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ABSTRACT In this paper, the posterior probabilities of the low-density parity check (LDPC) coded bits are
derived for the orthogonal frequency division multiplexing index modulation (OFDM-IM) system to reduce
the implementation complexity of LDPC decoding without performance loss. Specifically, the complexity
of LDPC decoding is reduced by decomposing the posterior probability of the coded bit into multiple
likelihood probabilities, each of which is obtained for each subcarrier of the corresponding OFDM-IM
subblock. The results of the complexity analysis indicate that the proposed approach significantly reduces
the implementation complexity of LDPC decoding for OFDM-IM compared to the conventional approach.
Furthermore, the simulation results confirm that the proposed approach provides the same bit error rate
performance as the conventional approach.

INDEX TERMS Communication system signaling, OFDM, decoding, index modulation, LDPC coding.

I. INTRODUCTION

INDEX modulation (IM) is a promising technology for 5G
and beyond wireless networks to achieve additional data

rates using indices of active resources, where resource can be
any transmitting entities including transmit antennas, subcar-
riers, modulation types, precoders, time slots, and channel
states [1]. A comprehensive overview of the existing IM
framework and its principles are provided in [2]. The flexible
use of existing IM techniques for 5G and beyond services
was comprehensively examined in [3]. The concept of IM
was merged with orthogonal frequency division multiplexing
(OFDM) systems to design the subcarrier IM scheme (SIM)
in [4] and it was called the OFDM-IM in [5]. The OFDM-IM
conveys information bits through indices of active subcarriers
in addition to those transmitted by data symbols, which helps
achieve an increased spectral efficiency. Various OFDM-IM
techniques have been proposed to further improve the spec-
tral efficiency of OFDM-IM. In [6], OFDM-IM was applied
independently to the in-phase/quadrature (IQ) components of
each subcarrier, and was referred to as OFDM-IQ-IM in [7]
and [8]. The dual mode OFDM-IM scheme (DM-OFDM-IM)
was suggested in [9] and generalized to the generalized DM-
OFDM-IM scheme in [10]. The multiple-mode OFDM-IM

scheme (MM-OFDM-IM) and the multiple-mode OFDM-
IQ-IM scheme (MM-OFDM-IQ-IM) were proposed in [11],
wherein the full permutation of the symbol constellation
modes was employed. Various OFDM-IM techniques have
been developed to improve the bit error rate (BER) perfor-
mance of OFDM-IM. In [12], subcarrier level interleaving
was applied to OFDM-IM. In [13], the coordinate interleaved
OFDM-IM (CI-OFDM-IM) was proposed, where interleav-
ing was applied to the real and imaginary parts of every two
complex symbols. In [7], the linear constellation precoding
(LCP) technique was applied to OFDM-IQ-IM, and it was
called LCP-OFDM-IQ-IM. In [8], the coordinate interleaving
MM-OFDM-IM scheme and the LCP based MM-OFDM-IQ-
IM scheme were proposed. Recently, OFDM-IM-based relay
systems have gained considerable research attention. In [14],
various frequency-domain IM schemes including OFDM-
IM were introduced for cognitive radio (CR) networks and
relay-aided networks. An OFDM-IM aided cooperative relay
protocol for CR networks was studied in [15], where the
secondary user transmitted its own data to the secondary
receiver using indices of the active subcarriers of the primary
user. The OFDM-IM-based CR scheme was investigated in
[16] and [17]; in this scheme, the secondary user transmitted
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its own data to the secondary receiver exploiting the inactive
subcarriers of the primary user. A two-hop adaptive OFDM-
IM relay protocol was proposed in [18], where the mapping
between a bit stream and the indices of active subcarriers was
selected adaptively based on the channel state information.
A two-hop OFDM-IM relay protocol with multiple amplify-
and-forward (AF) relays was studied in [20], and a multi-hop
OFDM-IM relay protocol with multiple decode-and-forward
relays was studied in [19]. In [21], a subcarrier/sub-channel
mapping IM scheme was proposed for a dual-hop OFDM AF
relay protocol, and it eliminated the overhead of transmitting
SCM information.

To apply maximum likelihood (ML) detection for OFDM-
IM, it is necessary to consider all possible subblock real-
izations, including all possible active subcarrier index com-
binations and symbol constellation points. Therefore, with
a large subblock size and a high modulation order, ML
detection becomes costly and infeasible for the practical
implementation of the receiver. To reduce the complexity of
ML detection for OFDM-IM, a reduced ML-detection was
proposed in [5]. For the reduced ML detection, the indices
of active subcarriers for each subblock were determined by
searching for the maximum of the sum of the log likelihood
ratios (LLRs). Then, the symbols transmitted over the active
subcarriers were determined by applying ML detection. In
[22], the use of reduced ML-detection was extended for the
multiple-input multiple-output OFDM-IM scheme (MIMO-
OFDM-IM) to develop minimum mean square error LLR
(MMSE-LLR) detection. In [23], ordered successive interfer-
ence cancellation based MMSE-LLR detection was proposed
to further improve the error performance of MIMO-OFDM-
IM. In [24], subblock-wise and subcarrier-wise detectors
were proposed for MIMO-OFDM-IM, where the posterior
probability of each subblock and each subcarrier were found
iteratively based on the sequential Monte Carlo (SMC) the-
ory. However, the subblock-wise detector had an exponen-
tially increasing detection complexity with respect to the sub-
block size. The subcarrier-wise detector is preferred due to its
low complexity, but its performance is inferior to that of the
subblock-wise detector. Low-density parity check (LDPC)
codes were applied for an OFDM-IM based in-vehicle power
line communication system in [25] and for an MM-OFDM-
IM system in [26]. Therein, the posterior probabilities of
the index and data bits were provided and used as input for
the LDPC decoder. While the formulas for calculating those
posterior probabilities are applicable for any subblock size
and modulation order, their practical application is limited to
cases of a small subblock size and a low modulation order
because of the computational complexity. Therefore, there
is a need and a demand to develop a more efficient LDPC
decoding approach for OFDM-IM with low computational
complexity but no performance loss.

