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ABSTRACT Driven by the advance of positioning technology and the tremendous popularity of location-
based services, location-record data have become unprecedentedly available. Publishing such data is of
vital importance to the advancement of a wide spectrum of applications, such as marketing analysis,
targeted advertising, and urban planning. However, the data collection may pose considerable threats to
the individuals privacy. Local differential privacy (LDP) has recently emerged as a strong privacy standard
for collecting sensitive information from users. Due to the inherent high dimensionality, it is particularly
challenging to publish the location-record data under LDP. In this paper, we propose LDPart, a probabilistic
top-down partitioning algorithm to effectively generate a sanitized location-record data. Our approach
employs a carefully designed partition tree model to extract essential information in terms of location
records. Furthermore, it alsomakes use of a novel adaptive user allocation scheme and a series of optimization
techniques to improve the accuracy of the released data. The extensive experiments conducted on real-world
datasets demonstrate that the proposed approach maintains high utility while providing privacy guarantees.

INDEX TERMS Big data privacy, local differential privacy, location-record publication.

I. INTRODUCTION

The location-record data refers to the data in which each
record owner is associated with a set of locations drawn
from a universe of locations. With the advancement of
positioning technology and the popularity of location-based
services [1]–[3], this type of data have become unprece-
dentedly available. The information hidden in such data,
when properly defined and extracted, can greatly benefit
tasks like marketing analysis, targeted advertising and trend
monitoring. Despite the usefulness of location-record infor-
mation, the massive data collection could incur significant
privacy risks to both user contributors and the data collector,
as demonstrated in several notable incidences (e.g., AOL,1

and Netflix2), where unexpected leakage of sensitive data
results in public outrage, reputation damage, and legal actions
against the data collector (i.e., aggregator).

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangliang Zhang.

1https://en.wikipedia.org/wiki/AOL_search_data_leak
2https://www.wired.com/2009/12/netflix-privacy-lawsuit/

A promising methodology for addressing the privacy con-
cerns in data collection is local differential privacy (LDP),
which has been deployed in popular software systems such
as Google Chrome browser [4], [5], Apple iOS [6], and
Microsoft [7]. Its main idea is to guarantee that the aggre-
gator (i) never gains access to the precise personal infor-
mation of any individual, and yet (ii) would still be able
to derive aggregates about the users. In particular, in LDP,
each user locally perturbs his own data, and only the per-
turbed version is transmitted to the aggregator. As such,
LDP protects not only the privacy of data contributors but
also the collection itself against the risk of potential data
leakage.

In the past few years, LDP has also drawn consider-
able interest from the data management community. How-
ever, as we review later in Section VI, existing solutions
are either limited to the case where each user possesses a
tuple of numeric or categorical value [4]–[6], [8], or focus
mainly on basic statistics such as counts and mean. As a
result, they are inadequate for more complex types of data
mining tasks over high-dimensional location-record data.
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To our knowledge, only two studies [9], [10] support analysis
on such data, but with severely restricted functionality
(i.e., frequency estimation for single items [9], [10] and set
cardinality estimation [10]). It is therefore urgent to develop
a LDP-enabled data publication mechanism to meet vari-
ous requirements of privacy-preserving location-record data
analysis.
Due to the inherent high-dimensionality of location-record

data, it is particularly challenging to apply LDP to location-
record data. In particular, naively injecting noise to the
count of each possible combination of locations (i.e., loca-
tion record) negatively impacts both privacy and utility.
First, unless we always enumerate all possible combinations
(whether or not in the data), which is computationally infea-
sible even for moderately size universe. Second, the privacy
budget must be split among deriving these counts, leading a
tiny portion of the budget share assigned on each. As a con-
sequence, the introduced heavy perturbation reduces released
data utility considerably. In this paper, our proposed LDPart
tackles this challenge through a well-established partition

tree model to effectively generate a sanitized location-record
data. With this model, it helps us to significantly reduce
the space of location records. In fact, rather than exploring
the entire universe of all possible distinct location records,
we focus only on those potentially ‘‘non-zero’’. More pre-
cisely, LDPart estimates the count of each generalized loca-
tion record (corresponding to an internal node) roughly, such
as {R2,R3} in Figure 2. This estimated count is accurate
enough to determine whether or not to split the node. In this
way, LDPart retains most of the users on estimating counts
of actual common location records, i.e., leaf nodes in the
partition tree. Finally, with these common location records,
LDPart enables to accurately ‘‘reconstructing’’ the original
data.
In summary, we make the following contributions:
• This is the first study that proposes an efficient sanitized
approach scalable to high-dimensional location-record
data under local differential privacy.

• We develop a series of techniques to guarantee
good utility under the partition tree model, includ-
ing an adaptive user allocation scheme, a formal
choice of the count threshold and several optimized
strategies.

• Through formal privacy analysis, we show that our pro-
posed algorithms satisfy ǫ-LDP.

