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Le Cam’s Inequality and Poisson
Approximations

J. Michael Steele

1. INTRODUCTION. For the sum S, of n independent, non-identically dis-
tributed Bernoulli random variables X; with P(X; = 1) = p;, Le Cam [20] estab-
lished the remarkable inequality.

(2] n
TIPS, =k) — e Wkl <2 ¥ p, (1.1)
k=0 i=1
where A =p, +p, + - +p,.

Naturally, this inequality contains the classical Poisson limit law (ust set
D; = A/n and note that the right side simplifies to 2A%/n), but it also achieves a
great deal more. In particular, Le Cam’s inequality identifies the sum of the
squares of the p; as a quantity governing the quality of the Poisson approximation.

Le Cam’s inequality also seems to be one of those facts that repeatedly calls to
be proved—and improved. Almost before the ink was dry on Le Cam’s 1960 paper,
an elementary proof was given by Hodges and Le Cam [18]. This proof was
followed by numerous generalizations and refinements including contributions by
Kerstan [19], Franken [15], Vervatt [30], Galambos [17], Freedman [16], Serfling
{24], and Chen [11, 12}. In fact, for raw simplicity it is hard to find a better proof of
Le Cam’s inequality than that given in the survey of Serfling [25].

One purpose of this note is to provide a proof of Le Cam’s inequality using
some basic facts from matrix analysis. This proof is simple, but simplicity is not its
raison d’etre. Tt also serves as a concrete introduction to the semi-group method
for approximation of probability distributions. This method was used in Le Cam
[20], and it has been used again most recently by Deheuvels and Pfeifer [13] to
provide impressively precise results.

The semi-group method is elegant and powerful, but it faces tough competition,
especially from the coupling method and the Chen-Stein method. The literature
of these methods is reviewed, and it is shown how they also lead to proofs of
Le Cam’s inequality.

2. MATRIX PROOF OF LE CAM’S INEQUALITY. If one is charged with the task
of producing matrices that might help in understanding the distribution of the sum
of »n independent non-identically distributed Bernoulli random variables, a little
time and thought is likely to lead to n matrices P; like the N X N matrix

1-p p 0 0 0
0 1-p p; 0 0
0 0 1=-p, - 0 0
P, = . . . . . . (2.1)
o 0 0 - 1-p p
0 0 0 0 1~ p,
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This is almost a Markov transition matrix, except of course the last row of P;
does not sum to 1. A benefit of this choice of the P, is that they can be written as

where [ is the N X N identity matrix and R is the N X N matrix with 1's on the
first superdiagonal and 0's elsewhere. Since each of the P/s is just a linear
combination of I and R, any pair of the P, commute, and because the matrices P,
are so much like Markov transition matrices, their analysis is still reminiscent of
the elementary theory of Markov chains. f

In fact, by the usual considerations that attend the multiplication of Markov
matrices, you can quickly convince yourself that for n <N the top row of
the n-fold matrix product P,P,P, --- P, is given by (P(S, =0), P(S,=1),
P(S,=2),...,P(S,=n),0,0,...,0), ie. the first n + 1 elements of the top row
of P,P, ... P, correspond precisely to the Bernoulli sum probabilities that we wish
to estimate. Also at this point, it may be good to be reminded that N is arbitrary
except for the constraint n < N, so the padded 0’s can go on as far as we like.

So far, we have found a matrix that helps us understand the Bernoulli sum
probabilities P(S, = k), and now we would like to find a matrix that is intimately
connected with the Poisson distribution. Given some past experience with calculat-
ing matrix functions using the Jordan normal form, one can easily find candidates,
but knowledge of Jordan forms is not required. One just needs to compute the
exponential of P,, or, better yet, compute the exponential of a simpler matrix
closely connected with P;.

When we write P, = I + Q,, we see (J; has the pleasing form,

-p; P 0 0 0
0 -p; D 0 0
0 0 -D; 0 0
. ) ) . = —pI + PR, (22)
0 0 0 -p; D;
0 0 0 0 -p;
and the Poisson distribution emerges clearly when we compute exp Q;:
e pe el /(N = 1)!
O e“P: pie"pt
hed —Pi
otk=|9% 0 &
k=0 R . : . .
0 0 0 e P p;e” P
0 0 0 0 e P
N-1
= Y ple PiR"/r\. (23)

r=0

Note that the Q; commute, so exp(Q,)exp(Q;) = exp(Q; + Q;), and, in detail,

n n
_]_[1 exp(Q;) = exp( Yy Q,-) = exp(—Al + AR), (2.9)
i= i=1
where A =p; +p, + ... +p,.
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The essence of the method is now fully revealed, and we see the proof of
Le Cam’s inequality boils down to comparing the top rows of 1., exp O, and
?_.P.. This can be achieved most systematically by introducing matrix norms.