In this paper, the posterior probabilities of the LDPC-
coded bits are derived for the OFDM-IM system to reduce
the implementation complexity of LDPC decoding without
performance loss. Since the LDPC-coded bits are delivered

not only in the form of data symbols carried over the active
subcarriers but also in the form of indices of the active sub-
carriers, the posterior probability of an index bit and that of a
data bit are derived separately. The complexity of LDPC de-
coding is reduced by decomposing the posterior probability
of the coded bit into multiple likelihood probabilities, each
of which is obtained for each subcarrier of the corresponding
OFDM-IM subblock. The results of the complexity analysis
indicate that the proposed approach significantly reduces the
implementation complexity of LDPC decoding for OFDM-
IM compared to the conventional approach. Furthermore,
the simulation results confirm that the proposed approach
provides the same BER performance as the conventional
approach.

The rest of this paper is organized as follows. Section II
describes the system model of OFDM-IM. Section III derives
the posterior probability of an index bit and that of a data
bit separately. Section IV extends the proposed approach for
higher-order modulation and analyzes the implementation
complexity of the proposed and conventional approaches.
Section V presents the simulation results and compares the
BER performance of the proposed and conventional ap-
proaches. Finally, Section VI provides concluding remarks.

Notations: (·)T and (·)H stand for transpose and Hermitian
transpose operations, respectively. bxc denotes the greatest
integer less than or equal to its argument. |x| denotes the
absolute value of a complex number x. diag(x) denotes a
diagonal matrix with its diagonal components given by a
vector x. x(i) denotes the i-th component of a vector x. Nx
denotes a set given by {1, 2, · · · , x}, where x is a natural
number. mod(a, b) denotes the modulus function that returns
the remainder when a is divided by b.

II. SYSTEM MODEL
Consider an LDPC-coded OFDM-IM system operating in
a frequency-selective channel environment. The transmitter
structure of the LDPC-coded OFDM-IM system is illustrated
in Fig. 1. We assume that the OFDM block comprises N
subcarriers and conveys NI bits of information per OFDM
block. In OFDM-IM, the OFDM block is divided into NB
subblocks. Each subblock has n(= N/NB) subcarriers, and
transmits k M -ary QAM symbols over k active subcarriers.
A message m consisting of NI information bits is LDPC-
coded to yield a codeword c′ with NC coded bits when the
code rate is given by RC = NI/NC . If m and c′ are given in
column vectors, c′ can be written as

c′ = Gm, (1)

where G denotes anNC×NI dimensional systematic LDPC
code generator matrix. If a sparse (NC −NI)×NC dimen-
sional parity check matrix A is ready, G can be computed as
reported in [28, pp. 635]. The correctness of the estimated
LDPC-coded bit vector ĉ′ can be checked by the LDPC
decoder based on Aĉ′ = 0. The LDPC-coded bits of c′ are
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FIGURE 1. Transmitter structure of an LDPC-coded OFDM-IM system.

interleaved to yield c. Then, c is divided intoNB sub-vectors
as

c = [ cT1 cT2 · · · cTNB ]T , (2)

where each sub-vector of length p = NC/NB is transmitted
in a separate subblock. The first p1 bits among the p bits are
called the index selecting bits (ISBs) or index bits, and they
are used to select the subcarrier activation pattern (SAP). The
other p2(=p−p1) bits among the p bits are called the symbol
selecting bits or data bits, and they are used to choose k
M -ary QAM symbols transmitted over k active subcarriers.
An SAP can be written in a binary sequence comprising k
1’s and (n − k) 0’s, which represent the active and inactive
subcarriers, respectively. The total number of possible SAP
candidate sequences is given by NSAP = nCk, where nCk
denotes the number of the k combinations from a set of n
components. Since each ISB sequence is associated with a
separate SAP sequence, the value of p1 can be selected as
p1 = blog2(NSAP)c for maximal spectral efficiency. In the
case thatNSAP > 2p1 , 2p1 SAP sequences need to be selected
from NSAP SAP candidate sequences for a one-to-one map-
ping between the ISB and SAP sequences. We assume that
the mapping between the ISB and SAP sequences is based
on combinational mapping [5]. For i = 1, 2, · · · , 2p1 , we
define the i-th binary sequence of length p1 corresponding
to a decimal number i− 1 as