• We implement and evaluate LDPart on real-world
datasets. Experimental results demonstrate the effi-
ciency and effectiveness of our proposed data synthesis
mechanisms.

The remainder of this paper is organized as fol-
lows. Section II presents some necessary preliminaries.
Section III introduces the proposed privacy framework,
whereas Section IV details the proposed solutions. The exper-
imental evaluation is reported in Section V, followed by a
survey of related work in Section VI. Finally, Section VII
concludes this paper.

FIGURE 1. A RT-tree for the sampled location-record dataset.

TABLE 1. Summary of notations.

II. MODEL AND PRELIMINARIES

A. PROBLEM STATEMENT

Let L = {L1,L2, . . . ,L|I |} be the universe of locations,
where |I | is the size of the universe. In our setting, each
user ui possesses a location record ti which consists of a set
of locations. Figure 1(a) presents a sample location-record
dataset with L = {L1,L2,L3,L4}. To protect privacy, each
user ui perturbs his record ti using a randomized mechanism.
An untrusted aggregator (e.g., Google) is interested in gath-
ering information on these perturbed data records from the
population of users. In this paper, we aim to develop a solution
for publishing a synthetic location-record data under LDP
that has similar property with real data. Table 1 summarizes
frequent notations used throughout the paper.
Problem Definition: Formally, let N be the total number

of users and sufficiently large. Let D = {t1, t2, . . . , tN } be
the location-record dataset where each data record is owned
by a user individually. Our goal is to release an approximate
dataset D̃ such that St (D) ≈ St (D′), ∀I ′⊆LQD(I ′) ≈ QD′ (I ′),
where St (D) (St (D′)) be the set of distinct records in D (D′),
and QD(I ′) (QD′ (I ′)) be the count of the location set I ′

in D (D′). Here, the reason for choosing counting property
is that they are crucial to several data mining tasks, such as
mining frequent patterns and association rules. In addition,
the definition about Q is shown as follows.
Definition 1 (Counting Query): Given a set of location

I ′ ⊆ L, a counting query Q over a user population [N ] is
defined to be Q(I ′) = |{I ′ ⊆ ti|ui ∈ [N ]}|.

In the classic privacy mechanisms [11], [12], the universe
of an attribute is also accompanied by a taxonomy tree,

31436 VOLUME 7, 2019



X. Zhao et al.: LDPart: Effective Location-Record Data Publication via LDP

FIGURE 2. The administrative division of a country.

which indicates the publicly-known hierarchy among the
possible values. To illustrate the concept, consider Figure 2,
which demonstrates a simple taxonomy tree on attribute
Region [12]. For such a tree, a lower level node provides
more details than a higher level one, and an intermediate
node summarizes its subtree. Broadly speaking, such internal
node is often semantically consistent with the original items
under its subtree. In our approach, these original items are
independent of each other, and thus the taxonomy tree could
be random.
Definition 2 (Random Taxonomy Tree, RT-Tree): Given

the universe of locations L = {L1,L2, . . . ,L|I |} and a fan-
out f , a random taxonomy tree H is built by hierarchically
merged randomized location space into h levels, where h =
⌈logf |I |⌉ + 1 and its internal nodes are a set of their leaves.

Figure 1(b) illustrates an example RT-tree for the sampled
dataset in Figure 1(a). As observed, there are 3 internal
nodes L{1,4} = {L1,L4}, L{2,3} = {L2,L3}, and L{1,2,3,4} =
{L1,L2,L3,L4}. For a RT-tree H , the total number of internal
nodes of its subtree rooted at rj is donated as ItNode(rj). It is
quite obvious that this quantity indicates the number of split
operation needed to completely reach leaf nodes. Especially,
we refer the number of internal nodes at level i for this subtree
as ItNodei(rj). In addition, the total number of internal nodes
(or internal nodes at level i) ofH are represented as ItNode(H )
and Leveli(H ), respectively. For a node rj, the height h(rj)
is defined as its level in H . Note that the leaves have level
0 and the root has level h. Further, if a location is in the set of
a RT-tree node, then we say that this location can be general-
ized to the node. For instance, since L4 ∈ {L1,L4}, and then
L4 can be generalized to L{1,4}.

B. LOCAL DIFFERENTIAL PRIVACY

Initial work on differential privacy (DP) mainly focuses
on central differential privacy [13]–[15]. In the centralized
model, it assumes the participation of a trusted aggregator
who has access to the private data of individuals and releases
information through a DP algorithm. In practice, individuals
may be reluctant to share private information with the central
data curator. Instead, local differential privacy (LDP) captures

the case where the data contributors trust no one else but
themselves.

