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Abstract. LDSR is a collection of datasets from the Linked Open Data (LOD) 
W3C community project, which have been selected and refined for the purpose 
of presenting a useful perspective to some of the central LOD datasets and to 
present a good use-case for large-scale reasoning and data integration. The 
design objectives are as follows: (i) consistency with respect to the formal 
semantics, (ii) generality – no specific domain knowledge should be required to 
comprehend most of the semantics, and (iii) heterogeneity – data from multiple 
data sources should be included. The current version of LDSR consists of about 
440 million explicit statements and includes DBPedia, Geonames, Wordnet, 
CIA Factbook, lingvoj, and UMBEL. LDSR includes the ontologies of the 
datasets and the following schemata, used by them: SKOS, FOAF, RSS, and 
Dublin Core. 

Here we report on the materialization of the deductive closure of LDSR 
performed with the OWLIM semantic repository, which uses a propriety native 
RDF rule engine. Entailment was performed with respect to a rule-set defining a 
tractable OWL dialect similar to OWL 2 RL, inferring 1.15 billion statements 
that have been materialized and indexed along the explicit ones. Although 
OWLIM performs complete forward-chaining, it does not materialize all the 
results for performance reasons. Groups of URIs, defined to be equivalent 
through owl:sameAs, are represented in the indices by a single super-node. 
Upon retrieval request, the repository “expands” the results in accordance with 
the owl:sameAs semantics. Thus, while the total number of all indexed 
statements is 1.58 billion, the number of retrievable statements is 2.32 billion. 

The initial analysis of the results shows that the vast majority of the inferred 
statements match the expectations dictated by common sense. Although no 
formal validation has been performed, analysis of the ontologies and schemata 
used makes us believe that the OWL dialect used is sufficiently expressive, i.e. 
that reasoning with respect to a more expressive dialect will not entail 
additional implicit statements. There is still plenty of room left for analysis of 
the results and reasoning experiments with respect to various tasks (e.g. 
inconsistency checking) and OWL dialects. LDSR is available for exploration 
and query evaluation at http://www.ontotext.com/ldsr/.   

1 Introduction  

“Linked data” is defined by Tim Berners-Lee,  [2], as RDF graphs, published so that 
they can be navigated across servers by following the links in the graph in a manner 



 

similar to the way the HTML web is navigated. The publishers of linked data should 
comply with four simple design principles: 

1. Using URIs as names for things; 
2. Using HTTP URIs, so that people can look up those names; 
3. Providing useful information when someone looks up a URI; 
4. Including links to other URI, so people can discover more things. 

In fact, most of the RDF, [9], datasets fulfil principles 1, 2, and 4 by design. The piece 
of novelty in the design principles above concerns the requirement for enabling 
Semantic Web browsers to load HTTP descriptions of RDF resources based on their 
URIs. To this end, data publishers should make sure that: 

• the “physical” addresses of the published pieces of data are the same as the 
“logical” addresses, used as RDF identifiers (URIs); 

• upon receiving an HTTP request, the server should return an RDF-molecule, 
i.e. the set of triples that describe the resource. 

Although not related to semantics, the linked data concept turns into an enabling 
factor for the realization of the Semantic Web as a global web of structured data 
around the Linking Open Data initiative introduced in section 1.1. Reasoning with 
linked data faces various obstacles related to the very scale and nature of such data. In 
order to provide context for the experiment presented in this paper, we provide, in 
section 1.2, a brief overview of the state of the art in scalable reasoning. In the second 
section, we propose the so-called reason-able views as a practical approach for 
reasoning with linked data.  

The major contribution of this paper is a reason-able view called LDSR, presented 
in section 3, which allows experimenting with large-scale reasoning with general 
knowledge.  Further, in sections 4 and 5, we share our experience gathered from the 
process of materialization of the deductive closure of LDSR, performed with the 
OWLIM semantic repository. Finally, we provide analysis of the results (section 6) 
and discussion on future work (section 7). 

The results reported here are based on work performed within EC research projects 
RASCALLI and LarKC, in which LDSR is designed and used as a test-bed for 
scalable reasoning, [11], and for modelling of incomplete context-aware reasoning 
based on spreading activation and priming, [17]. The latter experiments were 
extended to usage of priming for pre-selection of relevant fractions of datasets for 
web-scale reasoning, [18]. 

