
 Open access Book Chapter DOI:10.1007/978-3-319-68288-4_13

LDScript: A Linked Data Script Language — Source link

Olivier Corby, Catherine Faron-Zucker, Fabien Gandon

Institutions: French Institute for Research in Computer Science and Automation

Published on: 21 Oct 2017 - International Semantic Web Conference

Topics: SPARQL, RDF Schema, RDF query language, Named graph and Rule Interchange Format

Related papers:

 A SPARQL Extension for Generating RDF from Heterogeneous Formats

 A Transformation Language for RDF Based on SPARQL

 A Survey of Approaches to Representing SPARQL Variables in SQL Queries

 SYRql: A Dataflow Language for Large Scale Processing of RDF Data

 CodeOntology: RDF-ization of source code

Share this paper:

View more about this paper here: https://typeset.io/papers/ldscript-a-linked-data-script-language-
4gwfhfy0y0

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-68288-4_13
https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0
https://typeset.io/authors/olivier-corby-29qpdkdhji
https://typeset.io/authors/catherine-faron-zucker-2lpch8zh6x
https://typeset.io/authors/fabien-gandon-50fhxpy7xm
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/international-semantic-web-conference-286oyb69
https://typeset.io/topics/sparql-37hc26ux
https://typeset.io/topics/rdf-schema-1ojenhkr
https://typeset.io/topics/rdf-query-language-qelxvq76
https://typeset.io/topics/named-graph-1tx05auk
https://typeset.io/topics/rule-interchange-format-2h5tgjdj
https://typeset.io/papers/a-sparql-extension-for-generating-rdf-from-heterogeneous-k4ricytdr9
https://typeset.io/papers/a-transformation-language-for-rdf-based-on-sparql-4wyimb90kv
https://typeset.io/papers/a-survey-of-approaches-to-representing-sparql-variables-in-4qs3i2b637
https://typeset.io/papers/syrql-a-dataflow-language-for-large-scale-processing-of-rdf-5cyj8zpnc0
https://typeset.io/papers/codeontology-rdf-ization-of-source-code-3unzpiivts
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0
https://twitter.com/intent/tweet?text=LDScript:%20A%20Linked%20Data%20Script%20Language&url=https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0
https://typeset.io/papers/ldscript-a-linked-data-script-language-4gwfhfy0y0

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
9

8
2

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8982
November 2016

Project-Team Wimmics

LDScript: a Linked Data

Script Language

Olivier Corby, Catherine Faron-Zucker, Fabien Gandon

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

LDScript: a Linked Data Script Language

Olivier Corby∗, Catherine Faron-Zucker†, Fabien Gandon‡

Project-Team Wimmics

Research Report n° 8982 — November 2016 — 18 pages

Abstract: In addition to the existing standards, Web of Data programmers would take ad-
vantage of a dedicated programming language enabling them to define functions on RDF terms,
triples and graphs as well as SPARQL query results. In particular, this is the case when defining
SPARQL extension functions, and the ability to capitalize complex SPARQL filter expressions
into extension functions or to define and reuse dedicated aggregates would support modularity and
maintenance of the code. Another use case is the definition of functional properties associated
to RDF resources and the definition of procedural attachments as functions assigned to RDFS or
OWL classes with the selection of the function to be applied to a resource depending on the type
of the resource. To address these needs we define a Linked Data Script language on top of the
SPARQL filter expression language. We provide the syntax and the semantics of the LDScript
language.

Key-words: Script Language, Semantic Web, Web of Data, SPARQL

∗ Inria, I3S
† Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271
‡ Inria, I3S

LDScript: a Linked Data Script Language

Résumé : Un langage complémentaire des standards existant, dont les
entités de base seraient des termes, des triplets et des graphes RDF ainsi que les
résultats de requêtes SPARQL serait utile pour la programmation du Web de
données. Cela faciliterait en particulier la définition de fonction d’extension pour
SPARQL ainsi que la définition d’opérateurs d’aggrégation supplémentaires et
la capitalisation de filtres de requête complexes sous forme de fonctions. Un
autre use case concerne la définition de propriétés fonctionnelles associées à des
ressources RDF ainsi que les attachements procéduraux associés aux classes
RDFS et OWL avec la sélection de la fonction appropriée en fonction du type
de ressource. Pour résoudre tous ces problèmes nous définissons LDScript, un
language de script pour le Web de données liées au dessus du langage de filtre
de SPARQL. Nous donnons sa syntaxe et sa sémantique.