In the local setting, the private data of each user is locally
randomized before being sent from the device, so the aggra-
gator never collects or possesses the exact raw data. Intu-
itively, LDP requires that no matter which data record a user
has, the aggregator should learn almost the same informa-
tion. In other words, by seeing the perturbed information,
an adversary with arbitrary background knowledge cannot
distinguish the user’s original data record with another one
with high confidence. In this sense, LDP provides plausible
deniability to the user. Formally, LDP is defined as fol-
low. Here the parameter, ǫ, specifies the degree of privacy
offered. A smaller ǫ leads to stronger privacy protection, and
vice versa.
Definition 3 (Local Differential Privacy): A randomized

algorithm A is ǫ-LDP if for any two location records t
and t ′, and for any possible output O ⊆ Range(A),

Pr(A(t) ∈ O) ≤ eǫPr(A(t ′) ∈ O) (1)

Theorem 1 (Sequential Composition [16]): Let Ai, . . . ,

Am be m algorithms, each provides ǫi-LDP. A sequential of
algorithms Ai(t) provides (

∑
i ǫi)-LDP.

1) FUNDAMENTAL PRIVATE MECHANISMS

Wedescribe primitives for LDP on simple inputs, which serve
as the basic building blocks for our protocols.
1 bit Randomized Response: A fundamental mechanism

for achieving ǫ-LDP is Randomized Response (RR) [17],
a widely used surveying technique for collecting statistics
on sensitive topics where survey respondents wish to retain
confidentiality. More specifically, in its simplest form, one
reports the true value Xi (i.e., either 0 or 1) with probability p
and the flip (1 − Xi) of the true value with probability 1-p.
This satisfies (ln p

1−p )-LDP.
Optimized Parallel Randomized Response: In general,

we often encounter cases where each user holds a sparse
vector of length m with 1 at exactly one position and 0’s at
remaining places. In these cases, accuracy could be improved
by an alternative approach which applies m instances
of 1 bit RR, each with parameter ǫ/2. We called this
approach as Parallel Randomized Response (also known as
Unary Encoding [18] and Basic RAPPOR [4]). Recently,
Wang et al. [18] slightly improve this mechanism by setting
the probability of retaining the sole 1 to be p = 1

2 , and
the probability of flipping each 0 to be q = (1 + eǫ)−1.

Then, the aggregator computes
∑n

i=1 X
′
i−nq

p−q , as an estimate for
the target value of each position, i.e.,

∑n
i=1 Xi. We refer to

the improved mechanism as Optimized PRR. Note that the
output of optimized PRR at each position is binary. Thus, it is
sufficient for each user to transmit only 1 bit to the aggregator,
which minimizes communication overhead.

III. OVERVIEW

Intuitively, a locally differentially private publication of a
location-record dataset could be generated by adding noise
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to the counts of a set of all possible location records. How-
ever, this would be infeasible since it is computationally
prohibitive to enumerate all possible location records in any
non-trivial sized universe. In addition, the privacy budget
must be split among deriving these counts, leading a small
portion of the budget assigned on each. As a consequence,
it leads to inaccurate estimate of count values, and thus the
utility of the released data is drastically reduced.
We first provide an overview of the proposed approaches.

Given the analysis above, the key challenge of publish-
ing location-record dataset is the unknown space of loca-
tion records. We do not have any prior knowledge about
the location records that actually appear in D. To identify
the set of such high-quality location records, we propose
a well-designed tree structure, called partition tree (PTree,
for short). In particular, it starts by creating a single parti-
tion with a unified representation. This unified representa-
tion, also named as hierarchy cut, is composed of a set of
RT-tree nodes. Subsequently, it iteratively splits the partition
into disjoint sub-partitions with more detailed representations
in a top-down manner based on the RT-tree. During this pro-
cess, for each sub-partition, it requires to determine whether it
is ‘‘empty’’ in a noisy way and further split the ‘‘non-empty’’
sub-partitions. The entire partition process terminates when
no sub-partition can be further expanded. Finally, we make
use of the noisy count of each leaf cut to construct the release.
A leaf cut is a partition that each node in its hierarchy cut
is a leaf node of the corresponding RT-tree, for example,
the associated cuts of the nodes v4, v5 and v6 in Figure 3 are
leaf cuts.

IV. SANITIZATION ALGORITHMS

A. BASIC METHOD

Before presenting our main approaches UniPart and LDPart
for publishing location-record data under LDP, we first
describe a simple solution called UniBSL based on an LDP-
compliant PTree. On the whole, these approaches follow the
unified framework as stated in previous section, but differ
in counting strategies at the aggregator. Given the hierarchy
cut of a node v, its count c(v) is defined as the number of
location records that match it. Concretely, a user’s location
record is said to match a cut iff (i) each location in his record
could be generalized to a node in the cut; and (ii) every
node in the cut generalizes some locations in the record. For
instance, the record {L1,L4} of u1 matches to the hierarchy
cuts {L1,L4}, {L{1,4}} and {L{1,2,3,4}}, but not {L{1,4}, {L{2,3}}}.