1.1 Linking Open Data  

Linked Open Data (LOD1) is a W3C SWEO community project aiming to extend the 
Web by publishing open datasets as RDF and by creating RDF links between data 
items from different data sources. The central dataset of the LOD is DBPedia – an 
RDF extract of the Wikipedia open encyclopaedia. Because of the many mappings 
between other LOD datasets and DBPedia, the latter serves as a sort of a hub in the 
LOD graph assuring a certain level of connectivity. Among the LOD datasets are 
Wordnet, Geonames, World Factbook (see section 3 for information on these 
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datasets), UniProt2 (the largest integrated database with protein and gene-related 
information), FOAF3 (a virtual collection of personal profiles), and OpenCyc4 (the 
most popular upper-level and general ontology). 

Currently LOD contains more than 40 datasets5, with total volume above 4.7 
billion statements, interlinked with 142 million statements as illustrated on Figure 1. 
 

 
 

Fig. 1. Map of the Datasets in Linking Open Data (LOD) Project 
(from http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData)  

1.2 Scalable Reasoning  

For most of the popular knowledge representation (KR) formalisms and ontology 
languages, the worst case complexity of the algorithms for the basic reasoning tasks 
indicates that they are unfeasible for application to large scale knowledge bases and 
datasets. Still, as a result of the constant efforts on optimization of the reasoning 

                                                           
2  http://www.uniprot.org/  
3   http://www.foaf-project.org/  
4  http://www.opencyc.org/  
5   http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets 



 

engines, many of them demonstrate impressive scalability and performance for a wide 
range of application scenarios.  

Being the official schema definition and ontology languages of the Semantic Web, 
RDFS, [7], and OWL, [4], are by far the most popular KR languages nowadays. They 
standardize the epistemology, the vocabulary, and the syntax of the ontologies and the 
data encoded with respect to them. Yet, the semantics of RDFS and the various 
dialects of OWL are still quite diverse. As the computational characteristics of the 
different logical dialects vary dramatically, we will provide references only to few of 
the most scalable results for three classes of languages which seem to be most popular 
today and are most often employed for large scale reasoning. 

Description Logics (DL): these provide balance between expressiveness and 
complexity of the reasoning algorithms; their most important advantage with respect 
to other fragments of the first order predicate calculus is that they are decidable. The 
most popular contemporary representative of this class is OWL DL, [4]. Still, the 
scalability of reasoning of the DL reasoners is limited by the fact that they are not 
tractable. The most scalable results are summarized in section 4.1 of [11]. In essence, 
the most scalable experiments with sound and complete OWL DL reasoning are in the 
range of 5 million statements, under the UOBM benchmark as reported in [8]. 
Inconsistency checking with respect to OWL DL has been performed, under specific 
constraints, against 60 million statements, as presented in [14]. 

F-Logic: a language, representative for a group of logical programming 
formalisms, which could be considered successors and PROLOG and Datalog. One 
can expect systems implementing F-logic-like languages to be easier to scale in 
comparison to the DL reasoners because rule-based entailment is of generally lower 
complexity, compared to the satisfiability checking performed by the DL reasoners. 
[14] presents results of comprehensive benchmarking with the OpenRuleBench 
benchmark suite performed on several of the most-popular rule engines. The largest 
scale experiments have been in the range between 5 and 10 million statements. 

OWL Horst: we refer as “OWL Horst” a dialect of OWL defined in [16] as an 
extension of the RDFS semantics, [7], towards supporting some, but not all, OWL 
primitives. Ter Horst defines a rule language called R-entailment: both the body and 
the head of the rule are RDF graph patterns, described via statements, which can 
contain URIs, blank nodes, and variables in any position, as well as literals in the 
object position; blank nodes are not allowed in the body; all variables in the head of 
the rule should also appear in its body. The OWL dialect is defined as a set of R-
entailment rules, named pD-entailment. OWL Horst is representative for a class of 
OWL dialects defined through R-entailment-like rule languages; most recently, OWL 
2 RL was defined in [10] as a profile of OWL 2, based on a rule formalism almost 
identical to R-entailment. As presented in [12], there are plenty of systems 
(AllegroGraph, BigDATA, BigOWLIM, DAML DB, ORACLE) which can perform 
reasoning with respect to OWL Horst-like languages over datasets with a size in the 
range around one billion explicit statements. The most popular measuring stick for the 
performance of the engines at this scale is the 8000-university version of the LUBM 
benchmark, [5], referred to as LUBM(8000). Most of these engines perform total 
materialization of the deductive closure of the dataset during loading; loading, 
including materialization, can be performed on a commodity database server at a 
speed in the range of 20 000 explicit statements/second. If materialization is 



