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Lead-Acid Battery Model Under Discharge With
a Fast Splitting Method

Richard Corban Harwood, Valipuram S. Manoranjan, and Dean B. Edwards

Abstract—A mathematical model of a valve-regulated lead-acid
battery under discharge is presented as simplified from a standard
electrodynamics model. This nonlinear reaction–diffusion model of
a battery cell is solved using an operator splitting method to quickly
and accurately simulate sulfuric acid concentration. This splitting
method incorporates one-sided approximation schemes to preserve
continuity over material interfaces encompassing discontinuous
parameters. Numerical results are compared with measured data
by calculating battery voltage from modeled acid concentration as
derived from the Nernst equation.

Index Terms—Batteries, discharge, lead, modeling, nonlinear
systems, splitting.

NOMENCLATURE

Aj Electrode cross-sectional area in region j = 1, 3.
AS

j Electrode active surface area per volume in region
j = 1, 3.

bj Simplifying reaction constant in region j = 1, 2, 3.
c Concentration of sulfuric acid.
c0 Initial sulfuric acid concentration.
D Reference diffusion rate.
F Faraday’s constant: F = 96, 487 c/mol.
f Mean molar activity coefficient for H2SO4 .
i Cell-pair current density.
iapp Cell-pair discharge current density.
i0j Exchange current density in electrode j = 1, 3.
Kj Equivalent molarity to charge constant in electrode

j = 1, 3.
Lj Thickness of region j = 1, 2, 3.
R Universal gas constant: R = 8.3145 J/(mol·K).
r Bulk cell resistance.
t+ Transference number for H+ ions.
u Electrode utilization.
uC V F

j Critical volume fraction in electrode j = 1, 3.
V Battery voltage.
Wj Weight of active material in electrode j = 1, 3.

αj Anodic transfer coefficient in electrode j = 1, 3.
εj Porosity: acid-filled volume fraction of region j =

1, 2, 3.
κj Charge density for electrode j = 1, 3.
ηj Surface overpotential of electrode j = 1, 3.

I. INTRODUCTION

D EMAND for advancing vehicular technology has in-
creased in recent years. There is a great need for better and

cheaper hybrid electric automobiles. Many factors have added
to this growing need, including the high costs of petroleum,
the volatile nature of its market, and the fear of its depleting
sources, as well as global concern over carbon emissions. Over
a ten year span from January 2000 to January 2010, U.S. crude
oil costs quadrupled, including a one-year doubling from 2007
to 2008 [1]. While demand held steady over this decade [2], oil
production faltered midway, decreasing for the first two con-
secutive years in 2006 and 2007 [3]. Political and individual
concerns over carbon emissions have greatly increased in re-
cent years, because of health risks as well as current and future
damage to the environment. Due to the combination of these fac-
tors and the anticipated benefits of alternate fuels, the need for
research and development of alternate energy sources, specif-
ically for personal transportation, is critical in manufacturing
hybrid/electric vehicles.

Such research is being done, for example, at University of
Idaho’s Center for Intelligent Systems Research (CISR), where
valve-regulated lead-acid (VRLA) batteries are being designed
and developed for optimal energy-to-weight ratios as an integral
part of a complete electric vehicle system [4]–[8].

This paper presents a model and numerical method for sim-
ulating sulfuric acid as well as voltage dynamics in a VRLA
battery.

A. Previous Research

Early mathematical models developed to describe lead-acid
batteries date back to 1958 with Stein [9] and 1961 with
Euler [10], and focused on the positive electrode dynamics
only. Newman and Tiedemann [11] provide a summary on the
numerous contributions that improved these early models. Gu
et al. [12] in 1987, followed by Salameh et al. in 1991 [13], fur-
ther expanded these improvements into a mathematical model
describing the dynamics of the five major electrochemical com-
ponents during a full cycle of discharge, charge, and rest
for a complete battery cell pair: acid concentration, electrode
porosity, electrolyte current density, electrode potential, and



electrolyte (liquid) potential. Temperature and several other
variables were assumed constant.

This basic model was expanded in 2001 by Tenno et al. [14]
by reevaluating some of the underlying model equations. The
calculated voltage of this expanded model was remarkably accu-
rate, yet the voltage modeled used was not clearly specified. The
traditional model continues to be adapted, with contributions
focusing more recently on voltage restorers [15], the VRLA
reference electrode [16], and parameter estimation [17].

