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1 Introduction

The recent crisis of drinking water contamination in Newark, New Jersey’s largest city, has

renewed concerns regarding elevated lead levels in drinking water becoming a persistent and

pervasive problem owing to the nation’s aging infrastructure. Indeed, the newly passed in-

frastructure bill (an approximately $1 trillion package) by the U.S. Congress (on November

5, 2021) allocates $15 billion over the next five years to states, tribes, and territories for

replacing lead pipes in the U.S. drinking water systems.1 Corrosion of lead plumbing mate-

rials is the most common source of lead in drinking water.2 Although lead has been banned

from use in new plumbing systems in the United States since 1986, much of the country’s

drinking water infrastructure largely predates this ban (Brown and Margolis, 2012; Centers

for Disease Control and Prevention (CDC), 2019). Consequently, drinking water constitutes

a significant source of lead exposure for Americans.3

Lead is known to have bio-accumulative properties, collecting over time in the human

body through repeated exposure and stored in the bones alongside calcium. Of particular

concern is in utero exposure, since accumulated lead in a mother’s bones can be mobilized

during pregnancy and released as a calcium substitute to aid in the formation of the bones

of the fetus (Gulson et al., 1997; Hu and Hernandez-Avila, 2002). Lead in a mother’s blood

can also easily cross the placenta, directly exposing the fetus to lead poisoning (Al-Saleh et

al., 2011). There is no safe threshold of lead exposure that has been identified for children

(American Academy of Pediatrics (AAP), 2016; CDC, 2019; EPA, 2020). Lead is a potent

neurotoxin, and prenatal lead exposure is associated with impaired neurodevelopment, plac-

1 See https://www.wsj.com/articles/how-the-1-trillion-infrastructure-bill-aims-to-affect-americans-lives-11636173786
for details (accessed on November 10, 2021).

2 For more details, see https://www.cdc.gov/nceh/lead/prevention/sources/water.htm (accessed on June
22, 2020).

3 The Environmental Protection Agency (EPA) estimates that drinking water can account for 20 or more
percent of total lead exposure for adults and 40 to 60 percent for infants (EPA, 2020). Other modes of
exposure occur through other forms of ingestion (e.g., food and chipped lead paint) and inhalation (e.g.,
tobacco smoking, emissions from leaded gasoline, and industrial pollution). Dermal absorption, mainly
through occupational exposure for workers directly handling or working in proximity to lead materials, is
also possible.
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ing exposed children at higher risks for cognitive impairment, reduced IQ, learning disability,

behavioral problems and other functional difficulties (CDC, 2010; WHO, 2011).

Drinking water contamination is becoming an increasingly important and widespread

source of prenatal exposure to environmental pollution. Between 2018 and 2020, nearly 30

million people received their drinking water from community water systems that were in

violation of the EPA’s Lead and Copper Rule, which sets maximum enforceable levels of

these metals in drinking water (Fedinick, 2021). Almost a third of community water systems

report that at least some of their public service pipelines contain lead, with the exact number

of lead service lines estimated to be between 6.1 and 10.2 million (Cornwell, Brown and Via,

2016; EPA, 2016a).4 Moreover, these lead service lines contribute as much as 75 percent of

the lead that seeps into tap water (Sandvig et al., 2008).

In this study, we leverage a unique natural experiment provided by the 2016 water crisis

in Newark, in order to identify the causal effect of prenatal exposure to lead-contaminated

drinking water on fetal health. Specifically, we compare two groups of mothers whose homes

are served by Newark’s two water treatment plants, respectively, over the period prior to

and subsequent to the first discovery of lead contamination of drinking water in the city,

which happened in March 2016.5 Of the two groups, one was exposed to elevated lead levels

in drinking water because of an unintended consequence of one water treatment plant’s

decision made in 2015 to increase the acidity level of its treated water. The unintended

consequence of this increase in the acidity level was reduced effectiveness of the corrosion

inhibitor (sodium silicate) used by the plant to control lead release. This caused lead from

the pipes and plumbing fixtures to seep into the water, thereby exposing homes serviced by

4 Service lines are pipes that connect residences with the water mains (i.e., pipes delivering the water
supplied to a city or town). There does not exist a complete national inventory of lead service lines to
date, and estimates are uncertain (Government Accountability Office, 2018). Following the water crisis in
Flint, Michigan, the EPA encouraged all states in February 2016 to work with water systems to conduct
inventories of lead service lines. Noted challenges include lead service lines on private property, which makes
them difficult to locate, as well as a lack of records about the locations of older lead service lines.

5 Our identification strategy is enlightened by Snow (1855), who compares locations that are near one
another but with different sources of water supply (resulting in different exposure to water contamination)
to study the cause of the cholera outbreak in London.
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this water treatment plant to significantly elevated levels of lead in their tap water.

Using data on all live births in New Jersey between 2011 and 2019, we estimate the effects

of prenatal exposure to lead contamination in drinking water on birth outcomes. A unique

feature of our study is that we have data on the exact home addresses of pregnant women

and the information on the spatial boundary of service areas between Newark’s two water

treatment plants. We find robust evidence that prenatal lead exposure significantly raises the

probability of low birth weight (LBW, birth weight < 2,500 grams) by about 1.5 percentage

points (or 18 percent) as well as the probability of a preterm birth (gestational length < 37

weeks) by about 1.9 percentage points (or 19 percent). There is little indication that these

effects are driven by selection into births. We also find some notable dynamics in the response

that coincide with how the Newark water crisis unfolded, and some evidence indicative of

mitigation behavior including pregnant women in affected areas seeking out greater prenatal

care in response to the water crisis. The effects on fetal health that we capture are the ones of

a shift in water quality, including biological effects and effects of avoidance or compensatory

behaviors conditional on any increased use of prenatal care which we control for.

Our study is directly relevant in informing how lapses in water quality due to a failure

in the water system’s infrastructure—which have become increasingly more prevalent and a

target of recent policy proposal—translates into population ill-health. The extent of these

population-level health effects remains unclear, as they depend on avoidance behaviors of

the mother, the level of exposure, and other factors that may regulate the body’s absorption

of lead (such as micronutrient inadequacies or maternal health endowment). Moreover,

lead exposure among women of childbearing age has fallen substantially over the past four

decades with regulations limiting lead emissions (Ettinger et al., 2020). With average blood

lead levels being quite low in the modern era, it is uncertain how a shock to water quality,

which exposes these mothers to higher levels of lead, would affect their pregnancy outcomes.6

6 This would depend on the non-linearity and shape of the “damage function” linking the level of lead
exposure and health production, based on baseline exposure, for which there is very limited evidence in the
literature.
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Our study makes several contributions to the literature. We provide the first evidence

on the impact of the Newark water crisis on birth outcomes. In the process, we add to

the very limited evidence base on the adverse effects of water pollution,7 and specifically on

the effects of prenatal exposure to lead in drinking water—a dearth underscored by Keiser

and Shapiro (2019) and by the CDC in its report on lead exposure among pregnant women

(CDC, 2010).8 Even recent evidence from the Flint water crisis on infant health outcomes

has been somewhat mixed (Abouk and Adams, 2018; Grossman and Slusky, 2019; Wang,

Chen and Li, 2021). In contrast to these studies of the Flint water crisis, which rely on

intra-state comparisons between Flint and other cities in Michigan, the nature of the cause

of the water crisis in Newark allows us to exploit plausibly exogenous within-city variation

across affected and non-affected households within Newark.

While Newark provides the natural experiment in this study, failure to upgrade the

nation’s aging water infrastructure has made lead in the water system a national problem,

and prompted predictive warnings that Newark’s lead-water crisis will not be the nation’s

last (Khazan, 2019).9 Our study also broadly contributes to the fetal origins literature,

regarding effects of in utero shocks on health (Almond and Currie, 2011; Barker, 1995).