 

 

performed with respect to the RDFS semantics, LUBM(8000) is loaded twice faster; 
without any inference, speeds go up to 70 000 st./sec. In a scale-up experiment, 
BigOWLIM managed to load the 12 billion statements of LUBM(67000) and perform 
materialization at 12 000 st./sec. 

To summarize, given all public results, only OWL Horst-like languages seem to 
be suitable for reasoning with data in range of billions of statements. Some engines 
(e.g. ORACLE, [19]) apply hybrid strategies in which DL reasoners are used to 
perform T-Box with the ontologies used in the datasets; the results are then 
materialized and used as input for OWL-Horst-style entailment. 

2 Reasoning with Linked Data 

Reasoning with linked data runs into various problems related to the clash of the 
mainstream reasoning techniques and the WWW-like nature of the data. The major 
issues can be summarized as follows: 

• Most of the traditional reasoning setups implement sound and complete 
inference under the so-called “closed-world assumption”: the knowledge is 
considered complete; if specific fact is not known or inferable, it is not true.  
Such setups are irrelevant in environment where the knowledge is 
incomplete by design and logical consistency is not guaranteed; 

• The complexity of reasoning with respect even to the simplest standard 
ontology languages (e.g. OWL Lite, [4]) is prohibitively high for the datasets 
in LOD (see section 1.2); 

• Some of the datasets of LOD, or at least some parts of them, are not suitable 
for reasoning. It seems that many data publishers use OWL and RDFS 
vocabulary without accounting for its formal semantics; 

• Some of the datasets are derived by the means of text-mining and, due to the 
intrinsic limitations of the accuracy of the extraction techniques, include 
incorrect information. For instance, the YAGO module of DBPedia contains 
plenty of faulty classifications of Wikipedia articles. Such inaccuracies are of 
relatively small number and probably not a serious problem for human 
readers exploring DBPedia. However, they can lead to significant noise and 
inconsistencies after reasoning;  

• Although reasoning with data distributed across different WWW servers is 
possible, it is usually much slower than reasoning with local data. 

Reason-able views represent an approach for reasoning with the web of linked data, 
introduced in [17]. We call reason-able view (RAV) an assembly of independent 
datasets, which can be used as a single body of knowledge (referred to as integrated 
dataset) with respect to reasoning and query evaluation. The integrated dataset 
represents the union of the independent datasets or versions of those, where parts of 
the original datasets could be excluded or refined in order to meet reasonability or 
some other criterion.  

The notion of “reasonability” above means that the integrated dataset has certain 
specific qualities with respect to a specific reasoning task and language (more 
generally, specific deductive system). Examples for reasonability criteria could be 



 

“consistent with respect to OWL Lite” or “to allow RDFS entailment within O(n) 
time and space”. While in some scenarios one can find it useful to create a reasoning 
setup where different modules of the view can be subject to different reasoning, the 
simplest and easiest to use and manage is a setup where single criterion is used. 

We define linked data reason-able view (linked RAV) as a reason-able view where: 
• All the datasets in the view represent linked data (see section 1); 
• Single reasonability criteria is imposed on all datasets; 
• Each dataset is connected to at least one of the others. 

Considering the size of the LOD datasets (see section 1.1), in order to make query 
evaluation and reasoning practically feasible, the integrated dataset of a linked RAV 
should be loaded in a single repository (even if it employs some sort of distribution 
internally). Such linked RAV can be considered as index, which caches parts of the 
LOD cloud and provides access to the datasets included in a manner similar to the one 
in which web search engines index WWW pages and facilitate their usage.  

