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Concentrations of Cu, Cr, and As in soils surrounding 26 Douglas Fir Chromated Copper Arsenate (CCA) treated utility poles
and in rainwater runo� from a new CCA treated utility pole segment (log) suspended outside in a cylinder were studied. 
e
age of the utility poles, distances from the poles, rainfall amounts, and characteristics of soil samples including cation exchange
capacity (CEC), pH, and total organic carbon (TOC) were considered. Heavier rainfall, damp conditions, and more weathered
poles contributed to the greatest leaching of Cu, Cr, and As. 
e maximum measured soil concentrations of Cu, Cr, and As were
37.5, 65.5, and 38.9mmol/kg andmaximumCu, Cr, and As concentrations in rainwater run-o� were 14, 77.7 and 55.8 �mol/L. Metal
concentrations decreased with distance from the poles and, except at one utility pole location, Cu was the most leached of the three
elements. 
e As appeared to have greater mobility in the soil than the Cr. Along the transmission line nearest the coast and from
which the greatest amount of samples was collected, soil CEC and TOC values were the highest and the CEC and TOCwere directly
and strongly correlated.

1. Introduction

Chromated Copper Arsenate (CCA) has been employed
extensively since the 1930s as a wood preservative [1–3] to
protect structures such as utility poles, fence posts, backyard
decks, playground equipment, and marine structures from
fungal and bacterial attack. However, recognition of the
hazards of CCA has led to some reduction in its use as, for
example, its banning in the residential areas in the U.S. [4, 5].

ere is also the problem of retiring CCA-treated structures
that are currently in use [6]. CCA-treated wood can have a
service life of up to 50 years and its use in post-consumer
products (such as landscape mulch), determined to be 0.9%
in the UK in 2001, could reach 12.3% in the UK in 2061 [4, 7].
In South Africa, CCA is still commonly used and local food
vendors in Cape Town are even cooking food over �res fueled
with CCA-treated wood [1].

Slightly di�erent formulations of CCA (CCA-A, CCA-
B, and CCA-C) exist but CCA-C containing 18.5% CuO

(copper oxide), 47.5% CrO3 (chromium oxide or anhydrous
chromic acid), and 34%As2O5 (arsenic pentoxide) is themost
common [8–10]. 
e role of the Cu and As is to deter fungi
and insects, respectively, and the Cr is intended to act as a
�xative [11, 12]. DuringCCAapplication, Cr (VI) is reduced to
Cr (III) and the �nal products may include Cr (III) arsenate-

(CrAsO4-) lignin complexes, chromate- (CrO4
2−-) lignin and

cellulose complexes, Cu (II-) wood carboxylate complexes,
and Cr (III) hydroxide [10, 13, 14].

Local climate, leaching media, wood properties, and
wood treatment techniques a�ect leaching of CCA from
treated wood [14, and references therein] o�en as Cu or Cr
arsenates and inorganic or organometallic complexes [11].
Leaching of Cu, Cr, and As may also be greater from wood
that has been weathered [7]. Although CCA wood waste has
been disposed of in approved land�lls, preference is mov-
ing towards management options which include complete
removal of CCA and its products from wood waste before
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disposal, both to address the shortage of land�ll space and
to reassure the public [15].

Cu (II) bonds with soil organic matter and is toxic to
aquatic organisms and generally toxic above trace levels
[4, 16]. Organic matter and inorganic agents such as Fe
can reduce Cr (VI) to the less toxic Cr (III) which forms
complexes that are more stable and more retained by soils
[17] though Cr speciation will also be in�uenced by the Eh-
pH conditions in soils [18]. Of great concern is As because
of exposure e�ects in humans [19]. Arsenate (V) and arsenite
(III) are the most common forms in soils [20] with As (III)
being the more toxic and abundant [14]. Both As and Cr are
known human carcinogens [4].

A study of 6 CCA/polyethylene glycol (PEG) treated
utility poles and found 23.0 ± 10.7mmol/kg of Cu, 5.52 ±
0.62mmol/kg of Cr, and 5.47±2.00mmol/kg ofAs in adjacent
soils [6]. A study of CCA treated fence posts reported a
maximum soil concentration of 10.1mmol/kg of As [19].

One objective of this study was to gain a better appre-
ciation for the amount of leaching of Cu, Cr, and As that
could occur from CCA treated utility poles and how the
soil could be impacted by this leaching. 
e �eld study and
measurements of leaching of Cu, Cr, and As from a freshly
treated wooden log suspended outside in a cylinder provided
some of these answers. For the water and soil samples, e�orts
were made to determine the e�ects of temperature, rainfall,
and/or pole age on leaching of the metals. Another objective
was to understand the nature of the soil environment where
the �eld tests were conducted and to observe what e�ects, if
any, the soil might have on the leaching of themetals. For this
purpose soil characteristics such as the pH, cation exchange
capacity (CEC), and total organic carbon (TOC) of the soil
samples were measured.