With fetal health being an important predictor of later-life outcomes, these estimates are

critical towards evaluating the cost-benefit calculus of infrastructure investments, including

7 Regarding the literature on the causal effects of early-life exposure to pollution, the majority of that
literature has been about air pollution, for which Currie et al. (2014) provide detailed reviews.

8 The CDC notes that research on prenatal lead exposure and LBW is inconclusive and “[f]urther research
is needed for a better understanding of several biomedical issues, including pregnancy outcomes and infant
development associated with maternal lead exposure during pregnancy” (CDC, 2010, p. iii). While there is
a large literature on the health effects of lead exposure (e.g., Bellinger, 2005; CDC, 2010; Gardella, 2001;
WHO, 2011), much of this literature is correlational and based on relatively small or selected samples. The
better of these studies are longitudinal and prospective (see WHO, 2011). Furthermore, much of the work
on children is based on relatively high blood levels of lead (Aizer et al., 2018). Given that lead exposure and
blood lead levels among children and mothers (and in the general population) have decreased in the United
States (Brown and Margolis, 2012; CDC, 2010) over the past 40 years, it is important to understand how
lead contamination affects health in a population that has on average low baseline blood levels of lead that
are common today.

9 Several large cities are served by water systems that have recently exceeded the EPA’s action levels
for lead, including Baltimore (MD), Chicago (IL), Detroit (MI), Green Bay (MI), Jackson (MS), Milwaukee
(WI), New York (NY), Pittsburgh (PA), Portland (OR), Providence (RI), and Washington D.C. (Bendix,
2020; Fedinick, 2021; Mulvihill, 2021).
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replacing all of the nation’s lead service lines, an initiative supported by the EPA (EPA, 2019)

and a need finally recognized in the newly passed infrastructure bill by the U.S. Congress in

November 2021.

2 Background

2.1 Lead and EPA Compliance

Lead was widely used in water pipes and plumbing because of its strength, durability and

malleability.10 When public water systems were designed in the United States, lead became

the material of choice, and lead service lines, which are used to connect homes and buildings

to the water main, were widespread; virtually all large public water systems in the United

States had installed lead service pipes (Rabin, 2008; Troesken, 2008).11 As public health

concern regarding adverse effects of lead exposure intensified in the 1960s and 1970s, the

Safe Drinking Water Act (SDWA) was passed in 1974, giving the EPA authority to set

and enforce limits on levels of lead and other contaminants in drinking water (Dignam et

al., 2019). Interim standards were set in 1975 for lead concentration in drinking water to be

below 50 µg/L (i.e., 50 parts per billion or ppb). The 1986 amendment to the SDWA banned

the use of lead from all new plumbing materials.12 In 1991, the EPA’s Lead and Copper Rule

(LCR) established a lower threshold of 15 ppb for the maximum contaminant level (MCL)

for lead in drinking water at customer taps, which is an actionable and enforceable level.13

10 The symbol for the chemical element, Pb, is derived from the Latin word “plumbum”, referencing back
to ancient times when the metal was widely used in the construction of water pipes.

11 See Rabin (2008) for a history of lead water pipes and the influence of the lead industry in the U.S..
12 Lead in residential paint was banned in 1978. A gradual phase-out of lead content in gasoline began in

1973, and lead was virtually eliminated from gasoline by 1988 (Brown and Margolis, 2012).
13 The EPA’s maximum contaminant level goal (MCLG) for lead is zero, consistent with the best available

evidence that there is no safe level of exposure to lead; however, this goal is neither actionable nor enforceable
as reducing lead levels to zero would be prohibitively costly and may not be possible. MCLs are set as close as
possible to MCLG, at levels that are economically and technically feasible. States can set more stringent stan-
dards if they choose, but most, including New Jersey, follow the EPA’s standards. The maximum allowable
lead level for bottled water, set by the Food and Drug Administration, is 5 ppb. For more details, see https:
//www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water and https:
//www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8 (accessed on June 22, 2020).
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As lead contamination of drinking water can result from corrosion of plumbing materials,

community water systems are required to follow accepted treatment techniques to contain

the corrosiveness of the water. Public water systems are generally required to monitor

compliance with the EPA’s LCR once every three years, by testing first-draw samples at

taps in homes and buildings in the service area, including those deemed to be at high risk

of contamination.14 Required actions for non-compliance are triggered when more than 10

percent of the sampled customer taps exceed the 15 ppb MCL for lead. Utilities are required

in this case to accelerate their monitoring to consecutive 6-month cycles, undertake further

steps to optimize corrosion control until water quality improves, and educate customers

about lead in drinking water and actions they can take to reduce their exposure to lead in

the meantime. Water systems that continue to exceed the MCL for lead even after installing

corrosion control must then start replacing the lead service lines (at a rate of at least 7

percent annually) until compliance is achieved (EPA, 2008).

2.2 Newark Water Crisis

Newark is the most populous city in the state of New Jersey (with a population of approx-

imately 283,000.15 It is also one of the oldest cities in the nation, with water supply to

residents sourced and serviced through two distribution systems: the Pequannock Water

Treatment Plant (WTP) and the Wanaque WTP (shown in Figure 1).

The first indication of elevated lead levels in Newark appeared in March 2016, when an

annual program of spot testing and a subsequent new round of testing16 revealed that 30

Newark public schools recorded lead levels in drinking water above the MCL (15 ppb).17

14 Sampling sites consist of single and/or multiple family structures that are served by a lead service line
and/or contain copper pipes with lead solder. For details, see EPA (2008) and https://www.govinfo.gov/
app/details/CFR-2011-title40-vol23/CFR-2011-title40-vol23-sec141-86 (accessed on June 22, 2020).

15 See Appendix Table A1.
16 For details, see https://www.nytimes.com/2016/04/01/nyregion/lead-in-newark-schools-water.html

(accessed on March 31, 2021).
17 The Newark School District consists of 66 schools (see https://www.nps.k12.nj.us/info/ for details).

Almost a quarter of the samples (76 out of 324) tested above the MCL. Follow-up results from additional
samples found that 19 percent (735 out of 3,922) tested at elevated lead levels. For a summary and timeline
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Newark public schools receive water from the same sources as the rest of the city. In 2017,

under a mandate from the New Jersey Department of Environmental Protection, Newark

switched its monitoring to testing drinking water for contamination twice a year; until then,

it was on a triennial monitoring cycle with the previous tests being carried out between 2013

and 2015. The first test results, under the new frequent monitoring cycle and based on tap

water samples from residences throughout the city, indicated sharply elevated lead levels for

the first half of 2017. At least 22 percent of drinking water samples citywide exceeded the

EPA’s MCL of 15 ppb. However, most of the lead-contaminated samples were concentrated

in the western part of the city that receives water treated by the Pequannock WTP. In

this service area, 32 percent of samples contained lead levels exceeding 15 ppb (the EPA

standard) and 44 percent exceeded 10 ppb (the European Union and the WHO standards);

in contrast, samples from residences in the eastern part of the city where sourced water is

treated by the Wanaque WTP continued to show compliance (only 6.5 percent of samples—

below the EPA’s 10-percent trigger—tested positive for lead levels exceeding 15 ppb or even

10 ppb). As we discuss below, elevated lead levels in drinking water for some residences, but

not others, were the result of the two water treatment plants relying on different chemical

agents for corrosion control (i.e., corrosion inhibitors). An increase in the acidity level of

water treated by the Pequannock WTP reduced the effectiveness of the corrosion inhibitor

(sodium silicate) that it was using, exposing homes serviced by this WTP to significantly

higher levels of lead in their tap water. This was the conclusion reached in a study conducted

by an independent engineering firm, commissioned by the city to investigate the cause of the

elevated lead levels in Newark upon receiving the notice of non-compliance with the EPA’s

LCR; the report was released in October 2018 (City of Newark, 2018).18 By then, Newark

had continuously violated the EPA’s actionable MCL for lead since the start of the frequent

of the Newark drinking water crisis, see City of Newark (2018); Corasaniti, Kilgannon and Schwartz (2019);
McGeehan (2016); and https://www.nrdc.org/newark-drinking-water-crisis (accessed on June 22, 2020).
This section draws information from these sources.