Separately, a model for acid concentration exclusively based
upon conservation of mass and reactive electrode surface was
developed by Appel [4], [18], Gill [19], and Cantrell [20] starting
in 1987. These models focused on compartmentalizing physical
and chemical components. Their separate treatment of reaction
and diffusion processes inspired us to apply an operator split-
ting method. As influenced by the compartmental focus of their
model, we augmented our dynamical system with stopping cri-
terion for concentration, voltage, and utilization thresholds. The
latter threshold, supported by work in 3-D conductivity mod-
els [21], [22] led to a novel calibration technique relating severe
voltage variation to incomplete formation of charge.

This paper’s contributions are as follows.
1) We construct a reaction–diffusion model exclusively for

the concentration of sulfuric acid in a VRLA battery
through relevant simplifying assumptions to the model
adapted by Tenno et al. [14]. This new simplified model
is analyzed and validated by experimental data.

2) We develop an operator splitting numerical method to split
the given nonlinear partial differential equation (PDE) into
an analytically solvable reaction step and a linear diffusion
step. Our results show that this splitting runs considerably
faster than the “real time” cited by Tenno et al. [14],
while maintaining consistency and stability. Further, in
comparison to a full method, where the operator is not
split, our split method performs with superlinear speedup.

3) We develop numerical schemes to preserve the first order
in time and second order in space accuracy over the discon-
tinuous interfaces. The interval centering discretizations
of the regions avoids material interfaces where parameter
values cannot be determined.

4) We calculate battery voltage from our sulfuric acid con-
centration using a model derived from the Nernst equa-
tion [23] and inverting the Butler–Volmer equation [14]
through a bounded line search optimization, and then we
compare this calculated voltage to measured data from
1-h rate discharge tests of similarly manufactured batter-
ies. Due to the high variability in the data, we propose
a calibration of reducing the initial fullness of charge to
better simulate the voltage.

The general diffusion model is developed for the acid concen-
tration in Section II along with descriptions and justifications
for assumptions leading to our simplified model. This is fol-
lowed by construction of the battery voltage model based on
this concentration. In Section III, the numerical operator split-
ting method is described and analyzed for accuracy and stability.
Section IV presents the results of the numerical simulations for
concentration and voltage as well as a list of parameter values

used. The simulated voltage is contrasted with a batch of mea-
sured data and then the further calibrated voltage is compared
against three representative data samples. These results are then
discussed in Section V.

II. DEVELOPMENT OF REACTION–DIFFUSION MODEL

In general, a VRLA battery is a combination of battery cells,
where each cell is composed of a stack of alternating negative
and positive electrodes, separated by a highly porous sheath
called the separator, and saturated with sulfuric acid. A pressure
sensitive release valve accompanies the outer casing to manage
the gases created by the normal reactions. A cell pair consists
of half of a negative electrode, one separator layer, and half
of a positive electrode, where middles of each electrode at the
outer boundaries of the cell pair mark the current collecting
grids [5].

A. Simplifying Assumptions

To simplify and combine the expanded model [14] into an ini-
tial boundary value problem, we assume that discharge current,
temperature, active surface area, and porosity are constants, us-
ing averaged values where appropriate, and that overpotential is
assumed constant at each step, and then updated. The following
is the justification for these simplifying assumptions.

The batteries tested are discharged at constant currents and
kept in a controlled temperature setting, validating our assump-
tions of constant current and temperature. Since the batteries
we model were newly formed when tested, and due to the
rechargeable nature of the lead-acid battery, we assume that
the capacity does not drop appreciably between the first few
charge–discharge cycles. Tenno et al. argue that active surface
area is relatively constant if “small variation of battery capacity
is considered” [14], so we utilize their assumption for the active
surface area. Overpotential is statically updated as an averaged
value in each region to represent equally distributed current over
the remaining nodes. As the battery current is held constant and
overpotential is defined by the generated current in each node,
this averaged value should remain constant until nodes become
fully discharged. Finally, changing porosity from a dynamic to a
static variable considerably simplifies the model from a coupled
nonlinear system of two PDEs to one nonlinear PDE. Thus, an
average value will be used as an approximation.