Mots-clés : Language de script , Web sémantique, Web de données, SPARQL

LDScript: a Linked Data Script Language 3

1 Introduction

RDF is the standard model recommended by the W3C to represent and inter-
change data on the Semantic Web. It is associated with RDF Schema and/or
OWL for ontology-based data modelling and SPARQL for data and ontology
querying. The development of the Web of data opens up a wide range of use
cases where, in addition to the existing standards, the Semantic Web program-
mer would take advantage of a dedicated programming language enabling her
to define functions on RDF terms or RDF graphs. This is the case, for instance,
when defining SPARQL extension functions implemented for a special purpose
and domain or application dependent. This would also be needed to capitalize
a complex SPARQL filter expression or the definition of special purpose exten-
sion aggregates to be reused across queries or sub-queries. Another kind of use
cases is the definition of functional properties associated to RDF resources, the
results of which are computed on demand. For instance, the value of the surface
property of a rectangular object could be computed as the product of the values
of its width and length properties; the age of a person could also be computed
from her date of birth. These use cases can also be extended to the definition
of procedural attachments as functions assigned to RDFS or OWL classes. The
selection of the function to be applied to a resource can then be made dependent
on the types (classes) of the resource.

The requirements we propose for a programming language enabling such
definitions of functions are:

• The objects of the language are RDF terms (URI, blank node and literal),
RDF triples, RDF graphs, SPARQL solution mappings and lists of such
objects.

• The statements of the language include SPARQL filter expressions and
SPARQL queries (the select and construct query forms and the ser-

vice clause).

• The language provides function definition and function call on lists.

In this paper, we address the research question: Can we define a standard-
based programming language that meets the above described requirements?

To answer this question, we define a Linked Data Script language on top of
the SPARQL filter expression language, taking advantage of the fact that the
SPARQL filter expression language potentially enables users to express func-
tion definitions. We then proceed to define a programming language on top of
SPARQL filter expression language.

Syntactically, it consists in additional statements: a function statement
enabling users to define functions and a let statement enabling him to introduce
local variables in the filter language.

We call our extension LDScript, standing for Linked Data Script, as it con-
sists in providing the Linked Data with a script language. We present the syntax
and semantics of LDScript as well as an implementation and we illustrate the

RR n° 8982

4 O. Corby & C. Faron-Zucker & F. Gandon

simplicity as well as the expressive power of this extension with some examples
of LDScript functions.

This paper is organized as follows: In Section 2 we present state-of-the-art
approaches to define extension functions. In Section 3 we present an overview
of LDScript. In Section 4 we define the syntax and semantics of LDScript. In
Section 5 we present several use cases and we show how they can easily be
addressed by using LDScript. In Section 6 we present our implementation of
LDScript within the Corese Semantic Web Factory. In Section 7 we conclude
and draw some perspectives of our work.

2 Related work

SPIN is a W3C member submission which proposes a SPARQL-based rule and
constraint language and, additionally, enables one to represent both SPARQL
queries (SPIN templates) and SPARQL extension functions (SPIN functions) [7].
SPIN is represented in RDF. In SPIN, a SPARQL extension function is identi-
fied by a resource of type sp:Function (with sp the prefix denoting the SPIN
namespace) which is linked by property sp:body to its definition as a SPARQL
query of the form select or ask.

Jena provides a java URI scheme for naming and accessing SPARQL exten-
sion functions implemented in Java. This enables one to dynamically load the
bytecode implementing the function. By convention, the location of the Java
class must be found in the Java classpath and the local name of the function
must be the name of the Java class implementing it1. Here is an example of
a SPARQL query using the f:myTest extension function implemented in Java
and enabling to filter the RDF triples matching the triple pattern to those for
which a call to function f:myTest with the values bound to their subject and
object as parameters returns true:

PREFIX f: <java:app.myFunctions.>

SELECT ?x WHERE {

?x ?p ?y

FILTER f:myTest(?x, ?y)

}

A proposal to implement SPARQL extension functions in JavaScript as an
agreed-upon programming language and to share implementations among query
engines by using an embedded JavaScript interpreter is described in [8]. Func-
tions are identified by URLs and their source code may be retrieved at run
time by dereferencing their URL. It relies on an RDF schema enabling one to
describe a SPARQL extension function and retrieve its source code at run time
by dereferencing its URL. Here is an example of RDF statements describing a
SPARQL extension function to compute a geographical distance in kilometers.
The location of its JavaScript source code is the value of property ex:source

1https://jena.apache.org/documentation/query/writing functions.html

Inria

LDScript: a Linked Data Script Language 5

(with ex the namespace prefix of the extension function schema) and the func-
tion name in the source code that should be called to execute the extension
function is the value of property ex:function.