Vi = [ vi,1 vi,2 · · · vi,p1 ], (3)

where vi,1 and vi,p1 denote the most significant bit (MSB)
and least significant bit (LSB), respectively, while vi,l ∈
{0, 1} for l = 1, 2, · · · , p1. The ISB sequences {ISBη}2

p1

η=1

are defined as ISBi = Vi for i = 1, 2, · · ·, 2p1 . For
i = 1, 2, · · · , 2n, we define the i-th binary sequence of length
n corresponding to a decimal number i− 1 as

Zi = [ zi,1 zi,2 · · · zi,n ], (4)

where zi,1 and zi,n denote the MSB and LSB, respectively,
while zi,l ∈ {0, 1} for l = 1, 2, · · · , n. The SAP sequences

{aη}2
p1

η=1 are generated by selecting the first 2p1 sequences
that have k 1’s and (n− k) 0’s from {Zη}2

n

η=1. The η-th SAP
sequence is written as

aη = [ aη,1, aη,2, · · · , aη,n ], (5)

where aη,m ∈ {0, 1} for m = 1, 2, · · · , n. We define a set of
k active subcarrier indices in the η-th SAP sequence as

I(η) =
{
I

(η)
1 , I

(η)
2 , · · · , I(η)

k

}
(6)

for η = 1, 2, · · · , 2p1 , where I(η)
1 , I

(η)
2 , · · · , I(η)

k ∈ Nn. Ac-
cording to combinational mapping [5], the i-th ISB sequence
is mapped to the i-th SAP sequence for i = 1, 2, · · · , 2p1 ,
i.e., {ISBη}2

p1

η=1 are associated with {aη}2
p1

η=1 in consecutive
order. The OFDM block is written as

X =
[
X(1)T X(2)T · · · X(NB)T

]T
, (7)

where X(β) denotes the β-th subblock,

X(β) =
[
X

(β)
1 X

(β)
2 · · · X(β)

n

]T
, (8)

while X(β)
v denotes the v-th symbol of the β-th subblock.

Since a subcarrier-level interleaver improves error perfor-
mance by transforming a frequency domain channel into an
uncorrelated one [12], we assume that X passes through a
symbol-level interleaver to yield

X̃=
[
X

(1)
1 · · ·X

(NB)
1 X

(1)
2 · · ·X

(NB)
2 · · ·X(1)

n · · ·X(NB)
n

]T
.

(9)
The interleaved OFDM block X̃ undergoes inverse fast
Fourier transform and cyclic prefix addition before transmis-
sion. The frequency-selective channel is modeled as a tapped
delay-line of length L as

h = [h1 h2 · · · hL ]
T
. (10)

Channel coefficients {hl}Ll=1 are assumed to be uncorrelated
with each other and have a zero-mean circularly symmetric
complex Gaussian distribution. The average power of hl is
given by

E{|hl|2} =
γl−1∑L
l′=1 γ

l′−1
, (11)

where γ denotes a power delay profile factor in the range of
0 < γ ≤ 1. In simulation, γ is set to 0.9. At the receiver, a
series of processes including cyclic prefix elimination, fast
Fourier transform, and subcarrier-level de-interleaving are
applied to the received signal. Then, the received signal for
the β-th subblock can be written as

Y(β) = diag
(
H(β)

)
X(β) + W(β), (12)

where H(β) denotes the frequency domain channel vector

H(β) =
[
H

(β)
1 H

(β)
2 · · · H(β)

n

]T
, (13)

with its component given by

H(β)
m =

L∑
l=1

hle
−j 2π

N ×(l−1)×((β−1)n+m−1)). (14)
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FIGURE 2. Receiver structure of an LDPC-coded OFDM-IM system.

W(β) denotes an additive noise vector

W(β) =
[
W

(β)
1 W

(β)
2 · · · W (β)

n

]T
, (15)

withW (β)
m indicating a zero-mean circularly symmetric com-

plex Gaussian random variable with varianceN0. The signal-
to-noise ratio (SNR) is defined as ρ = Eb/N0, where Eb
denotes the average energy per bit. We define S as the set that
contains all symbols of anM -ary QAM constellation. If X(β)

is subjected to the η-th SAP sequence, X(β)
v corresponds to a

symbol belonging to S when v ∈ I(η) and 0 when v 6∈ I(η).
Y(β) in (12) can be rewritten as

Y(β) = [Y
(β)
1 Y

(β)
2 · · · Y (β)

n ]T , (16)

where Y (β)
v is given by

Y (β)
v = H(β)

v X(β)
v +W (β)

v . (17)

The receiver structure of the LDPC-coded OFDM-IM system
is illustrated in Fig. 2. We separate the posterior probability
estimator block from the LDPC decoder block to modularize
the entire LDPC decoding process. Due to modularity, the
LDPC decoder block in Fig. 2 can be replaced with other
decoder blocks to apply different codes in the condition that
the decoder takes posterior probabilities as input. When it
comes to Turbo decoding, the BCJR decoding algorithm
[27] is commonly used. Since the BCJR decoding algorithm
requires likelihood probabilities as input instead of posterior
probabilities, the LDPC decoder block in Fig. 2 cannot be
replaced by the conventional turbo decoder block for turbo
code application. With OFDM-IM, symbols carried over
different subcarriers within each subblock are bound together
because of IM. Considering this boundness effect, in the
next section, we derive the posterior probabilities of the
LDPC-coded bits as simple as possible to reduce the imple-
mentation complexity of the entire LDPC decoding process.
The channel frequency response (CFR) coefficient over the
subcarrier of the p-th pilot symbol for p = 0, 1, · · · , NP − 1
is estimated by the least square detection method [29], where
NP denotes the number of pilot symbols in an OFDM block.