In UniBSL, the aggregator builds a PTree T under
ǫ1-LDP, and adds each leaf cut terms in T to the sanitized
dataset D̃. Algorithm 1 presents our UniBSL approach in
more detail. Specifically, it starts by performing a series
of initialization operations (Lines 1-4), including creating a
root node, setting the noisy count, splitting root’s cut, and
adding new generating nodes into queue. Then, in Lines 5-12,
the algorithm iteratively constructs each level of T . Given
a node v, the aggregator collects data under LDP to
compute an estimate c′(v) of c(v), the true count for

Algorithm 1 UniBSL_Build_PTree(ǫ1, lmax ,H )

1 Create a PTree T with a root node vr ;
2 Initialize vr .cut ← the root of H , c′(vr ) = N ;
3 Sub-partitions Vp← SubPart_Gen(vr .cut,H );
4 Add Vp to an initially empty queue Q;
5 while Q 6= φ do

6 Dequeue v from Q;
7 Apply optimized PRR to collect information from

all users to estimate c′(v) of v.cut using privacy
budget ǫ1

lmax
;

8 if v.cut is a leaf cut then

9 Add c′(v) copies of v.cut to D̃;
10 else if c′(v) ≥ θ then

11 Sub-partitions V ′p← SubPart_Gen(v.cut,H );
12 Add V ′p to Q;
13 Return D̃;

v’s corresponding cut. After that, it checks if v’s correspond-
ing cut is a leaf cut. If so, c′(v) copies of v’s cut are added to D̃;
otherwise, we decidewhether to split the node v by comparing
its estimated count c′(v) with a count threshold θ . If c′(v) ≥ θ ,
v is expanded by explicitly considering every possible sub-
partitions as a child of v. For a non-leaf cut whose c′(v) < θ ,
we treat it as ‘‘empty’’ and do not consider its child nodes
further. The count threshold θ is a pre-defined threshold that
will be discussed later.
For a ‘‘non-empty’’ non-leaf partition v, the function

SubPart_Gen(v.cut,H ) is used to generate a candidate set
of sub-partitions. In particular, it randomly selects a node r
from v.cut to expand, and then exhaustively generates the
sub-partitions by replacing r by the combinations of its chil-
dren. If the number of r’s children in H is nl (nl ≤ f ),
then the total number of generated sub-partitions is 2nl − 1.
Take the node v3 in Figure 3 as an example. Through expand-
ing {L{2,3}}, it generates three sub-partitions, i.e., v7, v8,
and v9. Besides, to derive the count of each cut privately
in UniBSL, the privacy budget uniformly assigned on each
level is ǫ1

lmax
, which largely relies on lmax . Below, we provide

insights for the aggregator to select a proper lmax value in
practice.

One possible setting for lmax is l1 = ItNode(H ). The
rationale is that the maximum number of partition operations
needed to reach leaf cut for T is ItNode(H ). Unfortunately,
it tends to be rather large especially when the size of L is
large or f is small. Nevertheless, in reality, the majority of the
records in the data are short and only few of them are very
long [19], [20]. In this scenario, many (or even all) root-to-
leaf paths have a length much shorter than l1. Hence, setting
lmax solely based on l1 is clearly not optimal. According to
the construction of H , most of internal nodes in H are at
level 1. If we could reduce the number of involved such nodes,
the number of partition operations would be significantly
reduced. Inspired by this fact, an alternative choice is to make
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FIGURE 3. The partition tree of the sample data.

better use of statistic information subtracted from the dataset.
For a record ti of length l, the amount of nodes that locate
in at level 1 of H in its matched cut is at most l. In other
words, the nodes in its matched cut at level 1 could be bound
by min{Level1(H ), l}. For example, the nodes in the matched
cut at level 1 are no more than one for u2’s record in Figure 1.
Similarly, the nodes in its matched cut at any level i also be
bound bymin{Leveli(H ), l}. From the analysis above, we can
conclude that the upper bound of internal nodes in a cut
(i.e., lmax) is

∑h
i min{Leveli(H ), lm}, where lm is the maxi-

mum length of user records.
Theorem 2: Our UniBSL algorithm satisfies ǫ-LDP.
Proof (Sketch): Let Levelk (T ) (0 ≤ k ≤ lmax) be the

set of nodes on the k-th level in T . Apparently, the asso-
ciated cuts of these nodes are different. For a user ui, his
record can only match one of them. It means that the true
vector of ui is a sparse vector: exactly one entry is 1, and
the rest are 0. Based on optimized PRR [18], the process
of collecting such perturbed binary vector is ǫ1

lmax
-LDP if

the ǫ
lmax

privacy budget is assigned. The splitting process of
T invokes PRR lmax times, one for each level of T , and thus
it satisfies ǫ1

lmax
× lmax = ǫ1-LDP (Theorem 1). In addition,

the budget ǫ2 is assigned to determine lm, which described
in subsection IV-C. As evident, this procedure satisfies
ǫ2-LDP. The sequential composition property guarantees that
the whole process satisfies ǫ1 + ǫ2 = ǫ-LDP.