Under certain tolerances, each component of the battery is
manufactured uniformly, particularly the paste on the preformed
electrodes. This means that any cross section of the battery
cell cut perpendicular to the electrodes yields the same mate-
rial properties, and, thus, the same electrochemical dynamics.
Also, each individual cell pair is mirrored throughout each bat-
tery cell. By these symmetries, we reduce the 3-D problem
down to a perpendicular line through an individual cell pair
with end points at the lead grids at the centers of the negative
and positive electrodes, respectively. Because of the discon-
tinuities of the material properties within this spatial region
(0, L), we decompose it into three disjoint regions, (0, L1),
(L1 , L2), and (L2 , L), corresponding to the negative electrode
half, separator, and the positive electrode half, respectively,



Fig. 1. 2-D representation of a fully charged battery cell pair.

as shown in Fig. 1. Thus, our PDE is computed in the space
(x, t) ∈ (0, L1) ∪ (L1 , L2) ∪ (L2 , L) × (0,∞). It is reasonable
to assume that acid concentration is a continuous function, since
this fluid flows throughout the composite material. To preserve
this continuity of solution, we apply matching flux conditions
at the interfaces of the material regions [12]. Combining the
governing PDE over the domain [0, L] with outer and inner
boundary conditions and an initial condition of uniform distri-
bution (to simulate the battery starting at rest), we have the initial
boundary valued problem over [0, L] × [0,∞) as described by
the following three coupled subproblems.

B. Concentration Model

We develop our model by applying the previous simplifying
assumptions to the following reaction–diffusion model for acid
concentration [14]

ε
∂c

∂t
=

∂

∂x
Dεβ ∂c

∂x
+ (cK1 + K4)

∂i

∂x

with c(x, 0) = cref , t > 0

with additional relations

K1
∂i

∂x
=

∂ε

∂t

∂i

∂x
= Ai0

(
c

cref

)β

·
(

exp
{

αaFη

RT

}
− exp

{
(αa − 2)Fη

RT

})

where ε is the porosity, c and cref are the variable and initial
sulfuric acid concentrations, D is the diffusion coefficient, β is
the tortuosity exponent, K1 is the volume-to-charge ratio, K4
is the molarity to charge ratio, i is the current density, αa is the
anodic apparent transfer coefficient, A is the active surface area
per volume, i0 is the exchange current density, F is Faraday’s
constant, η is the overpotential, R is the universal gas constant,
and T is the temperature. For simplification, we write K ≡ K4 ,
i0 ≡ i0 , α ≡ αa , AS ≡ A, and approximate β = 0.5 to match
the morphology of the twistedness of the path for discharge [14].
To simplify and combine the expanded model [14] into an ini-
tial boundary value problem, we assume that discharge current,

temperature, active surface area, overpotential, and porosity are
constants. Consequently, ∂ε

∂ t = 0, so we drop the K1 portion of
the reaction term.

Symmetry and continuity of the concentration are preserved at
the current-collecting grid in the center of the negative electrode

∂c

∂x
(0, t) = 0, t > 0. (1)

In the relevant half of the negative electrode, charge is released
during discharge as the lead (Pb) and sulfuric acid (H2SO4)
react, diminishing the concentration, to produce lead sulfate
(PbSO4) and release hydrogen gas (H2) [5]. This consumption
and diffusion of sulfuric acid are modeled by the reaction–
diffusion equation

∂c

∂t
=

D√
ε1

∂2c

∂x2 − b1
√

c (2)

with c(x, 0) = c0 , 0 < x < L1 , t > 0.

At the interface between the negative electrode and separator,
the material and chemical parameters change abruptly. To pre-
serve fluidity, the continuity of the concentration is preserved
and the flux across the interface is matched by the equations

c(L−
1 , t) = c(L+

1 , t) (3)

D
√

ε1
∂c

∂x
(L−

1 , t) = D
√

ε2
∂c

∂x
(L+

1 , t) (4)

where L−
j = lim

x→L−
j

x, L+
j = lim

x→L+
j

x, t > 0.

Since the material composing the separator mesh is inert with
respect to the sulfuric acid, concentration is merely diminished
by the fluidic diffusion outward to the two electrodes, as de-
scribed by the diffusion equation

∂c

∂t
=

D√
ε2

∂2c

∂x2 (5)

with c(x, 0) = cref , L1 < x < L2 , t > 0.