As a final practical consideration, to allow for caching and indexing, linked RAVs 
should include only datasets that are more or less static; this excludes various types of 
wrappers or virtual datasets, where RDF is generated in answer to retrieval requests 
(one can make an analogy with the dynamic part of the WWW).  

3 Linked Data Semantic Repository (LDSR) 

We defined LDSR as a reason-able view to the web of linked data, an assembly of 
some of the central LOD datasets, which have been selected and refined in order to: 

• Serve as a useful index and entry point to the LOD cloud and 
• Present a good use-case for large-scale reasoning and data integration. 

 The design objectives for LDSR were as follows: 
1. Consistency with respect to the formal semantics; 
2. Generality – no specific domain knowledge should be required to 

comprehend most of the semantics; 
3. Heterogeneity – data from multiple data sources should be included; 
4. Reasonability with respect to OWL 2 RL (see section 4 for details). 

LDSR includes the following LOD datasets: 
• DBPedia6 is an RDF dataset derived from Wikipedia, designed and 

developed to provide as full as possible coverage of the factual knowledge 
that can be extracted from Wikipedia with a high level of precision. It serves 
as a hub for the LOD project.  

• Geonames7 is a geographic database that covers 6 million of the most 
significant geographical features on Earth (e.g.  countries, populated places, 
mountains, rivers,  and bridges), characterised by coordinates and relations to 
other features (e.g. “parent” feature in which the feature is nested). 

                                                           
6  http://dbpedia.org/  
7  http://www.geonames.org/  



 

 

• UMBEL8 is a lightweight ontology structure, essentially, a hierarchy of 
about 20,000 classes, derived from OpenCyc and mapped to DBPedia. The 
classes range from general philosophical notions like TangibleThing to 
very specific classes like AbaCloth. 

• Wordnet9 is a lexical knowledge base that covers about 150,000 English 
words. Wordnet defines the meanings of English words by grouping them 
into sets of synonyms, called synsets. Each synset expresses a distinct 
concept. The words linked to a given synset are synonyms with respect to the 
meaning of the lexical concept represented by this synset. A word can have 
multiple meanings, i.e. it can be associated with multiple synsets. The more 
general terms are associated with less general terms through hyponym-
hypernym relations. We use W3C’s Wordnet RDF/OWL representation10. 

• CIA World Factbook11 represents a collection of structured data, including 
statistical, geographic, political, and other information about all countries; 

• Lingvoj12 provides descriptions of the most popular human languages; 
currently it contains information about more than 500 languages. 

The connectivity in LDSR is assured by DBPedia (which provides links to 
GeoNames, lingvoj, and Wordnet) and by UMBEL (which is linked to DBPedia). In 
LDSR, we include also the following ontologies and schemata, referred to or 
imported from the LOD datasets listed above: 

• Dublin Core13 (DC) is a relatively small but very popular metadata schema. 
It defines 15 attributes (e.g. author/contributor, date of publication, language, 
etc.) that can be used to describe information resources; 

• SKOS14 (Simple Knowledge Organization System) represents a relatively 
simple RDF schema that allows describing taxonomies of concepts linked to 
each other by any sort of subsumption hierarchy. The most important 
properties defined by SKOS are skos:broader and skos:narower, 
defined as inverse of each other. The subsumption semantics of these 
relationships is more appropriate for the encoding of “topic ontologies” and 
subjects classifiers as compared to rdfs:subClassOf. 

• RSS15 is an RDF schema designed to enable syndication of machine-
readable information about updates from web sites; 

• FOAF16 is a project aimed at creating a network of machine-readable 
personal profiles published on the Web. In essence, the FOAF ontology 
defines the attributes of these personal profiles, which, in turn, allows for 
publication of contact information and links to other profiles.  

                                                           
8  http://www.umbel.org/ 
9  http://wordnet.princeton.edu/  
10  http://www.w3.org/2006/03/wn/wn20/  
11  http://www4.wiwiss.fu-berlin.de/factbook/  
12  http://www4.wiwiss.fu-berlin.de/factbook/  
13  http://purl.org/dc 
14  www.w3.org/2004/02/skos/  
15  http://web.resource.org/rss/1.0/spec  
16  http://www.foaf-project.org/  



 

4 Reasoning Setup 

The “reasonability criteria” (see section 2) for LDSR were defined with respect to 
OWL 2 RL. Formally, we wanted LDSR to allow forward-chaining, which means 
entailment and consistency checking, within O(n.log(n)) space and time. We wanted 
LDSR’s integrated dataset to be consistent with respect to OWL 2 RL. 