18 Independent testing by the firm (CDM Smith) suggests that some residents may have been exposed to
lead levels even higher than those reported in the city’s testing samples.
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biannual monitoring cycle.

In the city’s 2017 annual water quality brochure, mailed to all residents as required

by law, Mayor Ras Baraka reassured residents on the first page that “[m]any of you have

heard or read the outrageously false statements about our water but please know that the

quality of our water meets all federal and state standards” (City of Newark, 2017).19 Under

the pressure of litigation from several groups, and with the release of the city-commissioned

study results on the extent and cause of the lead contamination, Newark started distributing

water filtration devices in October 2018 to residents in the Pequannock service area.20

Until this time, the public remained largely unaware of the full extent of the water

contamination. As pointed to by trends in Google search queries related to the water crisis

in Newark (Figure 2), the first significant spike in interest coincided with reports of elevated

lead levels in Newark public schools (in March 2016),21 which faded within a month or two.

The next major spike in interest occurred in October 2018 with the city’s plans to distribute

water filters to impacted residents.

In March 2019, Newark commenced a program to remove and replace all of the city’s

lead service lines in the water system at no cost to the homeowner.22 The Pequannock WTP

switched its corrosion inhibitor on May 7, 2019 from sodium silicate, which had become

19 The 2017 Report noted on the first page that the only high lead readings were confined to older homes.
Results of the lead testing showing non-compliance with the EPA’s MCL for lead were included at the end
of the report (p. 5 and p. 7).

20 Water filters could be picked up at various distribution centers. Community organizations and
city employees also canvassed homes in the Pequannock service area and delivered water filters to those
with suspected lead service lines. As of August 2019 and by the city’s estimate, some 38,000 wa-
ter filters had been distributed since October 2018. For detail, see https://www.newarknj.gov/news/
faqs-regarding-the-city-of-newarks-water-filters-efforts-to-address-lead-in-the-water (accessed on June 22,
2020).

21 For example, on March 9, 2016 the Associated Press published an article in The New York Times, titled
“Elevated Lead Levels Found in Newark Schools’ Drinking Water” (https://www.nytimes.com/2016/03/10/
nyregion/elevated-lead-levels-found-in-newark-schools-drinking-water.html, accessed in December 2019).

22 The city’s lead service line inventory, undertaken in response to its EPA’s LCR violations, shows
18,406 (out of 29,938) of its service pipes were lead (source: https://www.nj.com/essex/2019/08/
newarks-handing-out-bottled-water-what-you-need-to-know-about-the-citys-lead-crisis.html, accessed on
September 9, 2019). Replacement was originally intended to take place over eight years, with costs shared
between the city and the homeowner, but was accelerated in September 2019 to be completed within 24 to
30 months at no cost to the homeowner. By May 2020, the city had replaced about 10,000 of its lead service
lines.
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ineffective, to orthophosphate, the same chemical agent used by the Wanaque WTP, which

services the eastern part of the city. As it takes at least six months or longer for the

orthophosphate to start working, elevated lead levels in water serviced by the Pequannock

WTP continued through 2019. Among samples tested from this area in the second half

of 2019, 26.9 percent (38.4 percent) contained lead levels in excess of 15 ppb (10 ppb); in

contrast, samples from the Wanaque WTP service area continued to show compliance as

in all prior periods.23 Following tests showing elevated lead levels even among homes using

the distributed filters, the EPA warned that the filtration devices might not be adequately

eliminating lead, and it instructed the city in August 2019 to provide bottled water to its

impacted residents.24 Figure 2 shows the largest spike in Google search queries related

to water contamination in Newark at this time, coinciding with this EPA order and the

distribution of bottled water to residents.

2.3 Prior Studies

General Lead Exposure

Lead is a poison, and high levels of lead in blood affect nearly all of the body’s organs, with

the brain particularly susceptible to its damaging effects. Exposure to lead is associated

with adverse neurological, renal, hematological, endocrine, gastrointestinal, cardiovascular,

reproductive, and developmental effects (ATSDR, 2007; ATSDR, 2017; WHO 2011). Lead

is readily transferred from the mother to the fetus throughout gestation via the placenta. As

lead hinders absorption of iron, zinc and calcium, which are essential to proper neurological

development, lead exposure in utero (and through breastfeeding) can have lasting adverse

health effects, independent of additional exposure at other stages of the life cycle (CDC,

23 Source: City of Newark (2018) and New Jersey Drinking Water Watch from the New Jersey Depart-
ment of Environmental Protection (https://www9.state.nj.us/DEP WaterWatch public/index.jsp, accessed
in February 2020).

24 Bottled water was available to residents in the Pequannock service area through distribution centers,
with assistance offered to residents unable to pick up in person. A later report by the city in November
2019 confirmed that the distributed filters were often improperly installed or maintained, diminishing their
effectiveness in removing the lead.
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2010).

Most prior epidemiological studies have found measures of blood lead levels to be cor-

related with health outcomes, cross-sectionally or longitudinally, based on small selected

samples. However, those studies are unable to rule out other confounding factors associated

with lead exposure (CDC, 2010; Grossman and Slusky, 2019; WHO, 2011). That is, those

studies consider the direct association between high blood lead levels and health outcomes,

rather than the effects of exposure to lead, and estimate a “treatment-on-the-treated” effect

where variation in the “treatment” is not necessarily exogenous. Although some studies sug-

gest that higher maternal blood lead levels may reduce birth weight, results are mixed and

inconclusive (Bellinger, 2005; Gardella, 2001). There is also some evidence that maternal

lead exposure may increase the risk of a miscarriage, although the most reliable evidence

comes from a population of women with baseline blood lead levels substantially higher than

the current mean for the U.S. women.25 Surveys of the epidemiological literature on lead and

pregnant women generally qualify that these studies may not have adequately controlled for

confounding factors, and further research is warranted (Bellinger, 2005; CDC, 2010; Gardella,

2001).

More recent work has exploited natural experiments and more plausible exogenous vari-

ation in lead exposure to identify its health and developmental effects.26 Using data linking

preschool blood lead levels and school records in Rhode Island, with a multitude of identi-

fication strategies including sibling variation, residential proximity to roads and de-leading

of gasoline, and policies requiring landlords to ensure that rental homes are lead-free, Aizer

and Currie (2019) and Aizer et al. (2018) find that higher lead exposure results in greater

anti-social behaviors, and lower reading and math achievement among children, respectively.

Billings and Schnepel (2018) link data on children’s blood lead levels with school and ar-

25 See Bellinger (2005), Borja-Aburto et al. (1999), Edwards (2014), and Hertz-Picciotto (2000).
26 Klemick, Mason and Sullivan (2020) use data on blood test results for children in six states and exploit

residential proximity to Superfund cleanup sites to estimate effects of reduced exposure on blood lead levels.
They find that Superfund cleanups lowered the risk of elevated blood lead levels by 13–26 percent for children
living within 2 km of lead-contaminated sites.
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rest records in North Carolina. Comparing children whose blood lead levels are just above

and below the cutoff at which children become eligible for lead remediation interventions,

the study finds that reducing lead exposure through such early-life interventions improves

children’s anti-social and educational outcomes and reduces criminal activity. Drawing on

variation in airborne lead across counties, driven by the Interstate Highway System and

compliance with the 1977 Clean Air Act (CAA) Amendments, Clay, Portnykh and Severnini

(2018) find that reduced exposure to lead in the air increased completed fertility (as mea-

sured by children ever born) and improved birth weight. Hollingsworth et al. (2020) leverage

NASCAR’s 2007 switch from leaded to unleaded gasoline, in conjunction with distance to

racetracks, to find large adverse effects of exposure to atmospheric emissions on children’s

academic performance.