The CFR coefficients over non-pilot subcarriers are estimated
by applying the MMSE-based channel interpolation method
[30]. For LDPC decoding, the posterior probability estimator
computes the posterior probabilities of the LDPC-coded bits
in the β-th subblock using the information of {Y (β)

v }nv=1

and {Ĥ(β)
v }nv=1, where Ĥ

(β)
v denotes the CFR coefficient

estimated at the receiver. The posterior probabilities from all
subblocks are gathered and deinterleaved. Using the dein-
terleaved posterior probabilities as input, the LDPC decoder
yields the estimated LDPC-coded bit vector ĉ′ based on the
sum-product decoding algorithm (SPA) [28, p. 648]. The
SPA runs a decoding loop where a temporary ĉ′ vector is
updated iteratively. The correctness of the temporary ĉ′ in
the decoding loop is confirmed by the parity check condition
Aĉ′ = 0. If Aĉ′ 6= 0, the decoding loop continues. If the
maximum number of iterations is reached, a decoding failure
is declared and the iteration process is stopped. If Aĉ′ = 0,
the decoding loop is stopped and the estimated message m̂ is
given by

m̂ = [ ĉ′(NC −NI + 1) ĉ′(NC −NI + 2) · · · ĉ′(NC) ]T

(18)
because of systematic structure of the generator matrix G.

III. PROPOSED APPROACH
We focus on the β-th subblock to derive the posterior prob-
abilities of the LDPC-coded bits because each subblock
is subject to the same OFDM-IM procedure. We define
Q1, Q2, · · · , Qk as the k M -ary QAM symbols carried over
the k active subcarriers of the β-th subblock. We define
a number D = log2(M) to denote the number of data
bits delivered in a single M -ary QAM symbol. Then, the
number of data bits delivered in the β-th subblock is given
by p2 = k×D. We define b1, b2, · · ·, bp1 in consecutive
order as the p1 index bits used for selecting an ISB sequence.
Furthermore, we define d1, d2, · · ·, dp2 in consecutive order
as the p2 data bits used for selectingQ1, Q2, · · · , Qk. For the
convenience of illustration, we focus on a specific OFDM-
IM system with n = 8, k = 3, D = 2, p1 = 5, p2 = 6, and
NSAP = 56, when 4QAM symbols are used as the transmitted
symbols. The proposed approach, in which the posterior
probabilities of the index and data bits are formulated as
simple as possible, can also be applied to other OFDM-IM
systems with other parameters, such as a larger subblock size
and a higher modulation order. We define a set of 4QAM
symbols as

S = {s0,0, s0,1, s1,0, s1,1}, (19)

where the values of the four components in S are determined
by Gray mapping [31]. An example of Gray mapping is given
by s0,0 = (1 + j)/

√
2, s0,1 = (−1 + j)/

√
2, s1,0 = (1 −

j)/
√

2, and s1,1 = (−1 − j)/
√

2. We define 2p2 subsets of
S as

Si,x =

{
Φ1,x if mod(i,D) = 1

Φ2,x if mod(i,D) = 0
(20)
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for i = 1, 2, · · · , p2, and x ∈ {0, 1}, where

Φ1,x = {sx,0, sx,1}, (21)
Φ2,x = {s0,x, s1,x}. (22)

In addition, we set the values of Q1, Q2, · · · , Qk as

Qb(i+D−1)/Dc =

{
sdi,di+1

if mod(i,D) = 1

sdi−1,di if mod(i,D) = 0
(23)

for i = 1, 2, · · · , p2. Given di = x, Si,x corresponds to the
set of all symbols suitable for Qb(i+D−1)/Dc.

A. DERIVATION OF THE POSTERIOR PROBABILITY OF
AN INDEX BIT
We define A as the set of all SAP sequences {aη}2

p1

η=1. In
addition, we define Abi=x as the set of all SAP sequences
that satisfy the condition bi = x for i = 1, 2, · · · , p1 and
x ∈ {0, 1}. Applying the total probability rule, we write the
posterior probability of bi = x given Y(β) as

p(bi = x|Y(β)) =
∑

aη∈Abi=x

p(bi = x,aη|Y(β)) (24)

for i = 1, 2, · · · , p1 and x ∈ {0, 1}. Using Bayes’ rule,
we derive the posterior probability of p(bi = x,aη|Y(β))
in terms of the likelihood probability of p(Y(β)|aη, bi = x)
as

p(bi = x,aη|Y(β)) =
p(aη)p(bi = x|aη)p(Y(β)|aη, bi = x)

p(Y(β))
.

(25)
Since aη ∈ Abi=x, it follows that p(aη) = 1/2p1−1,
p(bi = x|aη) = 1, and p(Y(β)|aη, bi = x) = p(Y(β)|aη).
Therefore, we can write (24) as

p(bi = x|Y(β)) =
1

2p1−1p(Y(β))

∑
aη∈Abi=x

p(Y(β)|aη).