2. Materials and Methods

2.1. Site Description. Soil samples were collected from around
utility poles along transmission lines (TLs 227, 259, and 225)
in western Newfoundland. Transmission lines 227 and 259
run north out of Berry Hill approximately 30 and 60m east,
respectively, of theNorthern PeninsulaHighway, that borders
theGulf of St Lawrence and goes north as far as Peter’s Barron
outside Daniel’s Harbour. Sampling along TLs 227 and 259
was only undertaken within Gros Morne National Park and
the general area is illustrated in Figure 1(a). Transmission line
225 is a 2.4 km line running out of the Town of Deer Lake and
bordering the northern edge of the lake of the same name, as
outlined in Figure 1(a) and detailed in Figure 1(b). All of the
utility poles along each transmission linewere of the same age
but each TL was of a di�erent age.

Soil samples around 26 CCA treated utility poles were
collected. Eighteen poles were from the GrosMorne National
Park area, 14 of which were on TL 227 and 4 from TL 259.

e remaining 8 utility poles were part of TL 225 near Deer
Lake. 
e 26 poles were from 24 di�erent sites because 1 site
contained three poles. Soil sample locations were selected
according to criteria proposed by the Electric Power Research
Institute [21] for penta and creosote treated poles. All the
poles were Douglas �r (Pseudotsuga menziesii), of known

age, were from readily accessible areas having variable soil
properties, were far from industrial areas, had not been
exposed to pesticides or other contamination, were at least
1.80m away from a roadway, and were situated in a clearing
of at least 1.80m in diameter.

To test for the decrease in the metal concentrations with
distances from each of the 26 utility poles a least squares
linear regression analysis was conducted on the samples.

To compare the e�ects of rainfall amounts for each
metal and among the three TLs at the distance of 0 cm, an
unbalanced analysis of variance (ANOVA) (with Excel 2010)
was conducted on these samples. Following the ANOVA,
Tukey’s procedurewas employed to determinewhich TLs had
signi�cantly di�erent population means.

To investigate correlations among the soil properties
(TOC, CEC, and pH) for each TL, linear regression analysis
was employed.

2.2. Soil Sampling and Characterization. Soil samples were
collected at distances of 0, 30, and 60 cm from the 26 poles
and 3 background soil samples were collected at a distance of
7m for a total of 81 soil samples.

Each sample was collected manually with a cleaned
stainless steel spoon and placed in a new Ziploc bag that was
sealed and refrigerated at 4∘C.

Soil samples were digested by US EPA method 3050 B
[22] and stored in the refrigerator at 4∘C until analyzed for
Cu, Cr, and As. Analyses were carried out on a Perkin-
Elmer SCIEX Elan 6100 inductively coupled plasma mass
spectrometer (ICP MS) at Fisheries and Oceans Canada’s
Northwest Atlantic Fisheries Centre trace element lab in St.
John’s, Newfoundland, Canada. Quality control was moni-
tored by the analyses of the National Institute of Standards
and Technology (NIST) certi�ed reference material 1463D.

e results in ppb of repeated analyses (� = 4) of the NIST
1643D standard were Cr 18.4 ± 2.5, Cu 20.0 ± 2.6, and As
54.6 ± 7.0. Certi�ed ppb values for NIST 1643D were Cr
18.53 ± 0.2, Cu 20.5 ± 3.8, and As 56.2 ± 0.73. Detection
limits for all three elements in dilute solutions were <1.0 ppb.
Rainwater samples were analyzed in the same lab and using
the same equipment as the soil digests. A single NIST 1643
analyses was carried out during the analyses of the water
samples for quality control purposes and the results in ppb
were Cr 19.1, Cu 21.5, and As 56.8.

Soil samples were analyzed for TOC by the modi�ed
Walkely-Blackwet oxidationmethod [23].
edetermination
of the CEC of the soil samples was according to the Ca
(OAc)2-CaCl2 method [23]. Soil pH was determined with a
1 : 2 ratio of soil : 0.01MCaCl2 [24]. Concentrations of Cu, Cr,
and As and CEC values were measured in duplicate for 10%
of the samples. All pH measurements and two thirds of TOC
measurements for each sample were conducted in duplicate.