Exposure to Lead Contamination in Water

As atmospheric lead emissions have declined since the CAA and regulations restricting leaded

gasoline, lead exposure through the water system has taken on added relevance. Keiser and

Shapiro (2019) provide excellent discussions of the history of regulating water pollution

in the United States, notably through the Clean Water Act of 1972 and SDWA of 1974,

and the effectiveness of these regulations in decreasing surface water pollution. They also

draw attention to the dearth of economic research on water pollution, noting as important

challenges the limited availability of data on water quality, hurdles with causal inference,

and difficulty in focusing on and disentangling the effects of specific pollutants.

As such, research on the effects of lead exposure through drinking water on fetal health

has been very limited. Clay, Troesken and Haines (2014) find higher rates of infant mortality

historically, over 1900–1920, in American cities with more lead pipes and more acidic water,

which would have resulted in greater corrosion and exposure to lead. Similarly, Troesken

(2008) finds higher infant mortality and stillbirth rates in cities in Massachusetts at the turn

of the 20th century that used lead pipes and had acidic water. Currie et al. (2013) use data
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on birth records in New Jersey during the period of 1997–2007, matched with water district-

level EPA’s MCL violations for any chemical and/or bacterial contaminant, to identify the

effects of contaminated drinking water on fetal health. Exploiting variation across births for

the same mother (i.e., using mother fixed effects), they find that residing in a water district

with contaminated water during pregnancy is associated with an increase in LBW (by 14.5

percent) and prematurity (by 10.3 percent) among low-educated mothers. Their study,

however, does not specifically identify the effects of lead or any particular contaminant.

Evidence from Recent Drinking Water Crises

More recently, researchers have studied the effects of water contamination crises in Wash-

ington, D.C. and Flint, Michigan. Edwards (2014) compares outcomes in Washington, D.C.,

which experienced high levels of lead in drinking water during 2000–2004, using neighboring

City of Baltimore as a control, and finds an increase in fetal death rates and a decrease in

birth rates during the crisis period.27

The Flint water crisis began in 2014, after the city changed its water source to the Flint

River and failed to apply corrosion inhibitors to the water. Studies that have assessed the

effects of the Flint water crisis on fetal health generally conclude that greater exposure to

lead in drinking water adversely impacted birth outcomes, although findings are not uniform.

Grossman and Slusky (2019) find a decrease in birth rates, though no significant effects on

birth weight or gestation. They interpret the reduction in birth rates as driven by an increase

in miscarriages, which would imply that births carried to term may be a selected healthy

sample biasing against finding negative effects on birth weight or gestation. They also find

suggestive evidence that the reduction in birth rates is not driven by behavioral changes

related to conception, such as reduced sexual activity. Nonetheless, it is also possible that

the reduction in birth rates could be driven by a reduction in conception due to adverse

reproductive effects of lead exposure for both the mother and the father (ATSDR, 2017;

27 Lead was inadvertently released from plumbing materials into drinking water starting in 2000 due to a
switch in drinking water disinfectant from chlorine to chloramine.
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WHO, 2011). In contrast, Abouk and Adams (2018) find a significant reduction in birth

weight and a higher incidence of LBW, though only among white mothers. Wang, Chen and

Li (2021) also find an increase in LBW, though in contrast to Abouk and Adams (2018),

they find a larger effect on LBW among babies born to black mothers, and in contrast to

Grossman and Slusky (2019), they find little evidence of an increase in fetal deaths. All

three studies use 20 months of post-treatment data, while differing somewhat in the control

cities and counties compared against the city of Flint.

Contributions

To the best of our knowledge, we provide the first study of how the drinking water crisis in

Newark has affected birth outcomes. The source of Newark’s water crisis is fundamentally

different from the sources of other recent high-profile water crises that happened in Wash-

ington D.C. and Flint of Michigan. The D.C. water crisis was caused by a change in the

drinking water disinfectant being used, and the Flint water crisis was caused by a change in

the water source and failure to use any anti-corrosion agent at all with the new water source.

In contrast, our study examines a case where there are no changes in the water source and

no changes in the chemical agents used for water treatment, but rather the ineffectiveness

of a currently used anti-corrosion agent due to an increase in the acidity level of the treated

water—a decision made by the water treatment plant to reduce disinfection byproduct (e.g.,

carcinogens) formation. Furthermore, the Flint water crisis was much more condensed in its

timeline, and fast-moving in the diffusion of the information shock into the public sphere, in

contrast to the Newark water crisis.28

Our study broadly contributes to the limited literature on the causal effects of water

28 The city of Flint switched its water source to the Flint River on April 25, 2014, which is considered to be
the start of the water crisis there, and reconnected back to the original source—the Detroit water system—
on October 16, 2015. Soon after the start of the crisis, Flint residents began complaining of discolored
and foul-smelling water, attributed to high levels of fecal coliform bacteria in the water. In contrast to the
Newark water crisis, with the Flint water crisis it was thus relatively apparent that something was wrong
with the water, which may have led residents to also engage in greater avoidance behaviors. The city of Flint
issued a water boiling advisory on August 14, 2014. The Flint water crisis also coincided with an outbreak
of Legionnaire’s disease, and the water supply change was considered a possible cause of this outbreak.
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contamination, and specifically to the scarce and mixed evidence base on the effects of pre-

natal lead exposure on fetal health. The unique cause of the lead crisis in Newark allows

us to exploit plausibly exogenous within-city variation, across impacted and non-impacted

mothers, to identify causal effects. In contrast, the nature of the Flint water crisis necessi-

tated comparing Flint to control cities and counties, with findings apparently sensitive to the

choice of these controls. Since we have data on the mother’s exact residential address, unlike

the Flint studies, we can control for residential address fixed effects and separate out effects

of elevated levels of lead in drinking water (natural experiment) from the effect of having

lead pipes at home (past exposure) or from time-invariant heterogeneities in environmental

exposure at the residential address level. The timeline of the Newark crisis, wherein residents

remained largely unaware of the full scope of the lead contamination for at least the first one

to two years post-contamination, allows us to trace out dynamics of the health effects of lead

exposure in the presence of stress responses and possible, but likely insufficient, avoidance

or compensatory behaviors aimed at mitigating the health risk. Finally, we note that while

Newark provides the natural experiment in this study, the nature of the water contamina-

tion (corrosion of lead service lines) is common, with many community water systems in the

United States being in violation of the EPA’s MCL for lead. The estimates from our study

can be used to inform a cost-benefit calculus of public investments in eliminating exposure

from lead pipes, an initiative supported by the EPA and many localities, and we provide

such calculus in the case of Newark.

3 Empirical Framework

3.1 Data

We use the restricted version of the birth certificate data from the New Jersey Department

of Health (NJDOH) for this study. The data include all live births that occurred in New

Jersey between 2011 and 2019. In addition to the information typically reported in vital
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statistics data, such as birth outcomes and mothers’ demographic characteristics, which

are publicly available through, for example, the U.S. National Center for Health Statistics

(NCHS), the NJDOH data we obtained contain information on mothers’ home addresses,

geocoded by latitudes and longitudes.29 This information allows us to include residential

address fixed effects in our estimation, to disentangle the effect of elevated levels of lead in

drinking water from the effect of having lead pipes at home, and also identify mothers in

the impacted and non-impacted parts of the city. We limit our analysis to singleton births

(about 96 percent of the NJDOH birth data), to avoid confounding factors causing adverse

birth outcomes that are specifically related to carrying multiple fetuses in one pregnancy.