At the separator–positive electrode interface, the discontinu-
ity of the material parameters is similarly countered by preserv-
ing concentration continuity and matching the flux to preserve
fluidity

c(L−
2 , t) = c(L+

2 , t), t > 0 (6)

D
√

ε2
∂c

∂x
(L−

2 , t) = D
√

ε3
∂c

∂x
(L+

2 , t), t > 0. (7)

In the positive electrode half, charge is absorbed during dis-
charge as the lead dioxide (PbO2) and sulfuric acid react, again
diminishing the concentration, to produce lead sulfate and water
(H2O) [5]. This is modeled by

∂c

∂t
=

D√
ε3

∂2c

∂x2 − b3
√

c (8)

with c(x, 0) = cref , L2 < x < L, t > 0.



Symmetry and continuity of the concentation are also pre-
served at the grid in the center of the positive electrode by

∂c

∂x
(L, t) = 0, t > 0. (9)

Note that the coefficients are defined in terms of chemical
and material properties of the VRLA battery under discharge.
The effective diffusion rate includes the reference diffusion co-
efficient D, and the porosity ε. The reaction rate coefficient is
an expansion of the standard Butler–Volmer equation [12]

bj =
AS

j i0j Kj

εj

√
c0

·
(

exp
{

αjFηj

RT

}
− exp

{
(αj − 2)Fηj

RT

})

j = 1, 3

where b2 = 0 due to the nonreactive separator material, AS is
the active surface area, i0 is the exchange current density, c0 is
the reference concentration, α is the anodic apparent transfer
coefficient, η is the surface overpotential, R is the universal
gas constant, T is the temperature, and K is the equivalent
molarity to charge constant, which is defined in the negative
electrode, separator, and positive electrode regions represented
by [−,SEP, +] as

K =
[
−2t+ − 1

2F
, 0,

2t+ − 3
2F

]

where F is Faraday’s constant, and t+ is the transference num-
ber. Note that each parameter is piecewise constant in relation
to the three regions.

C. Voltage Model

Battery voltage is a combination of equilibrium potential and
voltage drops caused by cell resistance and generated current,
for each of the six battery cells that are connected in series
for the batteries tested. Focusing on a battery cell individually,
the equilibrium potential is modeled by the Nernst equation
[23], [24]. Following our simplifying assumptions, the Nernst
equation is derived from first principles using the ideal gas law
to quantify the vapor pressure above the solution, Raoult’s law to
relate to the activity of this nonideal liquid, reversible isothermic
work to transfer electrolyte ions across the interfaces, and finally
obtaining the equilibrium voltage through the change in Gibb’s
free energy of the chemical reaction

Pb + PbO2 + 2H+ + 2HSO−
4

discharge
⇀↽ PbSO4 + 2H2O.

Further assuming that this strong acid quickly and equally dis-
sociates, we equate the activities of the sulfuric acid ions and
quantify this activity by the activity coefficient and minimum
acid concentration. Also, since the electrolyte is largely water,
its change in energy is ignored, along with those of the electrode
materials.

Thus, by combining the equilibrium potential from the Nernst
equation with voltage drops associated with the generated cur-
rent and cell resistance, the battery voltage is computed for six

battery cells in series

V = 6

(
(U 0

3 − η3) − (U 0
1 − η1) +

RT

F
ln (fcmin)

−N cellicellr

)
(10)

where U 0
1 , U 0

3 are the two half-electrode potentials, η1 , η3 are the
two overpotentials reducing their respective electrode potentials,
f is the mean molar activity coefficient, cmin is the minimum
concentration at that time step, N cell is the number of cell pairs
in a cell, icell is the current in each cell pair, and r is the bulk
cell resistance.

III. NUMERICAL METHOD

In order to overcome the complexity caused by the parameter
discontinuities and the nonlinearity of the problem, we imple-
ment an operator splitting method to solve the governing system
(1)–(9). The general form of the governing equations

∂c

∂t
=

D
√

εj

∂2c

∂x2 − bj

√
c, t > 0

is split into a reaction step

∂c

∂t
= −bj

√
c, t > 0 (11)

which happens to be spatially independent, and a diffusion step

∂c

∂t
=

D
√

εj

∂2c

∂x2 t > 0 (12)

which is linear. Simplified as such, we solve the reaction step
exactly

R(cn
i ,Δt) =

(
−bjΔt

2
+

√
cn
i

)2

and solve the diffusion step with an implicit backsolve

Bcn+1 = cn (13)

where we construct the approximation matrix B as shown in the
Appendix.