2.3. Sampling of Runo	 from a Freshly Treated Utility Pole
Segment. A 1.50m long by 0.30m diameter utility pole
segment or log that was freshly treated with CCA was
suspended vertically in a 2.40m high by 1.20m diameter
plastic cylinder that was placed outside to be exposed to
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Figure 1: Areas of sampling along (a) TLs 227 and 259 and (b) TL 225.

the elements. 
e bottom of the cylinder was connected to
an outlet for runo� collection. Sampling either took place
a�er each rainfall event or a�er multiple days of rainfall, in
which case the total rainfall since the previous sampling time
was used.
e sampling periods were September 5 to October
28, 2002, inclusive, April 27 to September 30, 2004, inclusive,
and June 7 to July 25, 2005, inclusive, for which the rainfall
amounts and maximum temperatures were recorded [25].
In 2003 when no samples were collected the log remained
outside in the cylinder but the cylinder was covered with
a board and the outlet was le� open. 
e runo� samples
and one background rainwater sample were acidi�ed with
HNO3 to less than pH 2 and stored at room temperature until
analysis.

3. Results and Discussion

3.1. Runo	 from the Suspended Log

3.1.1. Trends in Leaching of Metals with Rainfall Amounts. To
observe trends in leaching of Cu, Cr, and As from the pole

segmentwith rainfall amount, water samples were considered
separately in each of the three years so that pole age might be
isolated as a factor, and only rainfall amounts ≥10mm were
used. 
e 10mm cut-o� was selected (1) to ensure rainfall
amounts would be su�cientlymeasureable and (2) to give the
log enough time to be well soaked in case this was required
for leaching of the metals. 
e results from 2002, 2004, and
2005 are shown in Figures 2(a), 2(b), and 2(c), respectively.

In 2002 the greatest rainfall of 36.4mm gave the greatest
amount of leaching of Cu, Cr, andAs from the log in that year.
In 2004 the rainfall amounts of 22.8mm, 30.6, and 100.9mm
gave the three highest amounts of leached metals in that year.
In 2005 themaximum rainfall of 42.6mmproduced themost
leaching of metals from the log in that year.


e concentrations of leachedCu, Cr, andAswere similar
in 2002 and 2005 (Figures 2(a) and 2(c)). However, one
di�erence was that in 2002 Cu concentrations were greater
than the two other elements and in 2005 As concentrations
were less than the two other elements. Leaching of Cu was
most pronounced in all years but especially in the �rst year. By
the last year leaching of Cr becamemore similar to that of Cu.
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In 2004 there were 7 instances when concentrations of the
leached elements exceeded maximum amounts in 2002 and
2005 and the three events that showed the greatest leaching
are examined and discussed in chronological order. 
ese
events were on August 31, September 5, and September 20
as shown in Figure 2(b) and each of the rainfall amounts
happened to represent multiple days of rain.

With the �rst event on August 31, 2004, there was a
total rainfall of 30.6mm (trace, 1.2mm, trace, 16.4mm, and
13.0mm on August 27, 28, 29, 30, and 31) and concentrations
of Cu, Cr, and As leached from the suspended log were 29.4,
13.6, and 8.87 �mol/L, respectively. 
e previous sampling
and emptying of the collection cylinder had been on Aug 26.
Rainfall occurred every day fromAugust 17 to 31 inclusive and
totaled 58.6mm. Fi�een consecutive days of damp conditions
culminated in the great amount of leached metals observed
on August 31.

On September 5, 2004 (the second event), there was a
rainfall amount of 22.8mm (16.2 and 6.6mm on September 4
and 5) and the concentrations of Cu, Cr, and As leached from
the log were 149, 77.7, and 55.8 �mol/L, respectively. However,
this time there had been 20 consecutive days of rain from
August 17 to September 5 inclusive giving a total rainfall of
83.6mm. 
e extended period of damp conditions prior to
sampling may have enhanced the removal of the Cu, Cr, and
As from the log.

On September 4 and 5 the maximum temperatures
were only 11.9∘C and 11.1∘C, following three weeks with an
average maximum temperature of 19.5∘C. A�er the 20 days
of warm, damp weather, contraction of the wood with cooler
temperatures might have forced some long retained water
to be expelled and this might have also contributed to the
highest recorded concentrations of Cu, Cr, and As leached
from the suspended log. Others have observed that Cu and
As leached more as the temperature rose whereas Cr leached
slightly less at 30∘C [26].

On September 20, 2004 (the third event), there was a
rainfall amount of 100.9mm (trace, 2.3mm, 0mm, 0mm,
trace, 6.4mm, 62mm, and 30.2mm on September 13, 14, 15,
16, 17, 18, 19, and 20). Concentrations of Cu, Cr, andAs leached
from the log were 60.8, 46.2, and 50.5 �mol/L, respectively.

e98.6mmof rain that fell on the 4 consecutive days prior to
sampling was the greatest amount of precipitation observed
for any of the sample measurements and this high rainfall
amount could have been important. 
e previous sampling
had been on September 12 or 8 days prior.


ese three instances of the greatest leaching of Cu, Cr,
and As might be attributed to the total rainfall amounts,
the long damp periods preceding the sample measurements,
and possibly a drop in temperature. Given that prolonged
dampness appears to enhance the leaching and that acids
have been employed intentionally to extract CCA fromwood
waste [15], damp, acidic land�ll environments would create
ideal conditions for leaching of CCA from wood waste in
land�lls.