B. LDPART

In the design of LDP protocols, one important principle is
‘‘one should divide the user population, instead of dividing
the privacy budget’’ [21]. Inspired by this, a straightforward
approach is to randomly divide the user population into lmax
equal-sized groups, one for each level of the PTree except
the root node. However, this naive extension suffers from two
serious drawbacks as UniBSL. First, it requires to impose a
limit lmax on the recursion depth in the splitting of T . Second
andmore importantly, each run of optimized PRR is allocated
a rather small portion of the user population, which dominates
overall result inaccuracy.
To address these drawbacks, we propose the UniPart algo-

rithm that utilizes an adaptive user allocation scheme but
completely eliminates the dependency on a pre-defined lmax .
The first idea behind it is that it is not necessary to allocate

Algorithm 2 UniPart(ǫ,H )

1 Same as Lines 1-4 in Algorithm 1;
2 Set Uvr = {u1, u2, . . . , uN };
3 while Q 6= φ do

4 Dequeue v from Q;
5 Calculate available user set Uv;
6 if v.cut is a leaf cut then

7 Apply optimized PRR to collect information
from Uv to estimate c′(v) using ǫ;

8 Add c′(v) copies of v.cut to D̃;
9 else

10 Estimate hv =
∑

rj∈v.cut |ItNode(rj)| + 1, and

lv = |Uv|hv ;
11 while Uv 6= φ do

12 Randomly sample a set of users U ′v of
length lv;

13 Apply optimized PRR to collect information
from U ′v using ǫ and incrementally refine
the estimated count c′(v);

14 Update θ , and Remove all users in U ′v from
Uv;

15 if c′(v) ≥ θ and Uv 6= φ then

16 Repeat Lines 11-12 in Algorithm 1;
17 Break;
18 Return D̃;

each user to a single level of the PTree. Actually, if there are
no node is an ancestor of another in a set of nodes Vi, then
a user ui could participate in the count estimation process
for all nodes in Vi, each with the entire privacy budget ǫ.
The correctness of this conclusion directly follows the prop-
erty of optimized PRR, described in Section II-B. Therefore,
the available user set Uv for a node v in the PTree is the set
of users who have not participated in the count estimation
for any of v’s ancestor nodes. For instance, in Figure 3,
Uv7 is comprised of users who have not contributed to data
collection related to v3. From this perspective, the user sets
participated in count estimation for nodes in a path should

be disjoint, and different paths could share the whole user

population.
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Based on above analysis, the second idea is that a desirable
user allocation scheme should take the length of a root-to-

leaf path into account. Generally, each node in a shorter
path should receive more users; In contrast, each node in a
longer path should use less users. Hence, we independently
estimate the maximum length of each path and then distribute
the remaining users as per the estimated length. To be spe-
cific, given a node v of a path and an associated RT-tree H ,
the maximum length of the path rooted at v is estimated as
(
∑

rj∈v.cut ItNode(rj)+ 1).
Obviously, the node at a higher level in a PTree T has

a larger real count than its descendant nodes. Once such
a node is eventually pruned due to inadequate count, its
descendants can be omitted from further consideration, and
thus we could exploit all its available users to estimate the
count. On the other hand, more users can contribute to more
accurate estimation [21]. These facts motivate the third idea
of our adaptive user allocation scheme: incrementally check
whether the estimated count of a node pass θ , rather than

only one time test. Towards this end, the detailed procedure of
our proposed UniPart is shown in Algorithm 2. Furthermore,
the following theorem establishes the theoretical guarantee of
Algorithm 2.
Theorem 3: UniPart satisfies ǫ-LDP.
Proof (Sketch): For the user ui, there are no node is an

ancestor of another in the set of its participated nodes Vi.
In other words, these nodes are disjoint. It can be easily
verified that, the data collection for the entire Vi by applying
optimized PRR with ǫ budget guarantees ǫ-LDP. In the same
manner, the data collection for other users also ensure ǫ-LDP.
In summary, the whole process satisfies ǫ-LDP.

1) IMPROVED APPROACH: LDPart

Compared to UniBSL, UniPart achieves adaptive estimation
of node counts, and eliminates the dependence on pre-
defined lmax . Overall, the accuracy of released location-
record dataset is increased, as validated in Section V. Recall
that the final leaf cuts are used to construct the released data
in our framework. For this reason, if the counts of these
leaf cuts are more accurate, then the utility of released result
would be significantly improved. Hence, we propose a more
sophisticated adaptive user allocation scheme. In particular,
we reserve half of users to obtain the noisy counts of leaf cuts,
which are used to construct the release, and use the remaining
users to guide the splitting process. This improved approach
is named as LDPart. In a nutshell, LDPart is similar to UniPart
in that it also (i) generates T by iteratively splitting a root
node vr whose cut covers the whole universe of locations, and
(ii) incrementally decides whether a node v should be split
based on its estimated count. However, the method for obtain-
ing noisy counts of leaf cuts marks the crucial difference
between the two approaches.

2) OPTIMIZATIONS

To further improve the performance of LDPart, in the follow-
ing, we present two-folded optimization strategies.