If A = (a;;) is any matrix, we set

lAll = max )_la,l. (2.5)
s
J

This recipe provides a bona fide matrix norm, and, in particular, one can easily
check the relations [[AB| < |AILIBI, 1|4 + Bil < l4]l + ||Bll, and licA4ll = cli4l|
forc > 0.

It is also easy to use the explicit formulas for P;, Q; and exp Q, to compute their
norms: [Pl =1, Q)] = 2p;, and llexp Q;ll < 1. When we compare I1P; and
ITexp Q; using the norm defined by (2.5) we see that the top row attains the
maximum, so we have the basic relation,

N—-1
T |P(S, = k) — e N /k!| =
k=1
Next, it is easy to check that
Pl U Pn"eprl "’CXan=(P1—eXpQ1)(P2 Pn)

~(exp Qy)(expQ, ---expQ, ~ P, - - P).

I;IlPi — ITexp Qi“. (2.6)

i=1

(2.7)
This identity virtually completes the proof. We'just take norms, use the facts that
P, --- PJll<1 and llexp Q,ll < 1, then repeat the process on the remaining

(n — 1)-fold product to obtain
[Py -+ P, —expQy - exp Q,ll < ||P; — exp Oyl
+lexpQ, ---expQ, — P, -+ B

n
< Y IP, — exp Qll. (2.8)
i=1
How should we bound ||P; — exp Q,lI? Since exp Q; is defined by the expansion
for e*, we naturally look to Taylor’s formula, but we should be careful enough to
consider a finite expansion with a remainder term. For any smooth function f we
have

) =£0) +£(0) + [ (1= u) £ (u) du, (2.9)

so, if we let f(t) = e’?, the derivative calculations f(0) =1, f'(0) = Q and
F'(w) = Q%*2 yield

@ =T+Q+ ['(1-u)Q%"2du. (2.10)
0

Even for functions of matrices, integrals are just the limits of sums, so taking
norms inside an integral only makes it larger, i.e. for any g(u,v) we have
I /g(u, @)dull < [llg(u, Q) du. Also, just as we computed e explicitly in order to
bound its norm, we can compute ¢*@ explicitly to find |le*%|| < 1. Applying these
observations to the Taylor representation (2.10), we find

P, — el <

fl(l —u)Qre“%i du
0

< Q2. (2.11)
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This is just the tool needed to bound the right side of (2.8). Stringing together the
identity (2.6) with inequalities (2.8) and (2.11), we find

TIPS, = k) — ekl < 3TN0 <28 52, (212)
k=0 i=1 i=1

where the last inequality depended on ||QZ|l < |IQ;I* and our earlier explicit
calculation that ||Q,|l = 2p;. Since n < N is our only restriction on N, we can let
N — « to obtain Le Cam’s inequality.

3. THE SEMI-GROUP METHOD HAS VIGOROUS COMPETITORS. Deheuvels
and Pfeifer [13] provide a version of Le Cam’s inequality that—in an asymptotic
sense—nhas a solid claim on being the last word:

=] n n
Y |P(S, = k) — e X /kY| ~ /2 /me { z‘,p}}/{ ¥ pi} (3.1)
k=0 i=1 i=1

provided T7_,p;, = « and max(py, p,,...,p,) —> 0 as n — «. The essential ideas
behind the proof of (3.1) have been seen in Section 2 in a basic form: one obtains
an interpretation of the Bernoulli sum probabilities, introduces a semi-group (like
exp(tQ)), finds ways to bound an approximation (like e — I — Q), and deals with
the difference of two n-fold products. Variations on this pattern are visible in
Le Cam [20], Shur [26], and one even can see similar steps in Feller’s exposition of
Trotter’s proof of Lindeberg’s central limit theorem.

Through the explicit matrix exponentiation calculations used here, the semi-
group method can be seen to be friendly as well as useful. Continued exploration
of the method is likely to lead to deep and interesting results, but the semi-group
method should not be oversold. There are competitors with considerable power.

The characteristic function method also has a role in Poisson approximations. In
particular, the characteristic function method has been used by Rusenko [23] to
obtain rates of approximation results for repeated samples taken without replace-
ment, by Presman [22] to obtain refinements of Le Cam’s inequality, and by
Yakshyavicius [32] to provide an inequality like Le Cam’s that is pertinent to
classes of discrete distributions other than Bernoulli sums. Despite this litany,
applications of the characteristic function method are infrequent in Poisson
approximation, and it probably does not rank among the big three: the semi-group
method, coupling, and the Chen-Stein method. Enough has been said about the
first of these, and it is important to provide some sense of the promise inherent in
the other two.