In each of 2002, 2004, and 2005 when sampling was being
conducted, the full or partial months when rainfall was the
highest were September 5–30, 2002 (104.6mm), September

2004 (205.7mm), and June 7–30, 2005 (103mm). In Septem-
ber 2004 the rainfall accumulation was approximately double
the highestmeasuredmonths in 2002 and 2005 and this likely
contributed to two instances of the maximum leaching from
the suspended log. From 1981 to 2010 the average precipitation
in St. John’s during September was 129.6mm [27].
e rainfall
accumulation in September 2004 was clearly exceptional.

From a total of 57 samples of runo� from the log,
the average amounts of Cu, Cr, and As were 8.98, 5.30,
and 3.88 �mol/L, respectively.
e one background rainwater
sample contained Cu, Cr, and As concentrations of 1.134,
0.015, and 0.002�mol/L, respectively. However, 5 of the 57
runo� samples contained less Cu than in the background
water, with the lowest Cu concentration being 0.52�mol/L.

ere could have been small variations in the rainwater
concentrations and for the purpose of this study these
concentrations were taken to be negligible.

3.1.2. Metal Concentrations in Runo	 from the Log Compared
toWater Quality Guidelines. Annual average, maximum, and
standard deviations of concentrations of Cu, Cr, and As
measured in runo� from the suspended log are reported in
Table 1. Water quality guidelines for Cu, Cr, and As for the
protection of drinking water, freshwater and marine life, and
agricultural livestock and crops [28] are also included for
comparison.

As with Figure 2, Table 1 is showing similar metal con-
centrations in the runo� in 2002 and 2005 and higher
amounts in 2004. 
e guideline for Cu in drinking water is
for aesthetic purposes as Cu is an essential nutrient (high
Cu concentrations might cause a green coating to form on
bathroom and kitchen �xtures). In each year the average Cr
concentrations in the runo� were higher than permissible for
drinking water.


e average As concentration in each year exceeded all
of the permissible limits for water with one exception being
the 2005 average which was below the permissible limit for
irrigation water. It is well known that As can migrate to
the groundwater and cause contamination. 
is has been
especially true in Florida where pesticides containing As
have been applied to golf courses and because of frequent
irrigation, a porous underlying soil system, and a shallow
groundwater table, the groundwater has become contami-
nated [29].

3.2. Characteristics of the Soil Samples. 
e averages and
ranges of values of pH, CEC, and TOC determined for each
TL and for each of the three distances from each utility pole,
are presented in Table 2. Regression analysis revealed that
the TOC and CEC values were signi�cantly and positively
correlated for TL 227 at 0, 30, and 60 cm and the linear trend
lines for these correlations had � values of 0.00152, 0.00864,
and 6.56× 10−7, respectively, and�2 values of 0.581, 0.450, and
0.882, respectively. No such correlations were found for the
less sampled TLs 225 and 259 and no signi�cant correlations
were found among the other soil properties.


e strong positive correlation between CEC and TOC
may be explained by the fact that the soil organic matter
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Figure 2: Rainfall amount of ≥10mm and corresponding leaching of Cu, Cr, and As from the suspended log in (a) 2002, (b) 2004, and (c)
2005.

Table 1: Average, maximum, and standard deviation (stdev) values of Cu, Cr, and As concentrations in runo� from the suspended log and
water quality guidelines [28].

2002 Average,
maximum, and
stdev (of 14)

2004 Average,
maximum, and
stdev (of 33)

2005 Average,
maximum, and
stdsev (of 11)

Limit for
drinking water

Limit for
fresh water

Limit for
marine water

Limit for
livestock

Limit for
irrigation

Cu
(�mol/L)

3.85
33.4
8.56

12.8
149
26.9

3.26
5.17
1.00

15.71

Cr
(�mol/L)

2.74
31.5
8.31

7.08
77.7
15.0

2.79
5.48
1.23

0.961

As
(�mol/L)

1.53
14.0
3.63

5.70
55.8
12.4

1.13
2.60
0.625

0.133 0.067 0.167 0.334 1.33

1Aesthetic objective, [28].
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Table 2: Average and standard deviation values of pH, CEC, and
TOC for soil samples collected along each transmission line.

TL
pH average,
stdev, and
range

CEC average, stdev,
and range (meq/100 g)

TOC average,
stdev, and
range (%)

227
4.9
0.789
4.1–7.3

29.3
19.2

0–71.3

3.71
2.94
0–10.2

225
6.1
1.05

4.2–7.6

12.2
4.71

5.5–23.3

1.45
0.889
0–10.2

259
5.0
0.870
4.1–6.3

13.9
7.30

5.7–21.5

1.56
1.20

0.4–3.9

Table 3: Details related to the sampling of soils along the three TLs.