<http://example.com/functions/distance>

a ex:Function;

dc:description "Geographic distance in km";

ex:source <http://example.com/distance.js>;

ex:function "gdistance" .

A proposal to implement SPARQL extension functions based on both a
generic extension function wfn:call and the SPARQL service clause is de-
scribed in [1]. Function wfn:call is similar to the Lisp funcall function and
takes the extension function to be evaluated as its first argument. Any occur-
rence of the wfn:call function is replaced by a service call to delegate the
evaluation of the extension function to the SPARQL endpoint implementing
the function. The SPARQL endpoint’s IRI is computed from the extension
function’s IRI, based on a Function-to-Endpoint IRI pattern.

When compared to these four state-of-the-art proposals, the key idea of our
proposal described in the following is to extend the SPARQL language, and
more precisely its filter language, in order to enable the definition of extension
functions in the SPARQL language itself and using its native syntax.

3 Overview of LDScript

Our goal is to define functions the objects of which are Linked Data entities
(e.g. URI, RDF Literal, RDF triple, etc.) with the main objective of defining
SPARQL extension functions and possibly extend SPARQL itself.

One possibility is to rely on an existing programming language, e.g. Java,
and use the API of the SPARQL implementation of the RDF entities. However,
this approach has several weaknesses. First, it is not interoperable because other
SPARQL implementations of RDF entities do not use the same API. Hence, the
functions cannot be reused by other SPARQL implementations. Second, one
does not benefit of SPARQL native function library dedicated to RDF terms:
isURI, isBlank, isLiteral, datatype, strdt, strlang, langMatch, uri, bnode, etc.
Third, one must switch back and forth from SPARQL to Java environments with
their compiler, project management environment, etc. and link the compiled
functions to the SPARQL interpreter.

Another possibility would be to design a specific programming language the
object of which would be RDF entities with a library implementing SPARQL
functions. The weakness of this approach would be that users would have to
learn yet another programming language.

We propose LDScript, a third way that synthetize these two approaches: a
programming language the objects of which are RDF entities, compatible with
SPARQL and embedding the complete SPARQL function library.

RR n° 8982

6 O. Corby & C. Faron-Zucker & F. Gandon

LDScript primarily relies on the SPARQL filter expression language. A
SPARQL filter is either (a disjunction or conjunction of) a relational expression
or a call to a built-in or externally defined boolean function. Among the built-
in SPARQL functions stands the if ternary function which evaluates the first
argument and returns the value of the second argument if the first argument
results in an effective value of true, or else the value of the third argument.
A SPARQL filter restricts the solutions of a graph pattern matching to those
satisfying the constraint it expresses: the filtered solutions result in the boolean
value true when substituted into the filter expression.

We propose to define functions by taking advantage of the fact that the
SPARQL filter language enables users to define expressions. Handbooks of pro-
gramming languages and programming history explain that typical imperative
languages include as commands: variables declaration, assignment, call, return,
sequential blocks, iterative commands and if statements. For this reason, in this
section we will introduce the corresponding statements in LDScript. Here are
the namespaces and prefixes used in the definitions:

prefix xt: <http://ns.inria.fr/sparql-extension/>

prefix us: <http://ns.inria.fr/sparql-extension/user/>

prefix rq: <http://ns.inria.fr/sparql-function/>

prefix dt: <http://ns.inria.fr/sparql-datatype/>

prefix ex: <htp://example.org/>

3.1 LDScript Function Definition

In LDScript, a function definition starts with the function keyword. The
first argument of the declaration is the name (a URI) of the function being
defined followed by its argument list. The variables in the argument list play
the usual role of function arguments. The second argument is the body of the
function being defined. It is a LDScript expression or a sequence of expressions.
For example, the factorial function us:fac is defined as follows, by using the
SPARQL if built-in function and embedding a recursive call:

FUNCTION us:fac(?n) {

IF (?n = 0, 1, ?n * us:fac(?n - 1))

}

Here is a another example of function definition. A call to the us:status

function returns the status of the resource given as parameter. Its definition
uses the SPARQL built-in if function and exists operator.

FUNCTION us:status(?x) {

IF (EXISTS { ?x a foaf:Person },

ex:Human, ex:Thing)

}

A call to a defined function returns the result of the evaluation of its body,
with its arguments bound by the function call. In the body, the arguments are

Inria

LDScript: a Linked Data Script Language 7

local variables in the sense that the variable bindings are local to the body of
the function and exist only during the execution of the function. For instance,
according to its above definition, a call to function us:fac will return the value
returned by a call to the if SPARQL built-in function form with a given value
for variable ?n.