There are 838,337 singleton live births in New Jersey over our analysis period, with 36,173

singleton live births occurring in Newark. Among the total number of singleton live births

that occurred in Newark between 2011 and 2019 used in our regression analysis (which is

34,276),30 the number of unique residential addresses is 2,810. Note that each address is

geocoded by a pair of latitude and longitude coordinates, and this pair of coordinates can

apply to multiple people who live, for example, in the same structure such as an apartment

building or multi-family dwelling.31

Appendix Table A1 compares Newark to the U.S. as a whole and to similar sized cities,

based on 2016–2019 data from the American Community Surveys (ACS), on key socioeco-

nomic characteristics.32 Median household income in Newark is $44,000 (39 percent lower

than the U.S. average), and the poverty rate in the city (27.1 percent) is roughly double.

Newark is predominantly black (50.2 percent) and low-educated (63.7 percent of residents

29 In contrast, the lowest level of geography identified in the vital statistics data available at the U.S.
NCHS is the county and city (for cities with at least 100,000 population).

30 Out of 36,173 total number of singleton live births, our estimation sample comprises 34,276 births for
which we have non-missing information for all of the variables used in the regression models.

31 In our estimation sample that includes birth years 2011–2019, only 241 observations (i.e., 0.7% of the
sample) do not have repeated pairs of latitudes and longitudes, and these observations do not contribute to
the identifying variation in the regression model that controls for residential address fixed effects.

32 Identification of cities in the ACS data is incomplete; statistics in the last column of Appendix Table A1
correspond to the following cities identified in the ACS with a population within +/- 10% of the population
in Newark: Anchorage, AK; Buffalo, NY; Jersey City, NJ; Laredo, TX; Lincoln, NE; Pittsburgh, PA; Saint
Louis, MO; Saint Paul, MN; Toledo, OH.
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ages 24+ have at most a high school degree). A significantly higher share of residents are

uninsured than the U.S. average, partly due to the high share of immigrants, Hispanic indi-

viduals, and minorities. While Newark is closer to other similarly medium-sized cities with

respect to socioeconomics relative to the U.S. as a whole, its population is still relatively

more disadvantaged and more diverse.33 The housing stock in the city is relatively old, with

over 71 percent built prior to 1980 and thus likely to contain lead plumbing fixtures in addi-

tion to being serviced by the lead pipelines. Finally, it is notable that the rate of renters in

Newark is one of the highest among any major city (73.8 percent). Renters, compared with

homeowners, are probably less likely to investigate the presence of lead service lines when

making residential decisions or making major investments in their rental dwelling.

3.2 Identification Strategy

We employ a generalized difference-in-differences (DID) research design to identify causal

effects of exposure to lead in drinking water—the “treatment”—on fetal health. We rely

on the specific situation arising from Newark’s water treatment and the ensuing natural

experiment, which resulted in higher levels of lead exposure among some parts of the city

but not others, to define the treatment and control groups as well as the pre- and post-

treatment periods. In Section 4.3 we give detailed discussions regarding the plausibility of the

common-trend assumption needed for the DID to allow causal inference. From the standpoint

of minimizing the influence of confounding factors, it would be ideal to focus on mothers

living right at the boundary between the two water plants’ service areas, where mothers are

plausibly separated randomly (unless there is residential sorting based on knowledge of the

exact location of the boundary). However, in our empirical setting the population density

very close to the boundary is relatively low, which restricts our statistical power to detect

a treatment effect. We provide more discussion on this point in Section 4.5, in which we

33 Comparing Newark to Flint, Michigan, median household income in Newark is about 48% higher and
the poverty rate is about 10 percentage points lower relative to Flint; Newark also has a smaller black
population and larger immigrant population compared to Flint.
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conduct a near-border, rather than a sample-intensive at-border, analysis.

As noted earlier, water supplied to Newark is treated by two plants: the Pequannock

plant and the Wanaque plant. The unique situation in Newark’s water treatment is that the

two plants rely on different chemical agents for corrosion control: Pequannock uses sodium

silicate (City of Newark, 2018), while Wanaque uses orthophosphate (City of Newark, 2019).

Both chemicals are approved by the EPA and effective in preventing dissolution of lead into

the water by forming a protective layer (i.e., a diffusion barrier) on the interior surface of

a lead pipe, although orthophosphate is more commonly used for corrosion control than

sodium silicate (EPA, 2016b).

Pequannock’s decision to use sodium silicate resulted from a corrosion optimization study

conducted by the city of Newark in 1994. In that study both orthophosphate and sodium

silicate proved to be effective corrosion inhibitors, but it was found that using orthophosphate

could have negative environmental impact because of a specific situation of the water treated

by that plant: water treated by Pequannock flows downstream into an uncovered, open-air

reservoir, and this open body of water provides a conducive environment for orthophosphate

to trigger algae growth (which is harmful) when that chemical gets into that reservoir (City

of Newark, 2018).34

Pequannock started using sodium silicate for corrosion control in 1997, and the chemical

had been effective since then. In 2016, however, the sodium silicate used by Pequannock was

found to have become ineffective: the protective layer of lead service lines formed by the use

of that chemical sloughed off. This was due to the pH in the water treated by Pequannock

falling out of the range needed for sodium silicate to be an effective corrosion inhibitor (City

of Newark, 2018). The lowered pH resulted from a deliberate decision made by Pequannock in

2015, to increase the acidity level (i.e., lowering the pH) of its treated water with the purpose

of reducing disinfection byproduct formation (City of Newark, 2018).35 While previously the

34 When getting into an open body of water, orthophosphate can cause phosphorus concentrations. With
phosphorus being a nutrient for algae, this can cause algal blooms.

35 This was in response to a 2012 EPA rule that had strengthened monitoring of carcinogenic disinfectant
byproducts.
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pH of water treated by Pequannock was maintained around 8.0, it dropped to approximately

6.9 to 7.3 between 2015 and 2018 (see Figure 3 Panel A),36 triggering a rapid release of lead

from the pipes into the water (City of Newark, 2018).37

Our study uses the change in pH in the water treated by Pequannock (resulting from the

plant’s decision made in 2015), with the first indication of elevated lead levels in Newark

being discovered in March 2016, as a natural experiment. In our study the treatment group

comprises mothers living in the area serviced by Pequannock, and the control group includes

mothers living in the area serviced by Wanaque. These two plants service the entire city

separately: Pequannock services the western part of the city, and Wanaque services the

eastern part of the city (City of Newark, 2018; City of Newark, 2019). The two service

areas, delineated using the georeferencing method, are shown in the map depicted in Figure

1.38

We define birth years 2011–2015 as the pre-treatment period and birth years 2016–2019 as

the post-treatment period. Figure 3 (Panel B) shows trends in lead contamination in water

sampled across the Pequannock (treated) and Wanaque (control) service areas. Prior to 2016,

tests from both service areas indicated compliance with the EPA’s LCR (i.e., lower than 10

percent of samples testing above 15 ppb).39 However, after 2016, there was a significant run-

up in lead in tap water sampled from residences in the Pequannock service area. Through

36 Note that the pH scale uses decimal logarithm, and therefore a decrease in pH by one unit indicates a
10-fold increase in the acidity of the water.

37 Newark’s corrosion control program had been tested in water with a very high pH (8.5 to 9.0), and
optimal effectiveness is achieved with a pH of 8 to 9. In fact, the EPA (2016b) generally recommends a
target pH of 8.8 to 10. Any anti-corrosion benefits of the silicates are lost when pH is adjusted below 7.5
(Thompson et al., 1997). Using historical data, Clay, Troesken and Haines (2014) show that a pH below 7.3
potentially could trigger a rapid increase in lead leaching into water, based on which they identify a causal
effect of lead exposure on infant mortality in American cities during the period of 1900–1920.

38 The authors produced this map in ArcGIS Pro 2.8.3. The shapefile delineating the boundary of Newark
(New Jersey) was obtained from the City of Newark Open Data portal (https://data.ci.newark.nj.us/dataset/
wards, accessed in September 2021). The authors used ArcGIS 2.8.3 to georeference the image showing the
service areas of the two water treatment plants, and this image is shown in Appendix Figure A1.