(26)
Since the components of Y(β) given aη are independent of
each other in the case of aη ∈ Abi=x, we obtain

p(bi = x|Y(β))=
1

2p1−1p(Y(β))

∑
aη∈Abi=x

∏
m∈Nn

p(Y (β)
m |aη).

(27)
Considering the condition aη ∈ Abi=x, we divide the prob-
abilities {p(Y (β)

m |aη)}m∈Nn into two groups; the first group
comprises the probabilities of Y (β)

m given aη for bi = x and
m ∈ I(η), and the second group comprises the probabilities
of Y (β)

m given aη for bi = x and m 6∈ I(η). Using this
grouping, we obtain∏
m∈Nn

p(Y (β)
m |aη)=

∏
m∈I(η)

p(Y (β)
m |aη)

∏
m∈Nn,m6∈I(η)

p(Y (β)
m |aη).

(28)
Applying the total probability and Bayes’ rules to the term∏
m∈I(η)p(Y

(β)
m |aη) in (28), we write∏

m∈I(η)
p(Y (β)

m |aη)=
∏

m∈I(η)

1

M

∑
s∈S

p(Y (β)
m |X(β)

m = s,aη),

(29)

where the assumption of p(X(β)
m = s|aη) = 1/M for

m ∈ I(η) and s ∈ S is used. The event of Y (β)
m given

X
(β)
m = s and aη form ∈ I(η) and s ∈ S follows a Gaussian

distribution

p(Y (β)
m |X(β)

m = s,aη) =
1

πN0
e−

∣∣
Y

(β)
m −H(β)

m saη,m

∣∣2
N0 . (30)

Therefore, we derive∏
m∈I(η)

p(Y (β)
m |aη)=

∏
m∈I(η)

1

πN0M

∑
s∈S

e−

∣∣
Y

(β)
m −H(β)

m saη,m

∣∣2
N0 .

(31)
Since p(Y (β)

m |aη) = p(Y
(β)
m , X

(β)
m = 0|aη) for m 6∈ I(η), we

can write the term
∏
m∈Nn,m6∈I(η) p(Y

(β)
m |aη) in (28) as∏

m∈Nn,m6∈I(η)
p(Y (β)

m |aη)=
∏

m∈Nn,m6∈I(η)
p(Y (β)

m , X(β)
m =0|aη).

(32)
Applying Bayes’ rule to (32), we obtain∏
m∈Nn,m6∈I(η)

p(Y (β)
m |aη)=

∏
m∈Nn,m6∈I(η)

p(Y (β)
m |X(β)

m =0,aη),

(33)
where the assumption of p(X(β)

m = 0|aη) = 1 for m 6∈ I(η)

is used. The event of Y (β)
m given X(β)

m = 0 and aη for m 6∈
I(η) follows a Gaussian distribution

p(Y (β)
m |X(β)

m = 0,aη) =
1

πN0
e−

∣∣
Y

(β)
m

∣∣2
N0 . (34)

Since aη,m = 0 for m 6∈ I(η), we can write (34) as

p(Y (β)
m |X(β)

m = 0,aη) =
1

πN0M

∑
s∈S

e−

∣∣
Y

(β)
m −H(β)

m saη,m

∣∣2
N0 .

(35)
Substituting the result of (35) into (33), we derive∏

m∈Nn,m6∈I(η)
p(Y (β)

m |aη)

=
∏

m∈Nn,m6∈I(η)

1

πN0M

∑
s∈S

e−

∣∣
Y

(β)
m −H(β)

m saη,m

∣∣2
N0 .

(36)

Substituting the result of (31) and (36) into (28) and then
substituting the result of (28) into (27), we obtain

p(bi=x|Y(β))=C1

∑
aη∈Abi=x

∏
m∈Nn

∑
s∈S

e−

∣∣
Y

(β)
m −H(β)

m saη,m

∣∣2
N0 ,

(37)
where C1 denotes a normalization constant that satisfies

p(bi = 1|Y(β)) + p(bi = 0|Y(β)) = 1. (38)

Taking the ln(·) function on both sides of (37) and then
applying the approximation property [32]

ln

{∑
z

e−f(z)

}
≈ −min

z
f(z), (39)
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we obtain

ln{p(bi = x|Y(β))} ≈ ln(C1)

− min
aη∈Abi=x

∑
m∈Nn

min
s∈S

|Y (β)
m −H(β)

m s aη,m|2

N0
. (40)

The LLR of the index bit bi for i = 1, 2, · · · , p1 is

λi = ln{p(bi = 1|Y(β))} − ln{p(bi = 0|Y(β))}. (41)

The term ln(C1) in (40) does not have to be considered for
the computation of λi in (41). Based on (40) and (41), we
derive the LLR of the index bit bi for i = 1, 2, · · · , p1 as

λi = min
aη∈Abi=0

∑
m∈Nn

min
s∈S

|Y (β)
m −H(β)

m s aη,m|2

N0

− min
aη∈Abi=1

∑
m∈Nn

min
s∈S

|Y (β)
m −H(β)

m s aη,m|2

N0
. (42)