TL Age (y)
Poles

sampled
Location Comments

Precipitation,
monthly average

(mm)

227 1 14 Gros Morne Coastal 95.2

225 2 8 Deer Lake Inland 88.8

259 13 4 Gros Morne Coastal 102.5

contains a large proportion of carboxyl groups that dissociate
and contribute to negative charge and result in a high CEC
[30]. It was determined by Zagury et al. [6] that organic soils
had higher CEC values than clay soils and that an organic
matter contribution to CEC would be greater than a clay
contribution.

Table 2 is showing more similar pHs of soils along the
parallel TLs 227 and 259, though soils along the more coastal
TL 227 had double the organic matter content, indicating
more organic enrichment of soils nearer the coast.

Most of the soil samples were slightly acidic in pH and
about 40% had TOC contents in the range of 0 to 1%. It has
been found that leaching of Cu from CCA timber increased
in more acidic soils [31] whereas [32] found the leaching
of Cu increased in more alkaline soils. As was seen with
the suspended log, heavy precipitation and damp conditions
appeared to have a signi�cant e�ect on the leaching of Cu, Cr,
and As.

3.3. Soil Sampling at 0, 30, and 60 cmDistances from theUtility
Poles and Precipitation E	ects. Details related to the sampling
of soils are summarized in Table 3. 
e ages of the poles
indicate how long they had been exposed to precipitation
at the time that the sampling was undertaken in July 2002.

e last column of the table is the estimated average monthly
precipitation from the time that the pole was installed until
the time that the samples were collected. 
e Deer Lake
A station (49∘13�N, 57∘24�W, and EL 21.90m) was used
to determine the precipitation for TL 225. 
e station at
Cow Head (49∘54�42N, 57∘47�20 W, EL 15.2m, Figure 1(a)),
through which TL 227 runs, was used to determine the
precipitation for TL 227 and parallel TL 259 [25].

Table 4: Mean and standard deviation (stdev) values and results of
an unbalanced ANOVA of the Cu, Cr, and As concentrations at 0 cm
from the utility poles of TLs 227, 225, and 259.

TL
Mean and stdev
[Cu] (mmol/kg)

Mean and stdev
[Cr] (mmol/kg)

Mean and stdev
[As] (mmol/kg)

227
10.8
9.37

3.57
3.74

4.12
3.60

225
4.11
1.80

1.55
0.960

1.20
0.957

259
19.1
10.7

21.8
29.3

13.7
16.9

� values 0.019292 0.014372 0.018510


e results of the least squares linear regression analysis
of soil samples with distance from the utility poles for Cu,
Cr, and As concentrations are shown in Figures 3, 4, and
5, respectively. 
ese �gures indicate trends of decreasing
Cu, Cr, and As concentrations with distance from the poles
since, for all but two metals on TL 259 for which only
four poles were sampled, this trend is statistically signi�cant.
Usually both linear and exponential decreases in metal
concentrations �t the data but in each case the line that
gave the best �t or highest �2 value is shown on the �gure.
Decreasing Cu, Cr, and As concentrations with distance from
the poleswas also reported byZagury et al. andHingston et al.
[6, 14].

Figures 3, 4, and 5 show that the greatest scatter for
each TL and for each metal is at the 0 cm distance and the
trend in metal reduction with distance from the pole is most
pronounced for Cu.


e results of the ANOVA comparing the e�ects of
rainfall amounts among the three TLs, along with the mean
and standard deviation values for each TL at 0 cm (Table 4),
indicate that at least two of the TLs are di�erent from each
other for each metal and show that for all three metals the
average metal concentrations are highest along TL 259 (also
apparent from Figures 3, 4, and 5) and lowest along TL 225.

ese relative metal concentrations can be seen to be in
proportion to the average monthly precipitation amounts in
Table 3.


e results of the pairwise comparison of the TLs using
Tukey’s procedure, required to con�rm signi�cantly dissimi-
lar leaching of metals from the TLs, are presented in Table 5.

e minimum di�erences in means or �-values between
TLs compared to the actual di�erences in means con�rm
with 95% con�dence that TLs 225 and 259 are di�erent
for all metals (bolded fonts) and that TLs 227 and 259 are
di�erent for Cr and As (bolded fonts). 
e least dissimilar
TLs were TLs 227 and 225. 
ese results could be explained
by combinations of pole age, average monthly rainfall, and
excess CCA being leached out of the newest poles.