The language for defining the body of a function is LDScript, i.e. the
SPARQL filter expression language extended with statements presented in this
document. Hence, to define extension functions, LDScript programmers can
make use of the expressivity of the whole SPARQL filter expression language.
In particular, this includes built-in SPARQL functions, among which the if

function form enabling to consider alternatives, and the exists statement to
test graph patterns. This also includes extension functions defined in LDScripts
or externally defined in another language (as SPARQL allows it).

At compile time, the function statement triggers the storage of the declared
function in a table together with the number of its arguments. The same name
can be used to declare different functions with different numbers of arguments.
Later on, this table enables the LDScript interpreter to retrieve the function
definition at runtime for a function call. For example, the SPARQL query
below is followed by the definition of function us:fac and the WHERE clause
embeds a call to this function to search the resources whose income is greater
or equal to 10! = 3,628,800.

SELECT ?x ?i

WHERE {

?x ex:income ?i

FILTER (?i >= us:fac(10))

}

FUNCTION us:fac(?n) {

IF (?n = 0, 1, ?n * us:fac(?n - 1))

}

3.2 Local Variable Declaration

LDScript function definitions can embed local variable declarations. These are
expressed in a let statement. Its first argument declares a local variable and
its value. Its second argument is an expression which is evaluated with the tran-
sient binding of the local variable declared. After completion of the expression
evaluation, the binding vanishes. The result of a let statement is the result of
its second argument. For instance, the example below shows a let statement
that returns the pretty-printing of a date, e.g. "29/01/2017".

LET (?n = now()) {

CONCAT(day(?n), "/", month(?n), "/", year(?n))

}

RR n° 8982

8 O. Corby & C. Faron-Zucker & F. Gandon

3.3 Loop Statements

In order to iterate a statement on the elements of a list of values, LDScript
is provided with the for loop statement. For instance the following function
iteratively calls the xt:display function on the prime numbers among a given
list of natural numbers.

FOR (?n IN xt:list(1, 2, 3, 4, 5)) {

IF (us:prime(?n)) { xt:display(?n) }

}

The for statement can iterate on the results of a SPARQL select or con-
struct query. In the case of a construct query, it iterates on the triples of
the graph. For instance, the following function iteratively calls the xt:display
function on RDF triples of the form <URI> a foaf:Person.

FOR (?t IN CONSTRUCT WHERE { ?x a foaf:Person }) {

xt:display(?t)

}

The for statement can also bind a list of variables to a list of lists of values.
In the case of the result of a construct query, the for statement can bind
the subject, property and object of each triple to a list of three variables, like
in the following example statement.

FOR ((?s, ?p, ?o) in

CONSTRUCT WHERE { ?x a foaf:Person }) {

xt:display(?s, ?o)

}

3.4 Function Evaluation

LDScript is provided with the funcall function to call a function whose name is
dynamically evaluated within a let statement. For instance, the following let

statement enables to apply a function to a variable ?x, whose body is randomly
chosen.

LET (?fun = IF (rand() > 0.5, us:foo, us:bar)) {

funcall(?fun, ?x)

}

LDScript is provided with the apply function to iteratively call a binary
function on a list of arguments. For example, the following function call enables
to compute the sum of the elements of a list of numbers with the binary rq:plus

function.

apply(rq:plus, xt:list(1, 2, 3, 4, 5))

Inria

LDScript: a Linked Data Script Language 9

3.5 List Datatype

LDScript is provided with a dt:list datatype to manage lists of values. A
dt:list datatype value is a list whose elements are RDF terms: URIs, literals,
blank nodes or sublists of type dt:list. The elements of a list need not be of
the same kind, neither of the same datatype. The dt:list datatype comes with
a set of predefined functions among which xt:size returns the size of the list,
xt:get returns the nth element, xt:sort sorts the list according to the order

by rules of SPARQL, xt:iota returns the list of n first integers, xt:cons adds
an element to the head of the list, etc.

The maplist function enables one to apply a function to the elements of a
list and return the list of the results. For instance, the call to function maplist

shown below returns the list of the results of the calls to function us:fac on
the first ten integers.

maplist(us:fac, xt:iota(10))

There are several variants of the maplist function: map applies a function
and returns true, mapselect returns the list of elements such that the boolean
function returns true.

4 LDScript Language

The previous section gave an overview of LDScript. In this section we formally
define the syntax and semantics of this language.

4.1 LDScript Syntax

LDScript grammar is based on SPARQL2. The definition of BuiltInCall is
extended with let, for, map, funcall and apply statements.