39 Note that prior to 2016, Newark was on a triennial monitoring cycle; hence, citywide lead tests of
drinking water are not available for every year, and were not conducted in 2016. However, as noted earlier,
the first indication of lead seeping into drinking water came from tests conducted in Newark public schools,
which found 30 (out of 66) schools testing positive for elevated lead levels in 2016. This is consistent with
the timing of the reduction in the water pH and ineffectiveness of sodium silicate as a corrosion inhibitor.
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the end of 2019, tests indicated that this part of Newark had been in consecutive non-

compliance since the start of the frequent biannual monitoring cycle. In contrast, trends

in lead levels remained flat and in compliance in all periods in the Wanaque service area.

As this figure shows, the risk of prenatal exposure to lead in drinking water significantly

increased for babies born post-2016 and born to mothers living in the areas serviced by

Pequannock, because of the unintended consequence of the plant’s decision that eventually

made the corrosion inhibitor (sodium silicate) it had been using ineffective. In contrast, the

corrosion inhibitor (orthophosphate) used by Wanaque remained effective between 2016 and

2017; more detailed information is provided in City of Newark (2018).

Note that it takes time for lead to leach from the pipes into the water (following the failure

of the corrosion inhibitor). As a result, increases in lead levels in the water will materialize

with a time lag, which may explain the only modest uptick in lead levels in drinking water

treated by Pequannock in 2015 (Figure 3 Panel B), when there was a rapid drop in pH of

the treated water (Figure 3 Panel A). Despite this small uptick, the water treated by the

impacted plant remained in full compliance with the EPA standards in 2015. We therefore

include births that occurred in 2015 as part of the pre-treatment period. Any impact of

prenatal exposure to lead for these births in 2015 would be nil to minor, and if there were

any such adverse effects, we are erring on the side of providing a conservative estimate of

the treatment effect.40

3.3 Econometric Specification

Our empirical approach proceeds in a stepwise manner to address specific issues that arise

and to leverage the plausibly exogenous variation underlying the natural experiment. We

40 Note that we only have the information on when elevated lead levels in Newark’s drinking water were
first discovered, based on the city’s monitoring cycle, and also reported by media (i.e., in March 2016). We
do not know exactly when elevated lead levels in Newark’s drinking water actually occurred (since the city
was on a triennial testing cycle prior to the crisis), or the date when the Pequannock plant increased the
acidity level of its treated water. As a result, we are not able to use the year of conception, which is measured
as the mother’s (first day of the) last menstrual period (i.e., the earliest possible day of conception), to define
the pre-treatment and post-treatment periods.
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start with the following baseline DID specification, which can be interpreted as a reduced-

form production function of infant health linking birth outcomes to prenatal exposure to

lead in drinking water (Corman, Dave and Reichman, 2018; Dave and Yang, 2022):

yi,jt = α0 + α1treatiTt + x′
i,jtα2 + γj + λt + εi,jt (1)

In equation (1), yi,jt denotes a specific birth outcome (e.g., LBW) of an infant born to mother

i living at address j who gave birth in a year-month indexed by t.41 The variable treat is

binary, equal to one for the treatment group, and equal to zero for the control group. The

variable T is also binary, equal to one for the post-treatment period, and equal to zero for the

pre-treatment period. The key parameter of interest in our study is α1, an intention-to-treat

parameter which captures the effect of in utero exposure to elevated lead levels in drinking

water on fetal health, operating through all reinforcing and mitigating mechanisms—that is,

through biological, stress-induced, and compensatory self-protective pathways.

We include maternal residential address fixed effects (γj), in order to disentangle the effect

of elevated levels of lead in drinking water (from differential acute exposure post-crisis) from

the effect of just living in an old home that may contain lead pipes or lead paint, as well

as controlling for any persistent environmental exposures at the residential address level.42

Since the residential address fixed effects accommodate fixed effects that are based on broader

geographic scopes (e.g., zip code fixed effects), we are also controlling for unobserved time-

invariant neighborhood factors, such as local infrastructure, built environment, and access to

health care. The residential address fixed effects allow us to disentangle the impact that was

specifically driven by the exogenous variation in lead exposure (e.g., more lead seeping into

41 We use a comma between the subscripts i and jt to emphasize that our data are not longitudinal in i:
in the birth data we obtained from the NJDOH there is no unique identifier for each mother, which precludes
the use of mother fixed effects.

42 Note that in regression models using fixed effects to estimate effects of interventions, there is generally a
reweighting of the estimates based on sizes of groups to which fixed effects are applied (Miller, Shenhav and
Grosz, forthcoming). Our regression model is based on a DID design, in which we use residential address
fixed effects as finer controls to replace the dummy variable indicating the treatment/control group, implicitly
imparting a larger weight to larger families/households and/or resident mothers in larger dwelling units.
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the tap water) from other longer-term and persistent environmental exposures associated

with the dwelling and its neighborhood.

To control for any seasonality effects that exist in pregnancy or birth outcomes, as well

as common shocks affecting mothers during the sample period, we include year-and-month

of birth fixed effects (λt). Also included in this model is a vector of individual level control

variables (x): the sex of the baby; the mother’s age, race and ethnicity, educational attain-

ment, marital status, parity, the number of prenatal visits, as well as smoking status;43 and

whether or not the mother has had a previous preterm birth, which we use as a proxy for

unobserved maternal health endowment at the time of pregnancy. We estimate all models

by ordinary least squares (OLS), with standard errors clustered by year and month of birth.

We extend the baseline specification in several ways to address additional issues. We

leverage precise information on the spatial boundary separating residents within Newark,

serviced by the two water treatment plants, and implement a near-border analysis comparing

mothers who live relatively close to the border. While our preferred specification relies on

comparing impacted mothers with non-impacted mothers within Newark, drawing on the

Wanaque service area to form the counterfactual, we show that our results are not sensitive

to alternate controls that draw on mothers residing in cities and towns neighboring Newark

which did not experience elevated lead levels in their drinking water during our sample

period, both in the DID framework and in analyses that leverage the spatial border of

Newark from adjacent towns. We further assess whether our effects on birth outcomes are

driven by compositional shifts in the sample of mothers giving birth across the treated and

control areas, or whether driven by changes in fertility or miscarriages.

A critical assumption needed for the DID research design to credibly identify the causal

effect is that, in the absence of the water contamination, trends among mothers residing in

the Wanaque service area are a valid counterfactual for trends among mothers living in the

43 In the NJDOH birth data, maternal smoking status is measured by a binary response (yes/no) to the
following question: “Did mother smoke cigarettes before or during pregnancy?” As a result, the maternal
smoking status measured by this response can capture the status for two different periods—(1) before
pregnancy and (2) during pregnancy—not necessarily for the latter exclusively.
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Pequannock service area. In order to assess the validity of the counterfactual, we conduct a

fully-specified conditional event study based on the following specification and disentangle

the timing of the response:

yi,jt = β0 +
2019∑

l=2011,6=2015

β1,ltreatiDl + x′
i,jtβ2 + γj + λt + εi,jt (2)

In equation (2), Dl is a dummy variable, equal to one if birth year is l (where l = 2011, · · · , 2019

except 2015) and equal to zero otherwise. Here, without loss of generality we use birth year

2015, which directly predated the water contamination, as the reference category.

The event study framework serves two purposes. First, it allows us to directly test for

differential pre-crisis trends by evaluating the magnitude and statistical significance of the

lead coefficient (i.e., β1,l where 2011 6 l < 2015). Second, the event study allows us to

trace out the dynamics of the main DID effect from equation (1) across each period over

the post-crisis window. This allows us to gauge effect dynamics as the crisis unfolded, from

the first post-crisis year when residents remained largely uninformed of the true scope of the

lead contamination, to later years when reports became more widespread. As information

regarding the water contamination diffused across residents, this would also be expected

to elicit self-protective behavioral and/or stress-related responses among pregnant women.