The PDE is split by solving a reaction step (11) from time
index n to n + 1 and then a diffusion step (12) from n to n + 1,
reevaluating the same time interval. In linear theory, this type of
splitting is first-order accurate in time [25]. Theoretical justifi-
cation and numerical verification of this accuracy are presented
in the Appendix. To solve the diffusion split problem numer-
ically, we discretize and apply the diffusion equation to each
region disjointly so that the 1-D cell pair is discretized into 3m
intervals, with m nodes per region, each centered in an interval
so as to avoid computing the concentration at the electrode–
separator interfaces. Accordingly, the spatial derivatives of the
model (1–9) are approximated in each region independently up
to the boundaries using one-sided schemes and ghost points.
The regions are then coupled through the substitutions of the
boundary conditions at the interfaces.

Refer to Fig. 2 for a diagram of this discretization. Note that
in giving each region m nodes, the spatial step sizes differ. If the



Fig. 2. Discretization of 1-D reduction of a battery cell pair. Note that the
nodes m and 2m precede their respective interfaces.

separator is thicker than each half-electrode, then this adaptive
mesh accesses greater precision in the electrodes, where the
nonlinear reaction occurs. In analyzing the method with different
step sizes, we utilize Δx = max{Δx1 ,Δx2 ,Δx3}, where Δxj

is the spatial step in region j.
For all inner nodes not neighboring the boundaries or inter-

faces, the diffusion equation is discretized with O(Δt + Δx2)
accuracy

∂

∂t
cn+1
i − D√

ε

∂2

∂x2 cn+1
i

=
cn+1
i − cn

i

Δt
− D

Δx2
√

ε

cn+1
i−1 − 2cn+1

i + cn+1
i+1

Δx2

+ O(Δt + Δx2). (14)

For the boundary nodes, the boundary conditions are approx-
imated using the ghost point method, as it matches the second-
order spatial accuracy. Note that because the nodes are centered
inside each interval the 0-node and the 1-node are centered about
the boundary of the negative electrode grid. This is similar for
the 3m and (3m + 1) nodes neighboring the positive grid

∂

∂x
cn+1
1/2 = 0 → cn+1

0 = cn+1
1 + O(Δx2)

∂

∂x
cn+1
3m+1/2 = 0 → cn+1

m+1 = cn+1
m + O(Δx2). (15)

For nodes neighboring the interfaces, we develop second-
order one-sided schemes using the method of undetermined
coefficients to reevaluate the spatial diffusion. For example,
(16) represents the left-sided scheme at the negative electrode
and separator interface

∂2cn+1
m

∂x2

=
− 1

5 cn+1
m−2 + 2cn+1

m−1 − 5cn+1
m + 16

5 cn+1
m+1/2

Δx2 + O(Δx2).

(16)

We also develop second-order one-sided schemes to approxi-
mate the flux preserving conditions. Equation (17) demonstrates
the left-sided scheme at the negative electrode and separator in-
terface, for example

∂

∂x
cn+1
m+1/2−

=
1

Δx

(
1
3
cn+1
m−1 − 3cn+1

m +
8
3
cn+1
m+1/2

)
+ O(Δx2).

(17)

Interface conditions on each side are matched to remove de-
pendence on the interface “nodes” such as cm+1/2 in (17).

Combining the results of these substitutions (14, 15, 16,
17) into the diffusion equation (12), we obtain the system of
equations cn = Bcn+1 (13), where the 3m × 3m matrix B is
pentadiagonal.