Ultraviolet exposure plays a major role in the weathering
of CCA-treated wood and the leaching of Cu, Cr, and As
and [7, 33, and a reference therein] report that leaching is
greater fromweathered wood.Weathering by rain, wind, sun,
salts, and temperature changes could assist in releasing the
CCA components from the wood. Increasing pole age would
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Figure 3: Concentrations of Cu at 0, 30, and 60 cm from TLs 227, 225, and 259 with � values from the regression analysis and �2 values for
the trend line �t.
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Figure 4: Concentrations of Cr at 0, 30, and 60 cm from TLs 227, 225, and 259 with � values from the regression analysis and �2 values for
the trend line �t.
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Figure 5: Concentrations of As at 0, 30, and 60 cm from TLs 227, 225, and 259 with � values from the regression analyses and �2 values for
the trend line �t.

Table 5: Results of pairwise comparison of TLs with Tukey’s procedure show the minimum di�erences in means (�-values) necessary for
TLs to be signi�cantly di�erent (with 95% con�dence) with shaded areas showing dissimilar pairs.

TLs compared
[Cu] (mmol/kg) [Cr] (mmol/kg) [As] (mmol/kg)

�-values Actual �-values Actual �-values Actual

227 & 225 8.98 6.67 10.0 2.02 6.14 2.92

227 & 259 11.5 8.32 15.5 18.2 9.52 9.61

225 & 259 12.4 15.0 16.8 20.2 10.3 12.5

normally increase the exposure of the pole to weathering.

ere may also be a “signi�cant wash-o� e�ect” with newly
treated poles [4].


e least dissimilar and closest in age TLs were the 1-year-
and 2-year-old TLs (227 and 225). 
e most dissimilar pair
of TLs, 225 and 259, experienced the greatest di�erence in
average monthly rainfall amounts (13.7mm) in addition to
having an age gap of 11 years. 
e reason TLs 227 and 259
were less dissimilar than TLs 225 and 259, despite the age gap
of 12 years, was likely due to extra leaching from the 1-year-
old poles and less di�erence in the average monthly rainfall
amounts (7.3mm). Rainfall amount was also important for
leaching of metals from the suspended log.

With partitioning of metals between the soil and pore
�uid phases, one portion of themetals is retained and another
portion migrates, and to some extent metal retention by soils
increases with metal concentration. More metals could have
been able to accumulate in the soils of the 13-year-old poles

(TL 259). Using the mean metal concentrations in Table 4,
the ratio of metals in the soils at 13 years compared to 1 year
are 1.77 (Cu), 6.10 (Cr), and 3.33 (As) and compared to 2
years are 4.64 (Cu), 14.0 (Cr), and 11.4 (As). More Cu being
removed early on from the suspended log could explain the
more similarCu removal at 1 and 13 years (Tables 4 and 5).
e
greatest relative accumulation of Cr in the soils by 13 years
may be indicating that Cr was the least mobile. 
ere was
less As than Cr accumulation in soils by 13 years which could
mean that As wasmoremobile than Cr, something also noted
by Zagury et al. and Stilwell and Gorney [6, 12].

Under �ooding, anaerobic conditions (such as a torrential
and prolonged rainfall that is causing the soil to become
saturated), arsenate (V) is reduced to arsenite (III) and any
As (V) bonded to the soil could be released as As (III) [34].
Such mobilization of As (III) could facilitate its downward
migration (potentially to the groundwater) as long as the
heavy rainfall persists. If reducing conditions are combined
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with lower pH as observed for the coastal soils along TLs 227
and 259, arsine gas, and dimethylarsine could also form and
be released to the atmosphere [34].


e less mobile Cr (III) is likely to occur when organic
matter and inorganic iron compounds are present in soils
[17]. Anthropogenic Cr (VI) discharged to the environment
is usually converted to Cr (III) which is the more commonly
occurring in the environment [35]. 
e use of wood vinegar
to extract Cu, Cr, and As from CCA-treated wood waste was
the least successful for Cr [15]. 
us, there is some body of
literature that supports that As could be more mobile in the
environment than Cr.

When anthropogenic Cu is introduced to surface soils it
has a strong a�nity for organic matter and clays [36]. Even
if released by surface soils it can become bonded to any
reactive �ne particulate soils, including organic and clay soils
at depth and is not usually mobile [36]. Of the three metals,
the leaching of Cumay be of least concern because it tends to
remain bonded to the soil.