Non-Negative Counts (NNT): Once the PTree T is
obtained, all leaf cuts are used to reconstruct the sanitized
set-valued dataset D̃. In order to guarantee user privacy,
the uncertainty is injected to the true counts of these cuts.
In a non-perturbed PTree T , the counts of all nodes must
be non-negative. However, this constraint may be violated in
the noisy tree created by LDPart due to the noisy injected to
each node. Therefore, this reconstruction process can further
be improved by publishing c′(v) copies of v.cut only if the
estimated count of a leaf cut does not result in negative value.
Smart Estimation (SE): In both UniPart and LDPart, our

proposed user allocation scheme depends on the estimated
length of each path, which heavily affected by the structure
of RT-tree H . Similar to UniBSL, the estimated value may
tend to be large. Consequently, less users are assigned to
each node, and multiple rounds of check could be required,
reducing the efficiency of the algorithms. To tackle this
issue, we present a more smarter path length estimation
strategy. Intuitively, for the records less than lm in length,
the number of nodes at level i of H in its matched cut is
at most lm. More precisely, if some nodes of the matched
cut already are single items, the number of nodes at level i
could further bound by (lm − ns), where ns is the number
of single items. Thus, given a node v and its cut v.cut , the
maximum length of this path could be calculated as hv =∑hp

i=1min{
∑

rj∈v.cut ItNodei(rj), lm − ns} + 1, where hp =
maxrj∈v.cut h(rj). With the help of smart estimation, LDPart
would estimate each path more accurately.
Theorem 4: LDPart satisfies ǫ-LDP.
Proof (Sketch): In LDPart, half of users involve in build-

ing PTree, and the other half of users are used to estimate
the counts of leaf nodes Vl . The former satisfies ǫ-LDP,
as shown in theorem 3. Since the nodes in Vl are disjoint,
the latter could use optimized PRR to participate the count
estimation of all nodes in Vl . Therefore, for the latter, it also
satisfies ǫ-LDP. The optimization strategy NNT is conducted
on noisy data, rather than the original data, and thus it does
not violate the privacy. Analogously, the SE strategy does not
access the original data as well, and does not have the effect
on the privacy of LDPart. Therefore, our LDPart as a whole
gives ǫ-LDP.

C. PARAMETER SETTING

1) COMPUTING THRESHOLD θ

In the construction of T , a node (partition) is not further split
if its estimated count is lower than the count threshold θ . The
main source of error in T comes from the nodes that are of a
true count of zero (i.e., empty node) but of an estimated count
greater than θ . We refer such nodes as false nodes. In order
to reduce the magnitude of noise in T , we propose a count
threshold to limit the total number of false nodes.
Basically, a false node v will generate, on average, mf Pθ

false children nodes in each expansion, where mf = 2f − 1,
and the parameter Pθ donates the probability of perturbation
noise passing θ . This is because any descendant of an empty
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TABLE 2. Real dataset parameters.

node must have an actual count of zero. For the expansion
of T , the total number of false nodes accumulates exponen-
tially with the factor of mf Pθ , leading to excessive noise.
To limit the explosive growth of false nodes in this process,
we set mf Pθ ≤ 1, i.e., Pθ ≤ 1

mf
.

Suppose that there are nv users participating in the estima-
tion of a node v’s count. Since v is an empty node, i.e., Xi =
0(i ∈ [1, nv]). It means that the record of any user cannot
match to v.cut . Under LDP setting, we obtain Iv =

∑nv
i=1 X

′
i ,

the number of X ′i = 1 is reported in noisy values, and then
compute Ev = Iv−nvq

p−q . On the other hand, Iv can be seen
as the summation of nv binomial variables (X ′i − Xi), whose
probability of being 1 is q. Central limit theorem shows that,
in most cases (as long as nv is large), Iv can be approximated
by the normal distribution with mean µ = nvq and variance
σ 2 = nvq(1 − q). Since both nvq and p − q are constant,
the variable Ev also is a normal random variable but with
different µ = 0 and σ 2 = nvq(1−q)

(p−q)2 .

For any false node v, the probability of the estimated total
count above θ is Pr(c′(v) = N

nv
Ev ≥ θ ). Given that Pr(c′(v) ≥

θ ) ≤ 1
mf

, we have

Pr(
N

nv
Ev ≥ θ ) ≤

1

mf
⇒ Pr(Ev ≥

nv

N
θ ) ≤

1

mf

⇒ Pr(Ev ≤
nv

N
θ ) ≥ 1−

1

mf

⇒ 8(
nv
N

θ (p− q)
√
nvq(1− q)

) ≥ 1−
1

mf

⇒ 8(−
nv
N

θ (p− q)
√
nvq(1− q)

) ≤
1

mf
.

Solving, we derive that θ =
N8−1( 1

mf
)
√
nvq(1−q)

nv(q−p) , where

8−1 is the inverse of cumulative density function. Since
the parameters q and nv are distinguished in the proposed
approaches, the specific setting of θ is formulated in (2).