We also had one informal but very important objective towards the reasonability of 
LDSR: we wanted most of the results of the inference to comply with common sense 
without specific assumptions about the context of interpretation. In other words, we 
wanted to have a deductive closure that does not include statements which go against 
common sense, under the style and level of consensus similar to those of Wikipedia. 

We used the BigOWLIM17 semantic repository to load the datasets of LDSR and 
perform forward-chaining and materialization. This repository uses internally a rule 
language that supports R-entailment (see section 1.2) and can be configured to 
perform forward-chaining about predetermined rule-sets. The rule-set used for 
loading LDSR is the most expressive predefined rule-set of OWLIM, called “owl-
max”; it extends OWL Horst, [16], to deliver expressiveness very similar to OWL 2 
RL, [10]. 

The standard reasoning behaviour of OWLIM is to update the deductive closure 
upon committing of a transaction to the repository. Upon addition of statements, the 
new explicit statements are added to the repository in addition to the existing explicit 
statements that have come from the previous transactions and their closure. Forward-
chaining with respect to the rules from the selected rule-set is performed in order to 
infer and add to the repository all statements that are inferable from the repository in 
its current state. This allows for efficient incremental updates of the deductive 
closure; one should consider that such procedure can deliver consistent results only 
for a monotonic reasoning system, such as R-entailment. Consistency checking is 
performed, applying the checking rules after adding all new statements and updating 
the deductive closure; in case of inconsistency, this is reported accordingly. Upon 
deletion of statements, the deductive closure is updated in order to withdraw 
statements that cannot be inferred from the new state of the repository.  

4.1 Performance Tweaking of the RDFS and OWL Semantics 

We load LDSR with OWLIM’s “partialRDFS” option enabled, which excludes rules 
supporting some of the features from the semantic of RDFS and OWL, namely: 

• <X,rdf:type,rdf:Resource> and <P,rdf:type,rdf:Property> 
statements are not being inferred respectively for all subject and predicates 
of statements; 

• <X,rdf:type,owl:Thing> and <X,owl:sameAs,X> statements are not 
being inferred for all subjects of statements; 

• owl:Thing and owl:Nothing are not asserted to be respectively super- and 
sub-classes of all classes. 
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The above tweaks allow us to avoid inferring and indexing three “trivial” statements 
(as those above) for each URI in the repository. These modifications to the standard 
RDFS and OWL semantics are included also in LarKC’s minimal representation 
language, OWL-Lepton-I which is formally defined in section 4.3.1 of [6]. OWLIM’s 
“owl-max” can be regarded as an extension of OWL-Lepton-I towards OWL 2 RL.  

4.2 owl:sameAs Optimizations 

The loading of LDSR benefited greatly from a specific feature of the BigTRREE 
engine that allows the engine to handle efficiently owl:sameAs statements. 
owl:sameAs is a system predicate in OWL, declaring that two different URIs denote 
one and the same resource. Most often, it is used to align the different identifiers of 
the same real-world entity used in different data sources. For instance, in DBPedia, 
the URI of Vienna is http://dbpedia.org/page/Vienna, while in Geonames it is 
http://sws.geonames.org/2761369/. DBpedia contains the statement 

 
(S1)  dbpedia:Vienna owl:sameAs geonames:2761369 
 

which declares that the two URIs are equivalent. owl:sameAs is probably the most 
important OWL predicate when it comes to merging data from different data sources. 