Function ::= ’function’ iri (’()’ | VarList) Body

Body ::= ’{’ ’}’ | ’{’ Expression (’;’ Expression)* ’}’

VarList ::= ’(’ Var (’,’ Var)* ’)’

BuiltInCall ::= SPARQL_BuiltInCall

| ’let’ ’(’ Decl (’,’ Decl) * ’)’ Body

| ’for’ ’(’ VarOrList ’in’ ExpQuery ’)’ Body

| Map ’(’ iri ’,’ Expression ’)’

| ’funcall’ ’(’ Expression (’,’ Expression)* ’)’

| ’apply’ ’(’ iri ’,’ Expression ’)’

Decl ::= VarOrList ’=’ ExpQuery

VarOrList ::= Var | VarList

ExpQuery ::= Expression |

SelectQuery | ConstructQuery | ServiceGraphPattern

Map ::= ’map’ | ’maplist’ | ’mapselect’

2http://www.w3.org/TR/sparql11-query/#grammar

RR n° 8982

10 O. Corby & C. Faron-Zucker & F. Gandon

4.2 LDScript Semantics

As usually done for programming languages, we formally defined the semantics
of the core of LDScript by a set of Natural Semantics inference rules [6]. These
rules enable us to define the semantics of the evaluation of the expressions of
the language in an environment with variable bindings. The bottom of the rule
is the conclusion and the top is the condition. The ⊢ symbol states that the
expression on the right side is evaluated in the environment given on the left
side. The → symbol represents the evaluation of the expression on the left side
into the value on the right side. An environment is a couple (µ, ρ) where µ is the
BGP solution mapping and ρ represents local variable bindings. In addition,
the environment contains a reference to the SPARQL dataset.

Rule 1 states that local variables are evaluated within ρ which is managed
as a stack, latest variable binding first; rule 2 states that global variables are
evaluated within µ which is a BGP solution.

Rules 3 and 4 specify the evaluation of function calls. The ⇒ symbol rep-
resents a function definition lookup for the function name on the left side. The
solution mapping environment is empty during function body evaluation: there
are no global variables. Each function call creates a fresh environment with
function parameters (if any) as local variables.

Rule 5 specifies the evaluation of the let clause which declares a local variable
to be added to environment ρ. Hence, a declared local variable may hide a
function parameter or a BGP variable. BGP variables are accessible in a let
statement (e.g. in a filter), unless the let statement is inside a function, in which
case the µ environment is empty.

Rule 6 specifies the evaluation of the for statement by evaluating the first
expression that returns a list of values and then binds the variable successively
with each element of the list and evaluates the second expression with each local
binding. The result of the for statement is always true by convention.

Rules 7, 8, 9, 10, and 11 specify map, eval and apply statements.

Rule 12 specifies the evaluation of an LDScript expression. The semantics is
that of standard SPARQL expression evaluation, except that the overall envi-
ronment comprises an environment for local variables in addition to the standard
environment for BGP variables.

µ, ρ[x = v] ⊢ x → v
(1)

x /∈ ρ

µ[x = v], ρ ⊢ x → v
(2)

f() ⇒ f() = body ∧ φ, φ ⊢ body → res

µ, ρ ⊢ f() → res
(3)

Inria

LDScript: a Linked Data Script Language 11

f(e1, ... en) ⇒ f(x1, ... xn) = body
µ, ρ ⊢ e1 → v1
...
µ, ρ ⊢ en → vn
φ, [x1 = v1; ... xn = vn] ⊢ body → res

µ, ρ ⊢ f(e1, ... en) → res
(4)

µ, ρ ⊢ e1 → v1 ∧ µ, ρ [x = v1] ⊢ e2 → res

µ, ρ ⊢ let(x = e1, e2) → res
(5)

µ, ρ ⊢ e → (v1, ...vn)
µ, ρ [x = v1] ⊢ b → r1
...
µ, ρ [x = vn] ⊢ b → rn

µ, ρ ⊢ for(x = e, b) → true
(6)

µ, ρ ⊢ e → (v1, ..vn)
µ, ρ ⊢ f(v1) → r1
..
µ, ρ ⊢ f(vn) → rn
µ, ρ ⊢ map(f, e) → true

(7)

µ, ρ ⊢ e → f ∧ µ, ρ ⊢ f(e1, ..en) → v

µ, ρ ⊢ funcall(e, e1, ..en) → v
(8)

µ, ρ ⊢ e → (v1, ..vn)
µ, ρ ⊢ apply(f, (v1, ..vn)) → v

µ, ρ ⊢ apply(f, e) → v
(9)

µ, ρ ⊢ f() → v

µ, ρ ⊢ apply(f, ()) → v
(10)

µ, ρ ⊢ apply(f, (v2, ..vn)) → r
µ, ρ ⊢ f(v1, r) → v

µ, ρ ⊢ apply(f, (v1, ..vn)) → v
(11)

sparql(µ, ρ ⊢ exp → v)

µ, ρ ⊢ exp → v
(12)

4.3 Summary

LDScript is a programming language where values are RDF terms, hence its use
to define extension functions avoids to cast datatype values from RDF to the
target language (e.g. Java) and back. It enables to associate function definitions
directly to a SPARQL query, with no need to compile nor link code.