Comparing the proportions of Cu, Cr, andAs in theCCA-
C (18.5% CuO, 47.5% CrO3, and 34% As2O5) with the soil
samples in this study (Table 4) leads to the conclusion that
Cu was the most readily removed from the poles throughout
the time periods under consideration. Another study ofmetal
leaching from CCA treated utility poles [6] found that Cu
concentrations in the soil samples were always higher than
the Cr and As concentrations and [36] suggest Cu is not
mobilized in soils that contain �ne reactive soil particles such
as organic matter or clays. For 25 of the 26 poles in this study
Cu concentrations were the highest but this is not apparent
for the 13-year-old poles along TL 259 (Table 4 and Figure 4)
because at 0 cm from one pole (P 101) the Cr concentration
was the highest and was so high that it changed the observed
trend in the average values. If this particular utility pole was
of low quality wood so that it was more prone to becoming
weathered or if it was installed in an especially exposed
location where it was more susceptible to weathering, this
might explain the high levels of leaching of all metals. Among
the threemetals, wood vinegarmost successfully removedCu
from the CCA-treated wood waste [15]. 
ough Cu could be
themost readily removed from the utility poles, it may bewell
retained by the soil.

3.4.MaximumCu, Cr, and As Concentrations in Soils. Table 6
shows the most extreme cases of leaching of Cu, Cr, and
As from the utility poles. Only pole P101 exhibited greater
leaching of Cr than Cu. Although the Cr concentration here
was unexpectedly high, of all the soil samples measured at
30 and 60 cm, the highest Cr concentrations at these two
distances were also observed at this pole and so this number
in Table 6 is reasonable.

Although sampling was only conducted at 4 poles along
TL 259, it is noteworthy that soil samples surrounding 3 of the
4 poles contained some of the highest metal concentrations.

is appears to be evidence of greater leaching from the utility
poles that were older, more exposed to rainfall, and more
weathered as also supported by Mercer and Frostick [7].

Table 6: Extreme Cu, Cr, and As concentrations in soils near 1-, 2-,
and 13-year-old poles.

Approximate
pole age (years)

TL Pole
Cu

(mmol/kg)
Cr

(mmol/kg)
As

(mmol/kg)

1 227 P1-8 37.5 15.5 15.7

2 225 P19L (N) 17.3 6.12 2.48

13 259

P121 22.4 5.19 3.19

P87 21.3 11.8 8.25

P101 28.9 65.5 38.9

3.5. Soil Sample Measurements at All Distances and Compared
to Guidelines. Table 7 contains the average, standard devia-
tion, and maximum values of metal concentrations at 0, 30,
and 60 cm from all of the utility poles and at 7m from three of
the utility poles. 
e metal concentrations at 7m were taken
to approximate the natural background concentrations of the
Cu, Cr, and As in soils. For all of the samples collected at 0,
30, and 60 cm, seven of the nine highest metal concentrations
were associated with pole P 101.

Arsenic is of great concern because of its known toxicity
and the average As concentrations at 0 cm, 30 cm, 60 cm, and
7m all exceeded the permissible limit in soils. 
e highest
As soil concentration measured was 2,431 times the permis-
sible level. Soil concentrations of As in Newfoundland and
Labrador are typically high and o�en above the guidelines.
Average Cu concentrations at 0 and 30 cm exceeded the
permissible limit for Cu in agricultural and residential soils
and the average Cr concentration at 0 cm also exceeded the
limits for Cr in soil.

4. Conclusion

With regard to runo� from the suspended log, Cu leached
the most in the �rst year, and in the �nal (fourth) year the
Cr leached almost as much as the Cu and the As leached
noticeably less than the two other metals. 
e wettest month
in 2004 saw 205.7mm of rain, it compared with the 29 year
average for that month of 129.6mm, it was almost twice as
wet as other months during which rainfall runo� samples
were collected, and it was associated with the two highest
incidents of total leaching of metals from the log. Heavier
rainfalls and longer durations of dampness preceding sample
measurements appeared to increase the metals in the runo�.
It is also possible that some contraction of the wood when
warm temperatures turned cold may have squeezed more
metals out of the log.

With regards to the water quality guidelines, the greatest
exceedances were for As in the rainwater runo�. 
e aver-
age As concentration was greater than all the permissible
water limits except for irrigation water and only in 2005
and exceeded by approximately 8 to 42 times the drinking
water guideline limits. 
e average Cr concentrations in the
rainwater runo� were approximately 3 to 7 times greater
than the drinking water guideline limits while the average Cu
concentrations in the rainwater runo� were all less than the
drinking water guideline limits.
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Table 7: Average, standard deviation, and maximum values of all Cu, Cr, and As concentrations in soils at di�erent distances from the poles
compared with permissible soil concentrations.

Average, standard deviation, and maximum values of metal concentrations of all
soil samples (mmol/kg)

Permitted soil concentrations [25, 28] (mmol/kg)

Distance from
poles

0 cm 30 cm 60 cm 7m Agricultural, residential Commercial, industrial

Cu
9.52
8.34
37.5

1.23
2.52
15.21

0.543
0.595
3.201

0.287
0.102
0.386

0.991 1.43

Cr
5.15
10.8
65.51

0.673
0.879
5.241

0.46
0.340
1.621

0.339
0.237
0.484

1.23 1.67

As
4.22
6.57
38.91

0.459
1.00
5.511

0.183
0.337
1.92

0.126
0.173
0.323

0.016 0.016

1Pole P 101 along TL 259 where most of the highest concentrations were detected.