Following the formal definition of OWL (OWL 2 RL, to be more specific), 
whenever two URIs are declared equivalent, all statements that involve one of the 
URIs should be “replicated” with the other URI at the same position. For instance, in 
Geonames, the city of Vienna is defined as part of 
http://www.geonames.org/2761367/ (the first-order administrative division in Austria 
with the same name), which, in turn, is part of Austria 
(http://www.geonames.org/2782113):  

 
(S2)  geonames:2761369 gno:parentFeature geonames:2761367 
(S3)  geonames:2761367 gno:parentFeature geonames:2782113 
 

As long as gno:parentFeature is a transitive relationship, in the course of the 
initial inference it will be derived that the city of Vienna is also part of Austria: 

 
(S4) geonames:2761369 gno:parentFeature geonames:2782113 
 

Due to the semantics of owl:sameAs, from (S1) it should be inferred that statements 
(S2) and (S4) also hold for Vienna when it is referred with its DBpedia URI: 

 
(S5)  dbpedia:Vienna gno:parentFeature geonames:2761367 
(S6)  dbpedia:Vienna gno:parentFeature geonames:2782113 
 

These are true statements and when querying RDF data, no matter which one of the 
equivalent URIs is used in the explicit statements, the same results will be returned. 
When we consider that Austria, too, has an equivalent URI in DBpedia,  

 
(S7) geonames:2782113 owl:sameAs dbpedia:Austria 



 

 
we should also infer that: 

 
(S8)  dbpedia:Vienna gno:parentFeature dbpedia:Austria 
(S9)  geonames:2761369 gno:parentFeature dbpedia:Austria 
(S10) geonames:2761367 gno:parentFeature dbpedia:Austria 
 

In the above example, we had two alignment statements (S1 and S7), two statements 
carrying specific factual knowledge (S2 and S3), one statement inferred due to a 
transitive property (S4), and seven statements inferred as a result of owl:sameAs 
alignment (S5, S7, S8, S9, S10, and the inverse statements of S1 and S7). As we see, 
inference without owl:sameAs inflated the dataset by 25% (one new statement on 
top of 4 explicit), while owl:sameAs related inference increased the dataset by 175% 
(7 new statements). Considering that Vienna has an URI also in UMBEL, which is 
also declared equivalent to the one in DBpedia, the addition of one more explicit 
statement for this alignment, will cause inference of 4 new implicit statements 
(duplicates of S1, S5, S6, and S8). Although this is a small example, it provides a 
good indication about the performance implications of using owl:sameAs alignment 
in LOD. Also, because owl:sameAs is a transitive, reflexive, and symmetric 
relationship, a set of N equivalent URIs N2 owl:sameAs statements will be generated 
for each pair of URIs (we should admit though that, in reality, there are not that many 
examples of large owl:sameAs equivalence classes). Thus, although owl:sameAs is 
useful for interlinking RDF datasets, its semantics causes considerable inflation of the 
number of implicit facts that should be considered during inference and query 
evaluation (either through forward- or through backward-chaining). 

To overcome this problem, BigOWLIM handles owl:sameAs in a specific 
manner. In its indices, each set of equivalent URIs (equivalence class with respect to 
owl:sameAs) is represented by a single super-node. This way, BigTRREE does not 
inflate the indices and, at the same time, retains the ability to enumerate all statements 
that should be inferred using the equivalence upon retrieval request (e.g. during 
inference or query evaluation). Special care is taken to ensure that this “trick” does 
not hinder the ability to distinguish explicit from implicit statements. 

5 Loading and Materialization Statistics 

The statistics from loading and materialization of the implicit facts are presented in 
Table 1. The first column lists the datasets (or parts of them) in the order in which 
they were loaded into the repository. The number of triples listed in the Explicit 
Indexed Triples column indicates the increased number of statements in BigTRREE 
indices after the dataset has been loaded. Note that some data providers claim that 
their datasets contain an amount of statements, slightly different from the one 
presented in the table. 

We can summarize the results of the loading of LDSR as follows: 
• Number of inserted statements (NIS): 440 million; 
• Number of stored statements (NSS), including the implicit ones: 1,585 mil.; 



 

 

• Number of retrievable statements (NRS): 2,318 million. 
The larger number of retrievable statements is a result of the owl:sameAs 
optimization discussed in section 4.2; the optimization has “compressed” 734 million 
statements, reducing the size of the indices by 32%. Each explicit triple caused, on 
average, the materialization and indexing of 2.6 new implicit triples. There are 5.3 
triples “retrievable” against a single explicit statement asserted. 