Given λi, the posterior probabilities of p(bi = 1|Y(β)) and
p(bi = 0|Y(β)) can be computed by

p(bi = 1|Y(β)) =
1

e−λi + 1
(43)

and
p(bi = 0|Y(β)) = 1− p(bi = 1|Y(β)). (44)

B. DERIVATION OF THE POSTERIOR PROBABILITY OF
A DATA BIT
Applying the total probability rule, we write the posterior
probability of di = x given Y(β) as

p(di = x|Y(β)) =
2p1∑
η=1

p(di = x,aη|Y(β)) (45)

for i = 1, 2, · · · , p2 and x ∈ {0, 1}. Using Bayes’ rule,
we derive the posterior probability of p(di = x,aη|Y(β))
in terms of the likelihood probability of p(Y(β)|aη, di = x)
as

p(di=x,aη|Y(β))=
p(aη)p(di=x|aη)p(Y(β)|aη, di=x)

p(Y(β))
.

(46)
Since p(aη) = 1/2p1 and p(di = x|aη) = p(di = x) = 1/2,
we can write (45) as

p(di = x|Y(β)) =
1

2p1+1p(Y(β))

2p1∑
η=1

p(Y(β)|aη, di = x).

(47)
Since the components of Y(β) given aη and di = x are
independent of each other, we obtain

p(Y(β)|aη, di = x) =
∏

m∈Nn

p(Y (β)
m |aη, di = x). (48)

The event of Y (β)
m given aη and di = x follows a Gaussian

distribution

p(Y (β)
m |aη, di = x) =

∑
s∈Ψm,i,x

1

πN0
e−

∣∣Y (β)
m −H(β)

m saη,m

∣∣2
N0 ,

(49)

where

Ψm,i,x =


Si,x if m = I

(η)
b(i+D−1)/Dc

S if m∈I(η), m 6=I
(η)
b(i+D−1)/Dc

{0} if m∈Nn, m 6∈I(η)

. (50)

Substituting the result of (49) into (48) and then substituting
the result of (48) into (47), we obtain

p(di = x|Y(β))

= C2

2p1∑
η=1


 ∑
s∈Si,x

e−

∣∣∣Y (β)

I
(η)
b(i+D−1)/Dc

−H(β)

I
(η)
b(i+D−1)/Dc

s

∣∣∣2
N0


×

∏
m∈Nn,m6=I(η)b(i+D−1)/Dc

∑
s∈S

e−

∣∣Y (β)
m −H(β)

m saη,m

∣∣2
N0

 ,

(51)

where C2 denotes a normalization constant that satisfies

p(di = 1|Y(β)) + p(di = 0|Y(β)) = 1. (52)

The LLR of the data bit di for i = 1, 2, · · · , p2 is

λ̄i = ln{p(di = 1|Y(β))} − ln{p(di = 0|Y(β))}. (53)

Taking the ln(·) function on both sides of (51) and then
applying the approximation property of (39), we derive the
LLR of the data bit di for i = 1, 2, · · · , p2 as

λ̄i = min
η∈N2p1

 min
s∈Si,0

∣∣∣Y (β)

I
(η)

b(i+D−1)/Dc
−H(β)

I
(η)

b(i+D−1)/Dc
s
∣∣∣2

N0

+
∑

m∈Nn,m6=I(η)b(i+D−1)/Dc

min
s∈S

∣∣Y (β)
m −H(β)

m s aη,m
∣∣2

N0


− min
η∈N2p1

 min
s∈Si,1

∣∣∣Y (β)

I
(η)

b(i+D−1)/Dc
−H(β)

I
(η)

b(i+D−1)/Dc
s
∣∣∣2

N0

+
∑

m∈Nn,m6=I(η)b(i+D−1)/Dc

min
s∈S

∣∣Y (β)
m −H(β)

m s aη,m
∣∣2

N0

 .

(54)

The term C2 in (51) does not have to be considered for the
computation of λ̄i in (54). Given λ̄i, the posterior proba-
bilities of p(di = 1|Y(β)) and p(di = 0|Y(β)) can be
computed by (43) and (44) replacing bi and λi with di and
λ̄i, respectively.
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IV. DISCUSSION
A. PROPOSED APPROACH EXTENDED FOR
HIGHER-ORDER MODULATION
The proposed approach can be extended for higher order
modulation. Herein, we adopt 16QAM and present the LLR
formulas for calculating the posterior probabilities of the
index and data bits as an example of extending the proposed
approach for higher-order modulation. With 16QAM, it fol-
lows thatM = 16,D = log2(16) = 4, and p2 = k×D = 12.
We define the set of 16QAM symbols as

S = {s0,0,0,0, s0,0,0,1, s0,0,1,0, s0,0,1,1,

s0,1,0,0, s0,1,0,1, s0,1,1,0, s0,1,1,1,

s1,0,0,0, s1,0,0,1, s1,0,1,0, s1,0,1,1,

s1,1,0,0, s1,1,0,1, s1,1,1,0, s1,1,1,1}, (55)

where the values of the sixteen components in S are deter-
mined by Gray mapping [31]. We define 2p2 subsets of S
as