RR n° 8982

12 O. Corby & C. Faron-Zucker & F. Gandon

All standard SPARQL functions, among which IF and EXISTS, are natively
available in LDScript and can be used directly in a LDScript function definition.
The select and construct SPARQL query forms, the SPARQL service

clause are statements of the LDScript and can be used as well in the definition of
functions. The result of these statements can also be manipulated directly in the
language without any cast or additional operations. In addition, the language
provides recursion, hence enabling recursive SPARQL queries: a function can
execute a SPARQL query that can call the function.

5 Use Cases

In this section, we present the definition of several LDScript extension functions
showing the expressive power and usability of the language. Some additional
examples can be found at: http://ns.inria.fr/sparql-extension such as
calendar functions that enable one to compute the week day of a date and a
converter from decimal to Arabic numbers and reverse.

5.1 Extended Aggregates

LDScript enables us to simply define extended aggregates with a simple exten-
sion of the SPARQL interpreter. We introduce the aggregate function which is
an additional generic aggregate operator. This function takes as arguments the
expression to be aggregated (e.g. ?v). The aggregate function aggregates the
results of the expression into a dt:list. Then we can call a custom aggregation
function with this list as argument. The example below defines sort concat,
a variant of the group concat aggregate which sorts the elements before con-
catenation occurs. The rq prefix and namespace are used to assign a URI to
each SPARQL standard function, hence rq:concat function is SPARQL concat

function. Hence LDScript enables users to define inline custom aggregates for
SPARQL.

SELECT (aggregate(?v) as ?list)

(us:sort_concat(?list) as ?res)

WHERE {

?x rdf:value/rdf:rest*/rdf:first ?v

}

FUNCTION us:sort_concat(?list){

apply(rq:concat, xt:sort(?list))

}

5.2 Application-specific processing

Another use case of LDScript extension functions is user-defined calculation
such as metrics for approximate matching. We defined the us:match extension
function which definition is given in the following SPARQL query where ?q and
?t are two RDFS classes. Given a triple pattern with property rdf:type and

Inria

LDScript: a Linked Data Script Language 13

a type, i.e., a class (e.g. ex:Researcher), a type in an RDF triple matches the
type in the triple pattern when it is a subtype of it (line (09) emulates class
subsumption by using a path of properties rdfs:subClassOf), but also when it
is a supertype of it (line 10), or when it shares a common supertype (line 11).
For instance (line 05), ex:Person and ex:Engineer will match ex:Researcher

if ex:Researcher is declared as a subtype of ex:Person in the ontology, and
both ex:Researcher and ex:Engineer as subtypes of ex:Scientist.

(01) SELECT * WHERE {

(02) ?x a ?tx .

(03) ?x ex:author ?d .

(04) ?d a ?td

(05) FILTER us:match(ex:Researcher, ?tx)

(06) FILTER us:match(ex:Report, ?td)

(07) }

(08) FUNCTION us:match(?q, ?t) {

(09) EXISTS { {?t rdfs:subClassOf* ?q } UNION

(10) { ?q rdfs:subClassOf* ?t } UNION

(11) { ?q rdfs:subClassOf/^rdfs:subClassOf ?t }})

(12) }

This kind of approximate matching could be coded in standard SPARQL, with-
out extension function, but the interest to write a LDScript extension function
is to define it once and reuse it across queries.

5.3 Procedural Attachment

LDScript enables users to perform procedural attachment to RDF resources.
The idea is to annotate the URI of a function to declare that it is a method as-
sociated to a class. In the example below, we annotate two functions computing
surfaces, us:surfaceRectangle and us:surfaceCircle and declare that they
implement the method us:surface for us:Rectangle and us:Circle respec-
tively.

us:surfaceRectangle a xt:Method ;

xt:name us:surface ;

xt:input (us:Rectangle) ;

xt:output xsd:double .

us:surfaceCircle a xt:Method ;

xt:name us:surface ;

xt:input (us:Circle) ;

xt:output xsd:double .

Then, we can call a method on a resource.