With regards to the soil samples, there was a signi�cant
trend in decreasing metal concentration with distance from
the utility poles and the greatest scatter in metal concentra-
tions occurred at the 0 cm distance. TL 259 soil samples at
0 cm from the utility poles contained the highest metal con-
centrations and these poles were the most weathered because
they were the oldest and had been exposed to the highest
cumulative rainfall. TL 227 soil samples at 0 cm contained the
second highest metal concentrations which may have been a
result of a “wash-o�” e�ect from the new poles. TL 225 soil
samples had the lowest metal concentrations and these poles
were exposed to the lowest average monthly precipitation.

With regards to the soil concentrations of the three
metals, Cu was normally the most leached into the soil, and
though the average Cu concentrations exceeded soil quality
guideline limits at 0 cm and residential/agricultural guideline
limits at 0 cm and 30 cm, it may have been of least concern as
it tends to be more retained by the soil (or less mobile within
the soil). Soil As was themost critical because the average soil
concentrations of As at all distances from the poles exceeded
the acceptable allowable concentrations and As appeared to
be the most mobile in the soil as well. 
ere could be cause
for concern that As could leach from CCA treated timber,
migrate to groundwater, and reach wells or ponds, especially
if the underlying soil is porous. Soil Cr only exceeded the
acceptable allowable concentrations at the 0 cm distance and
appeared to be less mobile than As so of less concern than As.
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2004.

[21] EPRI, “Preservatives in soils adjacent to in service utility poles
in the United States,” 1997.

[22] American Chemical Society, Reagent Chemicals, American
Chemical Society Speci�cations, Washington, DC, USA, 7th
edition, 1986.

[23] B.H. Sheldrick, Ed.,AnalyticalMethodsManual, LandResource
Research Institute, Ottawa, Canada, 1984.

[24] W. P. Mortimer, �e Environmental Persistence and Migration
of Wood Pole Preservatives, Canadian Electrical Association,
Montreal, Canada, 1991.

[25] “Historical Climate Data-Environment Canada-Advanced
Search,” http://climate.weather.gc.ca/advanceSearch/search-
HistoricData e.html.

[26] L. Waldron, P. Cooper, and T. Ung, “Modeling of wood
preservative leaching in service,” in Environmental Impacts of
Preservative-Treated Wood Conference, pp. 81–97, Orlando, Fla,
USA, 2004.

[27] Canada’s National Climate Archive, http://climate.weather.gc
.ca/climateData/dailydata e.html?StationID=6720.

[28] Canadian Council of Ministers of the Environment, Canadian
Environmental Quality Guidelines Summary Table, http://
www.ccme.ca/publications/ceqg rcqe.html.

[29] T. J. Whitmore, M. A. Riedinger-Whitmore, J. M. Smoak, K. V.
Kolasa, E. A. Goddard, and R. Bindler, “Arsenic contamination
of lake sediments in Florida: evidence of herbicide mobility
from watershed soils,” Journal of Paleolimnology, vol. 40, no. 3,
pp. 869–884, 2008.

[30] F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reac-
tions, John Wiley and Sons, New York, NY, USA, 1994.

[31] P. A. Cooper, “Leaching of CCA from treated wood: pH e�ects,”
Forest Products Journal, vol. 41, no. 1, pp. 30–32, 1991.

[32] P. L. Carey, R. G. Mclaren, and J. A. Adams, “Sorption of cupric,
dichromate and arsenate ions in some New Zealand soils,”
Water, Air, and Soil Pollution, vol. 87, no. 1–4, pp. 189–203, 1996.

[33] R. S. Williams, S. Lebow, and P. Lebow, “E�ect of simulated
rainfall andweathering on release of preservative elements from
CCA treated wood,” Environmental Science & Technology, vol.
37, no. 18, pp. 4077–4082, 2003.

[34] A. A. Duker, E. J. M. Carranza, andM. Hale, “Arsenic geochem-
istry and health,” Environment International, vol. 31, no. 5, pp.
631–641, 2005.

[35] J. Harte, C. Holden, R. Schneider, and C. Shirley, Toxics A to Z:
A Guide to Everyday Pollution Hazards, University of California
Press, 1991.

[36] R. N. Yong, C. N. Mulligan, andM. Fukue, Sustainable Practices
in Geoenvironmental Engineering, CRC Press, New York, NY,
USA, 2nd edition, 2014.



Submit your manuscripts at

http://www.hindawi.com

Forestry Research
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Environmental and 

Public Health

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ecosystems
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Environmental 
 Chemistry

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Waste Management
Journal of

Hindawi Publishing Corporation 

http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biodiversity
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of