θ =





8−1( 1
mf

)
√
Ne

ǫ
lmax

1− p(e
ǫ

lmax + 1)
UniBSL

N8−1( 1
mf

)
√
eǫ

√
nv(1− p(eǫ + 1))

UniPart and LDPart

(2)

2) CHOOSING lm

In our proposed approaches, the parameter lm plays an impor-
tant role in the final utility. As described above, it is used
to estimate the maximum length of each path in T . Clearly,
the choice of lm affects the privacy budget (or the user)

assigned to each level of T , and therefore, is also related to
the magnitude of noise. Unfortunately, it is sensitive and there
is no systematic way to set this parameter. Here, we provide a
heuristic method to determine a suitable value for lm. More
specifically, let lτ is the upper bound of the length of the
user’s record, which is a public-known value. For each user
who participated in the estimation of lm, he perturbs his sparse
vector of length lτ by applying optimized PRR and sends the
perturbed version to the aggregator. After that, the aggregator
computes the estimated value of αi, the number of records in
length i. Starting from lm = 1, we incrementally compute the
percentage p = (

∑lm
i=1 αi)/n until p is at least η.

V. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed algorithms. All programs
are implemented on a machine with Inter(R) Core(TM)i7-
2600 CPU 3.40GHz, using C++.

A. EXPERIMENTAL SETUP

1) REAL DATASETS

Our proposed approaches are not restricted to location-record
data, but could applied to more general set-valued data [22],
where each record owner is associated with a set of items
drawn from a universe of items. In the experiments, we use
two publicly available real datasets. The first is MSNBC,3

which describes sequences of web pages browsed by users
in time order. By ignoring the sequentiality and removing
duplication, this dataset is converted into location-record
data. The second dataset we used is T10I4D100K,4 which
was generated using the generator from the IBM Almaden
Quest research group. Choosing these two datasets, we intend
to evaluate the performance of publishing approaches for
set-valued data at varying scales. A summary of these two
datasets is reported in Table 2.

2) COMPETITORS

In the experiments, we implement three algorithms: UniBSL,
UniPart and LDPart for publishing set-valued data. Other
competitors are either on low-dimension data [4], [8], [23]
or for severely restricted functionality [9], [10] and therefore
not comparable.

3) PARAMETER CONFIGURATIONS

Regarding privacy parameters, in UniBSL, we allocate
ǫ1 = 0.9ǫ for constructing the PTree, and remaining
ǫ2 = 0.1ǫ for determining the maximum record length lm.

3http://archive.ics.uci.edu/ml/datasets
4http://fimi.ua.ac.be/data
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FIGURE 4. Accuracy of counting queries on MSNBC. (a) k = 1. (b) k = 2. (c) k = 3.

FIGURE 5. Accuracy of counting queries on T10I4D100K. (a) k ∈ [1,5]. (b) k ∈ [6,10]. (c) k ∈ [11,15].

Similarly, in UniPart and LDPart, for the same purposes
we use two sets of users with cardinality n1 = 0.9N , and
n2 = 0.1N . The parameter η in our experiments is set
to 0.9. As these algorithms involve randomization, we run
each algorithm ten times and report its average results.

B. EXPERIMENTAL RESULTS

1) ACCURACY OF COUNTING QUERY

In line with previous works [24], [25], we measure the utility
of the sanitized data in terms of counting query. In particular,
relative error (RE) is used to measure the error with respect
to the actual counts over the raw dataset D. It is defined as
|QD(I ′)−QD′ (I ′)|

max{QD(I ′),0.5%·|D|} , where 0.5% · |D| is a sanity bound that

mitigates the influence of the queries with extremely small
selectivities [24], [26]. A smaller RE indicates that the noisy
counts returned by a technique are closer to the actual counts.

In our first set of experiments, we take a close examination
of the impact of the privacy budget ǫ over the RE of counting
queries. For both dataset, we randomly generate 2000 count-
ing queries with varying length k (k ∈ [1, lm]), and the items
of each query are randomly drawn from the universe. Note
that, the number of items in each query is referred as its
length.

Figures 4 and 5 present the RE under varying privacy
budget ǫ from 1 to 4 with fan-out f = 4 for each query
set. From these figures, we can see that LDPart consistently
outperforms the other two at the same level of privacy in
terms of RE. The good accuracy of LDPart is mainly due

to the effective adaptive user allocation scheme. Meanwhile,
it is observed that both UniPart and LDPart perform better
than UniBSL inmost cases. This validates that allocating user
is more effective to improve accuracy than splitting budget.
Furthermore, in both datasets, increasing ǫ has beneficial
impact on the RE. It conforms to the theoretical analysis that
a larger ǫ makes the probability of retaining original ‘‘0’’
(i.e.,1−q) higher, resulting in less noise and therefore a more
accurate result.