RR n° 8982

14 O. Corby & C. Faron-Zucker & F. Gandon

SELECT * (eval(xt:method(us:surface, ?x), ?x) as ?m)

WHERE {

?x a us:Figure

}

The xt:method function below retrieves function ?fun implementing method ?m

by finding the type ?t of the resource (04) and then finding a method attached
to the type, or a superclass of the type (05). In the latter case, this implements
method inheritance following the rdfs:subClassOf relation.

(01) FUNCTION xt:method(?m, ?x){

(02) LET ((?fun) =

(03) SELECT * WHERE {

(04) ?x rdf:type/rdfs:subClassOf* ?t .

(05) ?fun a xt:Method ; xt:name ?m ; xt:input(?t)})

(06) { ?fun }

(07) }

We define below the functions whose URI are annotated as methods.

FUNCTION us:surfaceRectangle(?x){

LET ((?w, ?l) =

SELECT * WHERE {

?x us:width ?w ; us:length ?l }){

?w * ?l

}

}

FUNCTION us:surfaceCircle(?x){

LET ((?r) = SELECT * WHERE { ?x us:radius ?r }){

3.14159 * power(?r, 2)

}

}

Below are some RDF descriptions of figures for which we can now compute the
surface using procedural attachment.

us:Circle rdfs:subClassOf us:Figure .

us:Rectangle rdfs:subClassOf us:Figure .

us:cc a us:Circle ; us:radius 1.5 .

us:rr a us:Rectangle ; us:width 2 ; us:length 3 .

5.4 Calendar

We wrote LDScript functions to compute the day of the week given a date
literal of type xsd:date3 and functions to generate a calendar given a year4. We

3http://ns.inria.fr/sparql-extension/calendar
4http://corese.inria.fr/srv/template?transform=st:calendar

Inria

LDScript: a Linked Data Script Language 15

designed a dynamic Web page generated from DBpedia events were events of a
given year are placed into the calendar5. The performance of LDScript is such
that the Web page is computed and displayed in real time.

5.5 Data Shape

As part of a DataShape validator, we wrote an interpreter for W3C DataShape
Property Path language6. The function below recursively rewrites a property
path shape expression ?pp as a LDScript list.

function sh:path(?shape, ?pp){

let ((?q, ?path) =

select ?shape ?pp ?q ?path where {

graph ?shape {

rdf:rest is for a sequence

values ?q {

sh:inversePath sh:alternativePath

sh:zeroOrMorePath sh:oneOrMorePath

sh:zeroOrOnePath rdf:rest }

?pp ?q ?path

}

}) {

if (! bound(?q)){

if (isURI(?pp)){ ?pp }

else { error() }

}

else if (?q = rdf:rest) {

xt:list(sh:sequence, sh:list(?shape, ?pp)) }

else { xt:list(?q, sh:path(?shape, ?path)) }

}

}

The function below rewrites recursively an RDF list of path expressions ?pp
(e.g. a sequence) as a LDScript list.

function sh:list(?shape, ?pp){

let ((?l) =

select ?shape ?pp (aggregate(sh:path(?shape, ?e)) as ?l)

where { graph ?shape { ?pp rdf:rest*/rdf:first ?e }}) {

?l

}

}

5http://corese.inria.fr/srv/template?profile=st:calendar3
6http://ns.inria.fr/sparql-extension/datashape

RR n° 8982

16 O. Corby & C. Faron-Zucker & F. Gandon

These two exampes shows the natural integration of SPARQL queries into
LDScript program. In particular LDScript variables are seamlessly shared with
SPARQL variables.

6 Implementation and test

LDScript is implemented using the SPARQL interpreter of the Corese Semantic
Web Factory [5, 2]. The function, let and other statements are implemented
by the SPARQL parser, compiler and interpreter. For the LDScript compiler,
function definitions are recorded, taking into account the fact that the same
function name can be used with different numbers of arguments. The notion of
local variable is defined.

Should an error occur, function evaluation resumes in error mode, on the
same model as SPARQL evaluation error. In a filter, the filter fails. In
a select or a bind clause, “if the evaluation of the expression produces an
error, the variable remains unbound for that solution but the query evaluation
continues”7.

Figure 1: Comparison of mean times and their mean absolute differences for
JavaScript (JS), Java and LDScript (LDS) computing recursive Fibonacci (-
Fib in Blue), Bubble sort (-Bub in green) and statistics (-Stat in red) using a
logarithmic scale.