While we are limited in the prenatal behaviors we can observe, we assess whether mothers

responded to the crisis by increasing their contact with physicians (prenatal visits) that may

have mitigated the effects of lead exposure on their pregnancy outcomes.

4 Results

4.1 Descriptive Statistics

Table 1 presents the summary statistics for sub-samples defined jointly by treatment status

and treatment periods (columns 1–6) and for the full sample (column 7). Comparison of the
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means in Table 1 underscores two points. First, the rates of LBW and preterm births are

significantly higher in the treatment group relative to the control group. These differences

are driven by the treatment group including mothers who are relatively more disadvantaged

(more likely to be unmarried and African American, for instance), although educational

attainment appears to be somewhat similar between the treatment and control groups in

the pre-treatment period. Second, a simple DID calculation (without covariate adjustment)

shows an increase in the LBW rate by 1.4 percentage points,44 for the treatment group and

during the 2016–2017 period; in this period the LBW rate in the control group remains

constant. However, when we expand the post-treatment period to include later years of 2018

and 2019, we see that the LBW rate in the control group also experiences some increase.

This pattern could be explained by information spillovers, which we will discuss in more

detail below.

Table 2 repeats the analyses done in Table 1 but focusing on mothers living within one

mile of the boundary between the areas serviced by the two water treatment plants. Here,

we confirmed the same pattern: a simple DID calculation (without covariate adjustment)

shows an increase in the LBW rate by 1.4 percentage points,45 for the treatment group and

during the 2016–2017 period; with later years of 2018 and 2019 added to the post-treatment

period, we noticed an increase in the LBW rate in the control group whereas the LBW

rate remains relatively constant in the treatment group. Stability in the pattern of results

in the descriptive statistics is noteworthy even though the sample size in Table 2 is on

average 35% smaller than the sample size in Table 1. Another noticeable pattern in Table

2 is that pre-existing differences in mothers’ race and ethnicity between the treatment and

control groups are considerably narrowed than those in Table 1. This pattern suggests that

residential sorting based on race and ethnicity, while being salient for the whole city, appears

less significant but still existent near the boundary between the two plants’ service areas.

44 For LBW: (0.095 - 0.081) - (0.054 - 0.054) = 0.014.
45 For LBW: (0.092 - 0.077) - (0.057 - 0.056) = 0.014.
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4.2 Main Analysis

The remarkable similarity in the simple DID estimates we calculated from Tables 1 and 2

suggests the presence of an exogenous variation in lead exposure that is linked to the two

water treatment plants’ service areas. We rely on this exogenous variation to identify a

causal effect of lead exposure. From the standpoint of controlling for confounding factors, it

seems preferable to identify that causal effect at the boundary, where residential sorting could

be viewed as continuous at the boundary and there is a discontinuous change in the lead

exposure. However, Figure 1 reveals that such an identification is not really feasible in our

empirical setting given that population density very close to the boundary (e.g., within 0.5

miles) is relatively low, especially for the control group. As a result, our main analysis uses

the full sample to implement the DID, and we give detailed discussions on the plausibility

of the common-trend assumption needed for the DID in the next section. Furthermore, we

conduct a near- (rather than an at-) border analysis with results reported in a following

section.

Table 3 reports the results of our main analysis based on the DID specification described

by equation (1). For each birth outcome we use three different ending years for the post-

treatment period. One important observation is that the adverse fetal health impact appears

to be concentrated at the beginning part of the post-treatment period, especially for birth

weight and LBW. We find an increase of 1.47 percentage points or 18 percent46 in the likeli-

hood of LBW among babies born in 2016–2017 and born to mothers living in Pequannock’s

service area, who were exposed to increased levels of lead in drinking water during preg-

nancy.47 That the adverse health effect on continuous birth weight is weaker (approximately

46 Here, 0.0147/0.081 ≈ 18%, where 0.081 is the average LBW rate for the treatment group in the pre-
treatment period (reported in Table 1).

47 In Appendix Table A2 we report the full set of estimates. Our estimates are also robust to controlling
for zip code-specific linear time trends (i.e., each zip code interacted with a linear time trend of birth year
and month), which parametrically account for unobserved time-varying factors that may differ across parts
of the city. Results are reported in Appendix Table A3. This robustness suggests that omitted variables bias
that comes from zip code-level time-varying unobserved heterogeneities may not be a major concern once
we control for residential address fixed effects and year-and-month of birth fixed effects.
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a 31-gram decrease) indicates that the adverse impact is largely concentrated in the lower

tail of the birth weight distribution. Similar to, although not as salient as, the pattern ob-

served for birth weight and LBW, we find the effects on gestational length and preterm births

appear to be stronger closer to the beginning part of the post-treatment period. Specifically,

the likelihood of a preterm birth is predicted to increase by 1.91 percentage points or 19

percent,48 among babies born in 2016–2017 and born to mothers in the treatment group.49

Possible reasons for the diminishing adverse effects over time that are revealed in Table 3

include information spillovers and maternal behavioral responses, which may emerge as the

lead crisis unfolded (during the post-treatment period). We discuss and assess these possible

channels below.

4.3 Checks on the Identification Assumptions

We conduct multiple checks on the identification assumptions needed for our causal inference,

specifically with respect to the common trend, selection into birth and migration. We first

check the plausibility of the common-trend assumption needed for the DID, and we report

the results in Table 4. Here, we use the presence of a common trend between the treatment

and the control groups in the pre-treatment period to support the assumption of a common

trend in the post-treatment period in the absence of the treatment. Specifically, we run the

regression model described by equation (1) only on the pre-treatment period, which is divided

into two parts: one part is a true pre-treatment period; the other part is used as a false post-

treatment period. In this analysis we confirm that there are no pseudo-treatment-induced

differences in birth outcomes (e.g., LBW and preterm births) between the treatment and

control groups in periods preceding the crisis. The flexible event study analyses discussed

later also confirm that birth outcomes trended virtually identically in both parts of Newark

48 Here, 0.0191/0.098 ≈ 19%, where 0.098 is the average rate of preterm births for the treatment group in
the pre-treatment period (reported in Table 1).

49 We also use c-section as a crude proxy for any birth complications, and we use it as an additional
dependent variable for the regression analyses done in Table 3. Here we find the coefficient on c-section to be
statistically insignificant and the point estimates are close to zero. These results are available upon requests.
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prior to the crisis.

Next, we assess potential selection into births. The water crisis in affected parts of Newark

may have altered (or could be confounded with changes in) the composition of women giving

birth.50 If so, then the adverse effects we uncover may conflate a potential shift in the

composition of mothers who tend to give birth to less healthy babies even in the absence

of exposure to lead. To assess this possibility, we analyze the demographic characteristics

of the mothers giving birth, and the results are reported in Figure 4.51 Overall, for the

entire sample period (2011–2019) there is some evidence suggesting a higher likelihood of

babies born to mothers of higher socioeconomic status, which is indicated by an increased

likelihood of the mother being white, in the treatment group and in the post-treatment

period (Case A of Figure 4). The same pattern is confirmed among mothers living within

one mile of the service area boundary for the period of 2011–2017 (Case B of Figure 4)

during which the treatment effects are found to be most salient (Table 3). We do not find

any other statistically significant or economically meaningful shift in maternal characteristics

associated with the crisis. With the differential shift towards births observed among white

mothers, if our treatment effect estimate is biased, then the bias would be more likely to

result in an underestimate since higher socioeconomic status is usually associated with better

50 Selection into births may also be driven by delays or failures of conception, or miscarriages. If less
healthy fetuses are more likely to miscarry resulting in relatively healthier births, then adverse effects on
birth outcomes from lead exposure would be understated. While we do not have information on delayed
or failed conception, or miscarriages in the NJDOH birth data, we assess the importance of these selection
pathways indirectly, using various specifications and for the period of 2011–2017 when adverse health effects
are found in multiple birth outcomes (Table 3). Results are reported in Appendix Table A4. In column (1)
we assess the impact on the likelihood of a female birth. The biological fragility of the male fetus to negative
health shocks is often used to indirectly test for miscarriages, which would result in a greater likelihood of
observing a female birth. We do not find any statistically significant effect of the Newark water crisis on this
proxy measure. In column (2) we assess the impact on total births at the zip code level. We find that impact
to be statistically insignificant and the point estimates to be small in magnitude. We interpret this finding
as suggestive evidence that the adverse effects of Newark’s lead-in-water crisis on fetal health are not likely
to be driven by pregnancy behaviors or miscarriages. The live births included in the sample used for our
estimation seem unlikely to be “survival of the fittest” who were exposed to lead in utero. One explanation
for the lack of culling in utero could be that the exposure to lead did not reach a level high enough to trigger
culling.