Loading of LDSR, including forward-chaining, materialization and full-text 
indexing of the literals, took BigOWLIM 3.1 almost 34 hours; which suggests loading 
speed of 3600 explicit statements/second. The test is performed using a server with 
the following specifications: 2 x Xeon 5420 CPU (2.5 GHz), 64GB of RAM, 
OpenSolaris, JDK 1.6, RAID array of 8 SAS drives in RAID 5. In another run, we 
have managed to load LDSR on a desktop machine with 12 GB of RAM, but it took a 
longer, due to smaller cache capacities. 

 

Table 1: LDSR loading and inference statistics.  

 
The current version of LDSR includes version 3.3 of DBPedia and a version of 
Geonames downloaded in March 2009. 

6 Analysis of the Results 

The most important outcome of this experiment is that it showed it was possible to 
build a reason-able view that matches the requirements set forth in section 3: 

• LDSR really integrates into a single body of knowledge several of the central 
datasets in LOD. It contains common sense knowledge by design; 

Dataset 

Explicit 
Indexed 
Triples 
('000) 

Inferred 
Indexed 
Triples 
('000) 

All 
Indexed 
Triples 
('000) 

Entities 
('000 of 

nodes  in 
the graph) 

Infer-
red 

closure 
ratio 

Schemata  and 
ontologies 10 7 17 5 0.7 
DBPedia (SKOS 
categories) 2,233 262,734 264,968 952 117.6 
DBpedia 
(owl:sameAs) 2,053 4,006 6,059 4,005 2.0 
UMBEL 3,197 41,228 44,425 1,388 12.9 
Lingvoj 20 112 132 18 5.7 
CIA Factbook 161 40 202 53 0.2 
Wordnet 1,943 5,236 7,179 842 2.7 
Geonames 72,749 471,220 543,969 33,382 6.5 
DBpedia core 357,450 360,172 717,621 85,998 1.0 
Total 439,815 1,144,755 1,584,571 126,642 2.6 



 

• LDSR contains quite heterogeneous datasets. The nature of the knowledge 
encoded in them varies from encyclopaedic (DBPedia), through geographic 
(Geonames), to linguistic (Wordnet and lingvoj) and taxonomical (UMBEL). 

• The vast majority of the facts inferred from the knowledge in LDSR look 
reasonable and does not go against common sense and the knowledge we 
have from life experience; we draw this conclusion from our practice of 
intensively exploring and querying the LDSR over the last several months. 
The only exception are the SKOS categories in DBPedia, discussed below. 

• The integrated dataset of LDSR is logically consistent. 
The size of the deductive closure allows for its efficient indexing and maintenance 
together with the explicit knowledge in the same repository. The tweaking of the 
RDFS and OWL semantics (see section 4.1) allowed us to avoid the materialization of 
about 200 million “trivial” statements. Without such tweaking and without the 
owl:sameAs optimization (see section 4.2), the inferred closure would have been 
twice bigger, which is still a manageable size.  

In most of the cases, the high ratio of expansion of the deductive closure were due 
to long chains of statements over transitive properties, that are used to construct 
hierarchies. This is the case with the nesting of locations over the 
gno:parentFeature in Geonames, the class hierarchy in UMBEL, and the category 
hierarchy in DBPedia.  

6.1 Fixing the category hierarchy of DBPedia 

The gravest problem we faced with respect to ensuring “reason-ability” for LDSR 
was related to the category hierarchy in DBpedia. This hierarchy includes 478 
thousand categories linked with 897 thousand relations; the categories are used for 
classification of articles/entities in Wikipedia and, as a result, in DBpedia. While the 
hierarchy is defined via skos:broader relations, in many of the cases the actual 
relationship is, in a general context, either too weak and insignificant or simply 
inaccurate. Quite often concepts, the meanings of which were overlapping, were 
incorrectly encoded as a pair of boarder-narrower categories, instead of just related 
categories. Combined with the extensive usage of auxiliary categories and multiple-
inheritance, this resulted in extremely tangled hierarchy which even contained cycles 
of categories related through transitive subsumption relationships. The result of such 
cycles is that after materialization all categories in the cycle become equivalent to one 
another. During this experiment 2,165 simple cycles were detected, 1,321 of which 
were trivial (a category being marked as broader to itself); the latter were instantly 
discarded. In order to “fix” the remaining 844 non-trivial cycles, a member of the 
team have analyzed all the them and changed 868 relations from skos:broader to 
skos:related. The resulting graph contained skos:broader paths of lengths 
ranging from 1 to 177.  