Si,x =


Φ1,x if mod(i,D) = 1

Φ2,x if mod(i,D) = 2

Φ3,x if mod(i,D) = 3

Φ4,x if mod(i,D) = 0

(56)

for i = 1, 2, · · · , p2 and x ∈ {0, 1}, where

Φ1,x = {sx,0,0,0, sx,0,0,1, sx,0,1,0, sx,0,1,1,
sx,1,0,0, sx,1,0,1, sx,1,1,0, sx,1,1,1}, (57)

Φ2,x = {s0,x,0,0, s0,x,0,1, s0,x,1,0, s0,x,1,1,

s1,x,0,0, s1,x,0,1, s1,x,1,0, s1,x,1,1}, (58)
Φ3,x = {s0,0,x,0, s0,0,x,1, s0,1,x,0, s0,1,x,1,

s1,0,x,0, s1,0,x,1, s1,1,x,0, s1,1,x,1}, (59)
Φ4,x = {s0,0,0,x, s0,0,1,x, s0,1,0,x, s0,1,1,x,

s1,0,0,x, s1,0,1,x, s1,1,0,x, s1,1,1,x}. (60)

In addition, we set the values of Q1, Q2, · · · , Qk as

Qb(i+D−1)/Dc =


sdi,di+1,di+2,di+3

if mod(i,D) = 1

sdi−1,di,di+1,di+2 if mod(i,D) = 2

sdi−2,di−1,di,di+1 if mod(i,D) = 3

sdi−3,di−2,di−1,di if mod(i,D) = 0
(61)

for i = 1, 2, · · · , p2. Given di = x, Si,x corresponds to the
set of all symbols suitable forQb(i+D−1)/Dc. Using the above
definitions of S and Si,x, the LLR formula for calculating the
posterior probability of an index bit is given by (42), and that
for calculating the posterior probability of a data bit is given
by (54).

B. COMPLEXITY ANALYSIS
The LLR formulas for calculating the posterior probabilities
of the LDPC-coded index and data bits for OFDM-IM were
reported in [25]. Assuming that the additive noises for the
neighboring subcarriers are uncorrelated, we rewrite the LLR

formula given in [25] for calculating the posterior probability
of an index bit as

λi = ln

∑
aη∈Abi=1

∑
X∈Xaη

e−φ(aη,X)/N0∑
a′η∈Abi=0

∑
X′∈Xaη

e−φ(a′η,X
′)/N0

(62)

and the LLR formula given in [25] for calculating the poste-
rior probability of a data bit as

λ̄i = ln

∑
aη∈A

∑
X∈Xaη,di=1

e−φ(aη,X)/N0∑
a′η∈A

∑
X′∈Xaη,di=0

e−φ(a′η,X
′)/N0

, (63)

with

φ(aη,X) = (Yβ − diag{Hβ}X)H(Yβ − diag{Hβ}X).
(64)

In the above, Xaη is defined as the set of all possible X’s that
contain k M -ary QAM symbols over the active subcarriers
and (n − k) 0’s over the inactive subcarriers; Xaη,bi=x is
defined as the set of all possible X’s that belong to Xaη and
satisfy the condition of bi = x. In computing {λi}p1i=1 based
on the LLR formula of (62) and the approximation property
of (39), 3n ·Mk · 2p1 · p1 complex multiplications (CMs),
2p1 real multiplications (RMs), n · Mk · 2p1 · p1 complex
additions (CAs), ((n− 1) ·Mk · 2p1 + 2 ·Mk + 2p1 − 3) · p1

real additions (RAs), and 2p1 operations of the logarithmic
function are required. In computing {λ̄i}p2i=1 based on the
LLR formula of (63) and the approximation property of (39),
3n ·Mk ·2p1 ·p2 CMs, 2p2 RMs, n ·Mk ·2p1 ·p2 CAs, ((n−
1) ·Mk ·2p1 +Mk+2 ·2p1−3) ·p2 RAs, and 2p2 operations
of the logarithmic function are required. A CM is translated
into 4 RMs and 2 RAs, and a CA is translated into 2 RAs
[33]. Therefore, the total complexity of computing {λi}p1i=1

and {λ̄i}p2i=1 based on (62) and (63) and the approximation
property of (39) amounts to (12n ·Mk ·2p1 +2) ·p RMs, and
((9n−1) ·Mk ·2p1 ·p+ (p+p1) ·Mk + (p+p2) ·2p1 −3p)
RAs. In computing {λi}p1i=1 based on the LLR formula of
(42), 2n · M · 2p1 · p1 CMs, (n · M · 2p1 + 2) · p1 RMs,
n·M ·2p1 ·p1 CAs, (2n−1)·p1 RAs, n·M ·2p1 ·p1 operations
of | · |2 are required. In computing {λ̄i}p2i=1 based on the LLR
formula of (54), 2n·M ·2p1 ·p2 CMs, ((n−1)·M ·2p1 +2)·p2