LDScript has been validated on the functions described in Section 5 and
extensively used in several STTL transformations on a server available online8[3,
4]. We measured the performance of our implementation of LDScript on the
execution of (1) a recursive Fibonacci function to test an exponential number of
calls, (2) on the Bubble sort algorithms to evaluate loops and (3) on statistics
functions for the calculation aspect. We compared with Java and Javascript
implementations which, of course, benefit from many years of optimizations.
Our goal here is just to show that a direct implementation on top of a SPARQL
engine without dedicated optimizations is already usable. The results are shown
using a logarithmic scale in figure 1. The extension function fib implements the

7http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#assignment
8http://corese.inria.fr

Inria

LDScript: a Linked Data Script Language 17

Fibonacci sequence. The computation of fib(35) = 9227465 on a HP EliteBook
laptop takes 3650 ms in LDScript, 68.8 ms in JavaScript and 24.9 ms in Java.

FUNCTION us:fib(?n) {

IF (n <= 2, 1, us:fib(?n - 2) + us:fib(?n - 1))

}

Bubble sort on an array of 1000 items takes 580.1ms in LDScript, 6ms in
JavaScript and 9.5ms in Java. Three statistics functions together (average,
median and standard deviation) on an array containing 100000 integer values
takes 157.1 ms in LDScript, 80.5 ms in JavaScript and 6.9 ms in Java.

7 Conclusion and Future Work

Dedicated programming language enabling Semantic Web programmers to de-
fine functions on RDF terms, RDF graphs or SPARQL results can improve
modularity, reuse and maintenance of the code produced for Linked Data. This
is the case when defining SPARQL extension functions, complex SPARQL filter
expressions, functional properties associated to RDF resources and procedu-
ral attachments as functions assigned to classes. To address these needs we
detailed in this article a lightweight extension of SPARQL filter expression lan-
guage to enable the definition of extension functions and we defined a Linked
Data Script language on top of the SPARQL filter expression language. Com-
pared to state-of-the-art we directly extend the SPARQL language in order to
enable the definition of extension functions in the SPARQL language itself and
using its native syntax, building on a well-known and widely accepted compo-
nent of the Web of data. The key point of our proposal is that a programming
language can easily be integrated in SPARQL to define extension functions.
LDScript reuses the language of SPARQL filter expressions and extends it with
several classical programming statements, among which function, let, for,
eval and apply. We first provided an overview of the LDScript language and
then we detailed the formal definition of the grammar of its syntax and the
Natural Semantics inference rules of its semantics. We also provide a full im-
plementation in the Corese Semantic Web Factory and we have developed a set
of functions to validate our approach, some example of which were presented in
this article.

As future work, we plan to investigate the notion of ”Linked Functions” and
go further in the definition of a functionnal programming language for SPARQL.
We may consider type checking function definition to ensure a certain level
of safety. We may also consider compiling functions into target programming
languages such as Java.

RR n° 8982

18 O. Corby & C. Faron-Zucker & F. Gandon

References

[1] Maurizio Atzori. Toward the Web of Functions: Interoperable Higher-Order
Functions in SPARQL. In The Semantic Web – ISWC 2014, volume 8797 of
Lecture Notes in Computer Science, pages 406–421. Springer International
Publishing, 2014.

[2] Olivier Corby and Catherine Faron-Zucker. The KGRAM Abstract Ma-
chine for Knowledge Graph Querying. In IEEE/WIC/ACM International
Conference on Web Intelligence, Toronto, Canada, September 2010.

[3] Olivier Corby and Catherine Faron-Zucker. STTL: A SPARQL-based Trans-
formation Language for RDF. In Proc. 11th International Conference on
Web Information Systems and Technologies, WEBIST 2015, Lisbon, Portu-
gal, May 2015.

[4] Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon. A Generic
RDF Transformation Software and its Application to an Online Translation
Service for Common Languages of Linked Data. In Proc. 14th International
Semantic Web Conference, ISWC, Bethlehem, Pennsylvania, USA, October
2015.

[5] Olivier Corby, Alban Gaignard, Catherine Faron-Zucker, and Johan Mon-
tagnat. KGRAM Versatile Data Graphs Querying and Inference Engine.
In Proc. IEEE/WIC/ACM International Conference on Web Intelligence,
Macau, China, December 2012.

[6] G. Kahn. Natural Semantics. In Proc. of 4th Annual Symposium on Theoret-
ical Aspects of Computer Science, STACS 87, volume 247 of Lecture Notes
in Computer Science, pages 22–39. Springer, 1987.

[7] Holger Knublauch. SPIN - SPARQL Syntax. Member Submission, W3C,
2011. http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/.

[8] Gregory T. Williams. Extensible SPARQL Functions With Embedded
Javascript. In Scripting for the Semantic Web, ESWC Workshop, Inns-
bruck, Austria, May 2007. http://ceur-ws.org/Vol-248/paper7.pdf.

Inria

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