2) UTILITY OF RELEASED RECORDS

The second set of experiments are designed to evaluate the
performance of the released records of various publishing
models. In particular, we are interested in two critical mea-
sures: F-score and RE. F-score is a combination of precision
and recall for the released records. In the same manner,
RE is used to measure count errors of these records. Com-
pared to the counting query, the true count of each real record
is rather small, and the selectivity here is set to 0.05% · |D|.
In addition, to make a distinction between the RE of counting
query and released record, we employREQ andRER to donate
them respectively.

The result is illustrated in Figure 6. As shown, LDPart
achieves good utility in terms of released records. More-
over, we also investigate the precision of these records.
As expected, LDPart achieves rather high precision, very
close to 1. In contrast, it could not obtain comparable per-
formance in terms of Fscore. This is reasonable. One main
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FIGURE 6. Utility of released records on MSNBC.

FIGURE 7. Effect of optimized strategies.

reason for this phenomenon is that the perturbed mechanisms
of these models introduce noise, which is inevitable. The
injected noise is more likely to dominate the noisy counts for
the records with small real counts, leading to being pruned
with high certainty. Consequently, the recall is lower and the
performance is deteriorated in terms of Fscore. The exper-
iment results and finding are similar on two real datasets,
we omit the results of T10I4D100K.

3) EFFECT OF OPTIMIZED STRATEGIES

In the final set of experiments, we study the effect of opti-
mized strategies on the performance of LDPart. As a refer-
ence point, we compare LDPart with its two variants: one
is without non-negative counts strategy, the other is without
smart estimation strategy. Tomeasure RE of counting queries,
we take k = 1 as an example. From Figures 7(d)-7(f),
we can see that our proposed smart estimation substantially
improves the performance of released data. With regard to

non-negative counts shown in Figures 7(a)-7(c), it is interest-
ing that the RE of both counting queries and released records
are improved, but not Fscore. This is because, a noisier set
of released records causes lower precision, but may result in
higher recall. Therefore, the non-negative counts strategy has
slightly impact on Fscore.

VI. RELATED WORK

Location-record data has been extensively studied in the past
few decades [27], [28]. Essentially, it is a special case of set-
valued data. Ourwork relates to twomain streams of research,
concerning publishing set-valued data and local differential
privacy, respectively.

A. SET-VALUED DATA PUBLISHING

Initial efforts to ensure privacy of released set-valued data
were based on partition-based privacy models [29] such
as k-anonymity [11] (or its variant, km-anonymity [22])
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and/or confidence bounding [30]. These techniques have
been shown to be effective in several scenarios, however,
due to the deterministic nature and the vulnerability to adver-
saries’ background knowledge, they suffer from many types
of privacy attacks [31], [32], leading to privacy compromise.
Compared with the above models, centralized differential
privacy [13], [14], [33] provides a formal and more stronger
privacy guarantee, regardless of adversaries’s background
and ability. Under this model, only two techniques have
been proposed to tackle the problem of privacy-preserving
set-valued data publication. Chen et al. In [24] develop a
probabilistic top-down partitioning algorithm to generate a
differentially private release. Subsequently, Zhang et al. [34]
propose an algorithm which leverages an item-free taxonomy
tree and an update bounded mechanism to privately publish
data on an incremental scenario.

B. DIFFERENTIAL PRIVACY IN LOCAL SETTING

The schemes mentioned above typically assumes that a data
curator collects exact records from all users with the goal
of releasing a modified version of the data that preserves
privacy. Nevertheless, in reality, individuals may not trust any
one but themselves. The recently proposed notion of LDP
captures this case. Existing techniques for LDP have focused
on tasks rather different from publishing set-valued data.
In particular, one basic task in LDP is frequency estimation
which estimates the frequency of each possible value. It has
been well studied in [8] and [35]–[37]. When the domain
of possible values is very large, it is infeasible to derive
estimations for all values. A series of works [21], [23], [38]
study the extension of frequency estimation, that is, the heavy
hitter problem. Instead, this problem aims to identify frequent
values. In addition, some efforts are also devoted to explore a
variety of perturbation mechanisms for achieving theoretical
optimal utility [8], [35], [39], [40].
The above research almost all assume that each user is

only in possession of single data element. Due to the inherent
high-dimensionality of set-valued data, these approaches are
not applicable. To our knowledge, only two studies [9], [10]
support the analysis on set-valued data. In particular,
Qin et al. [9] propose a heavy hitter estimation over set-valued
data based on two-round user-server interactions.Meanwhile,
it is only limited to single items, and is not sufficient for more
complex analysis tasks. Wang et al. [10] propose PrivSet
for frequency estimation of single items and set cardinality
estimation, and thus it suffers from the drawback as the
work [9] as well.

VII. CONCLUSIONS

In this paper, we investigate the problem of publish-
ing location-record data under local differential privacy.
To address this issue, we present LDPart, a probabilistic top-
down partitioning algorithm. It mainly through an adaptive
user allocation scheme for building a partition tree under
LDP, which clearly outperforms baseline solutions with sim-
ple partition tree construction approaches. In the future,

we intend to explore frequent itemsets mining over set-valued
data and further improve the accuracy of released data.
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