RMs, n ·M ·2p1 ·p2 CAs, (n ·2p1 +1) ·p2 RAs, n ·M ·2p1 ·p2

operations of |·|2 are required. The operation |·|2 is translated
into 2 RMs and 1 RA [33]. Therefore, the total complexity
of computing {λi}p1i=1 and {λ̄i}p2i=1 based on (42) and (54)
amounts to (11n ·M · 2p1 · p−M · 2p1 · p2 + 2p) RMs and
(7n ·M · 2p1 · p+ (2n− 1) · p1 + (n · 2p1 + 1) · p2) RAs. To
illustrate the efficiency of the proposed approach compared
to that of the conventional approach in [25], the decoding
complexity reduction ratio (DCRR) is defined as

DCRR(%)

=

(
1− Complexity of the proposed approach

Complexity of the conventional approach

)
×100(%),

(65)
which indicates the percentage of complexity reduction ob-
tained when replacing the conventional approach with the
proposed approach. Therefore, the larger the DCRR, the
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FIGURE 3. RM-based and RA-based DCRRs of the proposed approach with
respect to the conventional approach in [25].

greater the complexity reduction is obtained by the proposed
approach. In Fig. 3, the RM-based and RA-based DCRRs
of the proposed approach with respect to the conventional
approach in [25] are plotted in three cases (n, k) = (4, 2),
(n, k) = (8, 3), and (n, k) = (16, 4). All RM-based DCRRs
in the three cases are greater than 77.4% and all RA-based
DCRRs in the three cases are greater than 79.6%. Both RM-
based and RA-based DCRRs increase monotonously as M
increases; this implies that with higher order modulation, the
proposed approach can reduce the computational complexity
of LDPC decoding compared to the conventional approach
by a larger amount. Complexity analysis is often based on
the order of the number of CMs because it is a major factor
that intrinsically affects implementation complexity. Table

TABLE 1. Comparison of the number of CMs required for computing the
posterior probabilities of the LDPC-coded bits in a subblock.

Decoding Approach Number of CMs Complexity Order
Proposed 2.5n · p · 2p1 ·M O(M)

Conventional ([25], [26]) 3n · p · 2p1 ·Mk O(Mk)

1 compares the number of CMs required by the proposed
approach with that of CMs required by the conventional
approaches in [25] and [26] when calculating the poste-
rior probabilities of the LDPC-coded bits for a subblock.
The complexity order of the proposed approach is O(M),
whereas that of the conventional approach is O(Mk). Given
a higher modulation order and a larger number of the active
subcarriers, the proposed approach can yield a considerably
lower computational complexity than that of the conventional
approach.

V. SIMULATION RESULTS
In Fig. 4, the BER performance of the proposed approach
(PROP) and conventional approach in [25] (CONV) were
evaluated for an LDPC-coded OFDM-IM system with a code
rate of 0.5 when N = 128, L = 16, n = 8, k = 3, p1 = 5,
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FIGURE 4. Comparison of the BER results of the proposed and conventional
approaches, which were evaluated by using two index mapping methods [5]
and [34] and with/without the use of the correction function [32], when
N = 128, L = 16, n = 8, k = 3, p1 = 5, NSAP = 56, NP = 8, and 4QAM
is used.

NSAP = 56,NP = 8, and 4QAM was used. To investigate the
effect of the mapping between the ISB and SAP sequences
on LDPC decoding, combinational mapping [5] and efficient
index mapping [34] were applied alternately. For reference,
the BER curves obtained using the correction function [32]
to supplement the approximately calculated LLRs by (39)
were included in the figure. While efficient index mapping
improves the performance of PROP and CONV simultane-
ously compared to combinatorial mapping, PROP provides
the same BER performance as CONV regardless of the type
of mapping between the ISB and SAP sequences. Further-
more, while the correct function improves the performance
of PROP and CONV simultaneously, PROP provides the
same BER performance as CONV regardless of the use of
the correction function. The simulation results corroborate
the fact that PROP can reduce implementation complexity
substantially without performance loss.

In Fig. 5, the BER performance of PROP and CONV were
evaluated for an LDPC-coded OFDM-IM system with a code
rate of 0.5 when the same simulation parameters as in Fig.
4 were used except that 16QAM was used in Fig. 5. To
investigate the effect of the mapping between the ISB and
SAP sequences on LDPC decoding, combinational mapping
[5] and efficient index mapping [34] were applied alternately.
For reference, the BER curves obtained using the correction
function [32] were also included in the figure. Similar to
Fig. 4, Fig. 5 indicates that PROP provides the same BER
performance as CONV regardless of the type of mapping
between the ISB and SAP sequences and the use of the
correction function. The simulation results corroborate the
fact that with higher-order modulation, PROP can reduce the
implementation complexity by a larger amount and without
performance loss.
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FIGURE 5. Comparison of the BER results of the proposed and conventional
approaches, which were evaluated by using two index mapping methods [5]
and [34] and with/without the use of the correction function [32], when
N = 128, L = 16, n = 8, k = 3, p1 = 5, NSAP = 56, NP = 8, and 16QAM
is used.

VI. CONCLUSION
In the proposed approach, the posterior probabilities of the
index and data bits were formulated as simple as possible to
reduce the implementation complexity of LDPC decoding for
OFDM-IM. It was demonstrated that the proposed approach
can reduce the implementation complexity of LDPC decod-
ing for OFDM-IM significantly compared to the conventional
approach. The simulation results corroborated the fact that
the proposed approach provides the same BER performance
as the conventional approach.
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