A. Accuracy and Stability Analysis

Method’s accuracy is accumulated from the accuracy of each
split solution as well as the way the split solutions are recom-
bined. Since the sulfuric acid reaction–diffusion model is a
parabolic PDE with infinitely differentiable operators, the split
recombination scheme used in Section III provides an O (Δt)
accuracy for the operator splitting, as theoretically proven and
numerically verified by Harwood [26]. Additionally, the spa-
tial diffusion and boundary conditions were discretized with
O

(
Δx2

)
accuracy, the reaction split solution was solved ex-

actly, and the diffusion split solution was solved numerical with
O (Δt) accuracy. Thus, the cumulative accuracy of the numeri-
cal solution to the sulfuric acid reaction–diffusion model is first
order in time and second order in space.

Since these split solutions are iterated sequentially, stability
of the splitting method depends solely on the stability of it’s split
solutions [25]. The reaction step is solved exactly, and is, hence,
unconditionally stable. The diffusion step is solved implicitly
by the backward Euler method and is, thus, unconditionally
stable [26], [27]. Therefore, the entire numerical solution of
the sulfuric acid reaction–diffusion model 1 is unconditionally
stable.

Having no stability condition on step sizes, we simply choose
the time step as Δt = 100 ms and divide each region into 20
intervals to obtain spatial step sizes of Δx1 = 27.3 μm, Δx2 =
70.0 μm, and Δx3 = 27.3 μm for the three material regions.

IV. RESULTS

A. Model Parameters

In 2006, batteries designed by CISR (Univ. Idaho, ID) were
manufactured and tested at an outside company to conduct dis-
charge tests for measuring voltage. These batteries were com-
posed of six cells, and each cell had 13 negative plates and 12
positive plates. Parameters c0 , iapp , L, T, and η are calculated
from measurements taken before testing; A, i0 , t+ , ε, and f are
taken from the literature [14], [23], [24], while the reference
diffusion rate D and cell resistance r were optimized within an
order of magnitude of listed values [12]*, [24]* to calibrate the
simulated voltage to the hand-pasted battery data. Fig. 3 shows
the numerical solution of acid concentration model (1)–(9) un-
der discharge with the parameter values listed in Table I.

Compared to a fully implicit solution of the whole system, this
decoupled operator splitting resulted in remarkable speedup, as
shown in Table II. For each number of total spatial nodes, the
runtime of the method’s computation, not including variable
creation and post-processing, of 2000 simulated seconds with
a Δt = .25 s time step is shown. To calculate speedup of our
operator splitting method, we developed a semi-implicit full



Fig. 3. Numerical solution for acid concentration of model (1)–(9) during
discharge at 27 A.

TABLE I
PARAMETER VALUES USED IN NUMERICAL SOLUTION

TABLE II
COMPUTATIONAL RUNTIME AND SPEEDUP OF OPERATOR SPLITTING

method that computes the reaction term from the previous solu-
tion while implicitly solving the system. The posted speedup fac-
tor is the runtime for this full method divided by the runtime for
the given operator splitting method, both solved over the same
spatial mesh size. To demonstrate the superlinear nature of this
speedup, we further computed an “acceleration” factor, which is
the factor by which the speedup has increased from the previous
mesh size. Tenno et al. [14] used 18 total nodes (six layers per
region) in their discretization with time step Δt = .25 s to obtain
as fast as “real-time simulation” runtimes for 6-h and 1-h rate
discharges. Assuming their 1-h rate simulation ran for 3600 s
at Δt = 0.25 s, then our split method runtime of 0.77 s shows
approximately a 4675 times improvement in computational time
due to the model simplifications and operator splitting. The run-

Fig. 4. Computational speedup of our operator splitting method is computed
for sequences of spatial mesh refinement using four different initial spatial
nodes.

time for the split method is longer in comparison to the full
method for coarse spatial meshes, as shown for 9 and 18 total
nodes in Table II, when updating the matrix for the full method
is less costly than the computational overhead of recombining
split solutions. Yet, as the spatial mesh is refined, the computa-
tional benefits of operator splitting become clear. While Table II
demonstrates speedup by repeatedly refining one spatial mesh
size, Fig. 4 shows the speedup for refinement sequences of five
initial mesh sizes, and it is clear that these sequences of speedup
factors overlap to form a superlinear curve. This agrees with the
increasing acceleration factors in Table II. These tests were run
in MATLAB on a single desktop with a dual core processor.