In order to bring the category hierarch of DBPedia to a reason-able form, we 
performed several further refinements, as reported in [12]. The resulting dataset 
contains 728,882 skos:broader and 582,087 skos:related statements. The 
inferred closure of the skos:broader relations contains around 262 million SKOS-



 

 

related statements with predicates broader, narrower, related, 
broaderTransitive,  narowerTransitive, and semanticRelation. 

6.2 Differences between LDSR and LUBM with respect to inference 

Generally, one can observe that reasoning with real-world data appears to be much 
more challenging, compared to synthetic tests like LUBM, [5]. The differences 
between LDSR’s integrated dataset and the datasets generated and used in LUBM can 
be summarized as follows: 

• The RDF graph in LDSR has star-like topology: the sub-graph for each 
university is connected only to the sub-graphs of the LUBM ontology and 
the first university which stand in the centre of the “star”.  This allows for 
easy partition and caching in the process of loading LDSR. In contrast, the 
graph of LDSR is highly interconnected and there is no easy way to isolate 
and cache only the most used parts of. 

• The deductive closure of LUBM expands the indices by 70%, while in 
LDSR the expansion is 260%. The major reason for this are the long chains 
of predicates related over transitive properties and the intensive usage of 
owl:sameAs. 

• In LDSR there are more than 100,000 different predicates used, mostly due 
to the encoding style of DBPedia. On the other hand, in LUBM there are just 
handful of predicates used, which allows for efficient loading and querying 
of LUBM in repository configurations where indices with predicates as 
primary sorting criteria are not maintained. 

7 Conclusion and Future Work 

We managed to select and refine several of the central datasets from the LOD data 
cloud and to load them in the OWLIM semantic repository. Forward-chaining 
inference was performed to materialize the deductive closure; as a result, 1.1 billion 
implicit statements were materialized from 440 million explicit ones and indexed, 
bringing the total size of the repository to 1.5 billion triples. About 734 million 
statements, inferable on the basis of owl:sameAs equivalence, are not materialized; 
they are rather “generated” upon retrieval. Thus, the total number of the statements 
retrievable from the LDSR repository goes up to 2.3 billion.  

The initial analysis of the results shows that the vast majority of the inferred 
statements match the common sense expectations. Although no extensive formal 
validation has been performed, our analysis of the ontologies and schemata used in 
the selected datasets makes us believe that the OWL dialect used is sufficiently 
expressive to unveil their complete semantics. In other words, we believe that 
reasoning with respect to a more expressive dialect will not entail additional implicit 
statements.  

There is still plenty of room left for analysis of the results and experiments with 
respect to various reasoning tasks (e.g. inconsistency checking) and OWL dialects. 



 

One immediate goal is to perform entailment with respect to the normative OWL 2 
RL rules in order to confirm the reason-ability of LDSR with respect to it and further 
refine the datasets, if necessary. On the usability site, we are experimenting with few 
applications of LDSR, e.g. semantic annotation of text with respect to the entities in 
LDSR or using it for query expansion for services like Flicker. 

To the best of our knowledge, LDSR is the largest body of general knowledge (not 
specific to a particular scientific domain) that someone has ever performed inference 
against. The only larger reason-able dataset that we know is the Pathway and 
Interaction Knowledge Base (PIKB, available at http://www.linkedlifedata.org). PIKB 
is the second reason-able view to the web of linked data developed by Ontotext. It 
assembles a large fraction of the life-science-related datasets in LOD, including about 
20 databases, as documented in [1]. PIKB includes about 1.5 billion explicit triples, 
which are complemented by another 842 million implicit statements inferred from 
them. 

We maintain a public demonstration service, available at 
http://www.ontotext.com/ldsr/, which allows one to explore LDSR and evaluate 
queries against it through a web interface. Programs can use LDSR through a 
SPARQL end-point. 
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