4. THE COUPLING METHOD. Because of its simplicity, the coupling method
deserves to be reviewed first. For any two random variables X and Y, we begin by
defining their variation distance by

d(X,Y) = sup|P(X € A) — P(Y € 4)|. (4.1)
A
For random variables that take values in Z™, the metric d(-, -) has an easily
proved alternative expression (cf. Serfling [25], p. 569) that reveals its relevance to
Le Cam’s inequality:
d(X,Y) =1 T |P(X=k) - P(Y =k)]. (4.2)
k=0

The coupling method is based on the simple observation that for random variables
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X and Y defined on the same probability space, one has
d(X,Y)<P(X+Y). (4.3)

A second observation that helps the coupling method work well with sums is that
for §, = L X, and S} = L7 ,Y; one has

d(S, 8%) < T d(X,,Y). (4.4)
i=1

From (4.2), (4.3), and (4.4) we see that a good plan for proving Le Cam’s inequality
consists of building » bivariate couples Z; = (X,,Y;) such that the Z, are indepen-
dent, X, is Bernoulli with parameter p,, Y; is Poisson with parameter A; = p;, and
P(X; #Y,) is as small as possible. This plan has been successfully pursued in
Hodges and Le Cam [18], Freedman [16], Serfling [24], Brown [10}, Ahmad {1}, and

Wang [31]. In fact, the couplings of Serfling, Brown, and Wang all satisfy
d(X;,Y) = P(X;#Y,) =p(1 —e™"), (4.5)

from which Le Cam’s inequality (1.1) follows easily. As it happens, there is no
difficulty in constructing variables that satisfy (4.5)—just think how to simulate X;
and Y; simultaneously using a single uniformly distributed random variable.

5. THE CHEN-STEIN METHOD. The Chen-Stein method may be the most
powerful method for obtaining Poisson approximations, and it is often as easy to
use as the coupling or semi-group methods, even though it may be more subtle
conceptually. If one does not stop for motivation, one can say that the Chen-Stein
method is based on the fact that for each A > 0 and 4 € Z* there is a function
X=X, 4 Z*— R such that for any non-negative integer-valued random variable T
one has the identity:

E{Mx(T+ 1) = Tx(T)} =P(T€A) — Y, e A/kl. (5.1
keAd

Actually, the left-hand side of (5.1) is a natural quantity to consider in the context
of Poisson approximation, since by summation by parts one can check that
EAf(T + 1) = ETf(T) for any f, provided T is Poisson with parameter A. The
identity (5.1) was first developed by Chen [11], and some of its mystery can be
removed by studying an analogous identity used by Stein [27] in the context of
normal approximations. While it is a good exercise to solve (5.1) for x, all one
really needs to know about x is that it is bounded and changes slowly. In
particular, Barbour and Eagleson {5] sharpened earlier bounds of Chen [12} and
showed that for all 4 and A > O:

x| < min(1,4A7%) (5:2)

and

Ax = sup fx(m + 1) —x(m)| < A7 (1 —e7%). (53)

mz=0
From these bounds it is easy to prove—and even sharpen-—Le Cam’s basic
inequality (1.1). If we write W= S, W,;=S, — X;, A =p, + p, + - +p,, and
q; =1 — p;, we can follow Chen [12] and obtain a second identity that together
with (5.1) gives one virtually complete information about the Poisson approxima-
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tion. We evaluate the left side of (5.1) as follows:

I

fE{p,.x(W +1) = X;x(W))}

j=1

E{Ax(W + 1) — Wx(W))}

¥ pE{x(W + 1) — x(W; + 1)}

j=1

n
L p,{p;Ex(W; + 2)
j=1

+q,Ex(W, + 1) — Ex(W, + 1)}

i
M=

PRE{x(W, + 2) — x(W, + 1)}. (54)
1

I

j
From the Chen-Stein identity (5.1) and the Barbour-Eagleson bound on Ax, we
see that (5.4) gives

n

sup |P(S,€A4) —e™* ), A"/k!l <A1 -e*) X PP (5.5)

A ked j=1
Since A~ (1 — e~*) < 1, the identity (4.2) shows that inequality (5.5) is sharper
than (1.1). Obviously, the Chen-Stein method is very powerful, though it is only
now beginning to be well understood. A richer understanding of the method can
be obtained by studying Arratia, Goldstein, and Gordon [2], Barbour [3], Barbour
and Eagleson [5, 6, 7], Barbour and Hall [8], Barbour [4], and, of course, Stein [28].
A definitive study of Stein’s method and its application to Poisson approximation
has recently been given in the volume by Barbour, Holst, and Janson [9].

6. CONCLUSION. Le Cam’s inequality provides information on the quality of the
Poisson approximation, but it also serves as a talisman that is able to charm
concrete insights from general techniques. This survey relied on that second
service to illustrate the semi-group method, coupling, and the Chen-Stein method.
In the course of these illustrations, it has also been possible to survey most of the
work on Poisson approximation since the review of Serfling [25], except for the
cascade of work coming from the more refined developments of the Chen-Stein
method that are dealt with in detail in the monograph of Barbour, Holst, and
Janson [9].
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