Unlike other calculated parameters, the overpotential, which
maintains its initial value due to a constant discharge current, is
defined by the following differential inverse problem:(

∂i

∂x

)
j

= i0j Kj

·
(

exp
{

αjFηj

RT

}
− exp

{
(αj − 2)Fη

RT

})

with i = 0 at the separator, and i = iapp at the outer boundaries;
all parameters are piecewise continuous with respect to each
region j. We solve this problem for the overpotential in the two
electrodes η1 and η3 using a Newton inexact line search [29]

η
(k+1)
j = η

(k)
j −

Ej (η
(k)
j )

∂
∂η Ej (η

(k)
j )

, j = 1, 3

bounded between −1 V and 1 V, where these iterative methods
started with initial guesses of −1 and 1 for j = 1 and −1,
respectively, converge linearly to the respective overpotential,
and stops when |η(k+1)

j − η
(k)
j | < tol for a small tolerance: tol =

0.1. The error functions Ej (η
(k)
j ) are defined for each electrode

as

E1(η1) = L1

(
∂i

∂x

)
1
− iapp

E3(η3) = L3

(
∂i

∂x

)
3

+ iapp .



Fig. 5. Comparison of simulated voltage against 27 A discharge measurements
of one batch of seven uniformly designed batteries.

Fig. 6. Comparison of simulated and measured battery voltages at 27 A dis-
charge current for two data strands of various charge capacities. The maximum
allowable utilization is calibrated to simulate the variability.

Data collected for 27 A discharges are compared as a whole
to the simulated voltage in Fig. 5 to demonstrate data variabil-
ity. Although the simulated voltage for a fully charged battery
qualitatively fits this batch of data, the simulated voltage does
not remain within the error bars, which mark one standard de-
viation about the mean. It is clear that the high variability at
the end of discharge represents more than random errors. Thus,
we calibrate our model by adjusting the maximum allowable
utilization to account for batteries that were not fully charged
on this first discharge test. As shown in Fig. 6, we optimize
the maximum allowable utilizations to simulate the maximum,
median, and minimum batteries chosen from the given batch.
Computing the difference between these three values, we can
also hypothesize how much of each battery was unformed at the
beginning of discharge, assuming that the longest living battery
was fully charged.

Comparing the simulation results to this batch of uniformly
designed batteries requires further information about the vari-
ability in the data, as random variation is inadequate to account
for such wide variation in discharge end times. The batteries
tested were newly formed and had not yet been cycled up for
uniform fullness of charge; each battery was only discharged
once [28]. Besides random variation, we assume that the only
difference between the discharges is the fullness of charge rep-
resented by the critical volume fraction uCVF

j , which is also the
maximum allowable utilization for electrode j = 1, 3.

Fig. 7. Utilization profile for the maximum calibrated voltage. Notice that the
positive utilization equals the maximum allowable utilization of 31%.

Due to conductive pathway constraints [30], nodes cannot be
utilized beyond a critical volume fraction, which has been ex-
perimentally and theoretically approximated between 55% and
65% in the positive electrode [22], [31]. Since this is more lim-
iting in the positive electrode, we focus our calibration on the
maximum allowable utilization for those nodes. Cells not fully
charged, however, have less capacity and, thus, a lower maxi-
mum allowable utilization than the electrodes’ critical volume
fraction [5]. When a nodes’ utilization reaches this maximum
allowable utilization, that node is shut off, shifting the weight
of the discharge to neighboring nodes. The utilization at each
node u is summed over time as

u =
∑ ΔVjΔc

κjWjKj

where ΔVj = εjAjΔxj is the nodal volume of acid in the jth
region, Δc = |cn − cn

R | is the absolute change in acid concen-
tration due to each reaction step, and Kj is the molar-to-charge
ratio per region j. To reduce our simulated voltage to match the
three batteries chosen to represent the test batch, we calibrate our
maximum allowable nodal utilizations in the positive plate from
31.0% for the maximum life battery to 27.5% for the median
and 25.0% for the minimum life battery. Fig. 6 provides a com-
parison between the calibrated simulated voltages to these three
battery discharges representing the extreme and median life of
the seven batteries of the batch tested. These optimal calibra-
tions to the data produce standard errors of 0.0260, 0.0963, and
0.1326 V between the simulated and measured voltages for the
maximum-, median-, and minimum-life battery representatives.

