.

Weir BS (1979) Inferences about linkage disequilibrium. Biometrics,
35, 235–254.

Weir BS (1996) Genetic Data Analysis, 2nd edn. Sinauer Associates,
Sunderland, Massachusetts.

rΔ
2 i j,

rΔ
2 i j,

¼Δ
2

http://fish.washington.edu/xfer/LDNE/
http://www2.unil.ch/popgen/softwares/fstat.htm
http://www2.dpi.qld.gov.au/fishweb/13887.html

	LDNE: a program for estimating effective population size from data on linkage disequilibrium
	

	ldne: a program for estimating effective population size from data on linkage disequilibrium