Due to the simplicity of our model, these utilization caps are
in fact the utilizations of the whole positive electrode, as shown
in Fig. 7. Thus, it is inconclusive to compare them to the critical
volume fraction approximated previously. Yet, in computing
the relative differences between these utilizations, we can still
compute the variation in fullness of charge and approximate
how fully charged each battery was when initially discharged.
Assuming that the maximum battery was fully charged, the
3.5% difference suggests that the median battery was 96.5%
fully charged, and the further 6.0% difference suggests that the
minimum battery was 93.0% fully charged when first tested. As
representative of this batch of batteries, these three indicate that



there was only a 6.0% variation in fullness of charge, assuming
the maximum battery was indeed fully charged.

V. SUMMARY AND CONCLUSION

Our reduction to the simplified sulfuric acid model (1)–(9)
produced results as expected. The operator splitting method
used to separate this PDE into linear and solvable nonlinear
pieces produced a smooth reaction–diffusion of the electrolyte.
The profile of the acid concentration in Fig. 3 smoothly de-
creases through reaction in the electrodes and diffusion from
the separator into each electrode. The speedup associated with
using the operator splitting method in favor of a fully implicit
solution is quite remarkable, especially for finer meshes (more
than 18 total nodes). This computational speedup is superlinear,
as the acceleration in the speedup factor remains above 1, and is
in fact better than exponential speedup as this acceleration also
remains above 1 and is strictly increasing. Supported by these
results, this decoupled operator splitting should be particularly
effective for large-scale systems.

A model for voltage was derived via the Nernst equation
(10) from the simulated concentration, and is used to compare
with measured data. This data, however, are not uniform, as
demonstrated in Fig. 5, though the batteries were manufactured
to fit the same design. We developed a dependence on maximum
allowable utilization to model this variability in the data. In
calibrating our simulation to fit the data and in the process we
were able to approximate the percentage of formation of each
battery before they are cycled up to a more uniform charge
formation. This percent formulation capacity relates the life of
the battery to the conductivity of the formation of the battery
electrodes.

APPENDIX

Seeking the system of equations that define the diffusion split
problem across the discretized composite material, we combine
the substitutions of (14), (15), (16), and (17) into the diffusion
equation (12), and using the simplifying variables

λj =
DΔt

√
εjΔx2

δjk =
Δxk

√
εk

Δxj
√

εj + Δxk
√

εk

we obtain the following equations in the negative electrode (−),
separator (SEP), and positive electrode (+) material regions:

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn
1 = (1 + λ1) cn+1

1 − λ1c
n+1
2

cn
i = −λ1c

n+1
i−1 + (1 + 2λ1) cn+1

i − λ1c
n+1
i+1

i = 2 : m − 1

cn
m =

λ1

5
cn+1
m−2 −

(
2 − 2δ12

5

)
λ1c

n+1
m−1

+
(

1 +
(

5 − 18δ12

5

)
λ1

)
cn+1
m

− 18δ21λ1

5
cn+1
m+1 +

2δ21λ1

5
cn+1
m+2

SEP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn
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2δ12λ2

5
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18δ12λ2

5
cn+1
m

+
(

1 +
(

5 − 18δ21

5

)
λ2

)
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m+1

−
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2 − 2δ21

5

)
λ2c
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λ2

5
cn+1
m+3
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i = −λ2c
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n+1
i+1
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5
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2m−1

+
(
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5

)
λ2

)
cn+1
2m

−18δ32λ2

5
cn+1
2m+1 +

2δ32λ2

5
cn+1
2m+2

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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2δ23λ3

5
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18δ23λ3

5
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+
(

1 +
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5 − 18δ32

5
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λ3
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cn+1
2m+1

−
(

2 − 2δ32

5

)
λ3c

n+1
2m+2 +

λ3

5
cn+1
2m+3

cn
i = −λ3c

n+1
i−1 + (1 + 2λ3) cn+1

i − λ2c
n+1
i+1

i = 2m + 2 : 3m − 1

cn
3m = −λ3c

n+1
3m−1 + (1 + λ3) cn+1

3m .

These equations represent the system cn = Bcn+1 (13),
where the 3m × 3m matrix B for the diffusion step is pen-
tadiagonal. Notice, however, that B has only four rows with
five nonzero entries; the rest have three which is standard to a
tridiagonal matrix.
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