51 In this figure point estimates and the associated 95% confidence intervals are reported (in the “rope
ladder” plots), which are obtained from the DID estimation based on the equation (1) using each demographic
characteristic (listed in Figure 4) as the dependent variable.
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health. We also report on race-specific estimates below to bypass this racial compositional

selection.52

The shift in composition of mothers giving birth may be also related to selective migra-

tion, for instance, if Newark’s water crisis induces some mothers to move out of the city.

With the vast majority of Newark residents (74%) being renters, for whom migration rates

tend to be higher in general than for homeowners, it is possible that some residents move out

of the city in response to higher perceived costs of staying (due to reduced water quality).

On the other hand, the population in Newark is also largely of low socioeconomic status

(see Appendix Table A1), for whom the costs of moving tend to be relatively higher.53 To

assess whether trends in migration patterns in the affected areas may have diverged after the

onset of the water crisis, we turn to data from the ACS of 2011–2019 (covering our sample

period). Migration in the ACS is observed across and within public use microdata areas

(PUMAs).54 Using this information, we define two outcomes: 1) an indicator for moving

across PUMAs; and 2) an indicator for moving within a PUMA. We estimate DID models of

these two outcomes for adult women (aged 18 or older), with the treated group comprising

individuals who resided in Essex County (with Newark being its largest city and constitut-

ing its county seat) in the past year (and the control group including the rest of individuals

living in New Jersey but outside Essex County).55 For adult women overall, there is no

52 In Appendix Figure A2 we repeat the analyses done in Figure 4 but focusing only on the pre-treatment
period. Here, we find a pattern that is similar to the one revealed in Tables 1 and 2: the differences in mothers’
demographic characteristics between the treatment and control groups in the pre-treatment period are smaller
among mothers living near the boundary between the service areas of the two water treatment plants. But,
only except for educational attainment, those differences are still statistically significant, suggesting the
presence of residential sorting even near the service area boundary.

53 In fact, the propensity to move has been found to be lower among individuals with less educational
attainment, though largely similar across income groups, and also found to be lower among blacks, Hispanics,
and foreign-born individuals (Molloy, Smith and Wozniak, 2011).

54 PUMAs are geographic units with a population of at least 100,000 individuals and that are fully nested
within states. There are 73 PUMAs defined for New Jersey, which are available in the ACS for current
residence. However, for questions on migration, several of these are combined together. Hence, the lowest
level of geographic information surrounding Newark that is available for residence prior to migration is for
Essex County. Notably, Newark is the largest city in Essex County, making up over 35% of the county
population.

55 For within-PUMA migration, because we focus on moving out of Newark compared with not moving,
our treatment group excludes women who currently reside in Newark if they reported moving in the past
year. If a woman reported moving within Essex County, but currently lives in Newark, she may have moved
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indication of any effects of the water crisis on migration, either out of the county or within

the county; effects are close to zero and statistically insignificant. When we restrict the

analyses to lower-educated women (high school or below), we find a marginally significant

increase in the likelihood of moving out of the county, and moving within the county; the

effect magnitude is small, about 0.6 percentage points (8% relative to the mean migration

rate in Essex County for the sample). For higher-educated women, we find a decrease in

within-county migration (0.9 percentage points), with no significant effect on moving out of

Essex County. These effects are sensitive to area-specific trends, and become even weaker

and less significant, suggesting that these patterns for Essex County could be more related

to longer-term secular trends in migration rather than the water contamination in Newark

per se. We find no other statistically significant or meaningful differences for other sub-

populations.56 We interpret this evidence as indicating that systematic migration responses

may be nil, and if they are present then if anything the pattern of possible out-migration of

lower-educated women would only serve to attenuate the estimated treatment effects.

4.4 Robustness Checks

In this section we conduct robustness checks on our main findings using the method proposed

by Oster (2019). Specifically, we evaluate the robustness of our estimated treatment effect—

an increase in the likelihood of LBW by 0.0147 (significant at the 10% level) in the treated

area and in the post-treatment period over the sample period of 2011–2017 (reported in

column 1 of Table 3). We examine how robust this estimate can be in the presence of

within the city, or she may have moved from out of Newark to Newark.
56 Results are available from the authors upon request. We also separately explored effects on in-migration

to Newark, based on an indicator of whether the ACS respondents reported moving into their residences
in the past 12 months. Again, this is by no means an ideal measure since a respondent may have moved
from one part of Newark to another. We find a decline in this proxy of in-migration (effect magnitude of
about 2 percentage points, off a mean of 8.1%). While negative for both groups, the effect is slightly larger
for lower-educated women. Interestingly, the effect for lower-educated women is similar for both the eastern
and western parts of Newark, a detail in the PUMA we are able to observe when we explore in-migration,
and again suggesting that these migration patterns may be part of Newark’s longer-term development trend.
As with our proxies for out-migration, the effects become weaker and largely insignificant with controls for
PUMA-specific linear trends.
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selection on unobservables, once we control for the residential address fixed effects. Results

of this robustness check are reported in Figure 5. In both panels the x-axis represents

what Oster (2019) refers to as the maximal R-squared. It is the R-squared obtained from a

hypothetical regression model that includes all factors affecting the outcome variable (which

is LBW in our case). These factors include those pre-determined (i.e., determined prior

to the occurrence of the treatment) and those affected by the treatment. A key insight

of Oster’s method of linking selection bias due to unobservables with the stability of the

treatment-effect estimates is the consideration of this maximal R-squared.

In theory, the maximal R-squared can equal one, if all contributing factors mentioned

above are included in the regression model and the outcome variable is also measured without

any error. Though, this is unlikely to happen in practice, and therefore choosing a specific

maximal R-squared will be subjective and must be guided by empirical regularity. Here,

we use a rule of thumb proposed by Oster (2019, p. 189), which is choosing a maximal

R-squared that is 1.3 times the R-squared obtained from the regression model that controls

for residential address fixed effects (which is 0.1403). Based on this, we use a maximal

R-squared of 0.2 (i.e., 0.1403 × 1.3 = 0.18239 ≈ 0.2). Using this maximal R-squared,

Oster’s method produces a bias-adjusted treatment-effect estimate of 0.0135 (shown in Panel

A). In comparison, we hereafter refer to the treatment-effect estimate obtained from the

regression model controlling for residential address fixed effect, which is 0.0147, as the original

estimate. According to Oster (2019), assuming selection on unobservables is as important

as selection on observables and if the interval formed by the original estimate and the bias-

adjusted estimate excludes zero, then the original estimate will be deemed as robust. In our

case the interval is [0.0135, 0.0147], which excludes zero. Therefore, we deem our original

estimate as robust. This robustness can also be justified if the bias-adjusted estimate falls

into the confidence interval of the original estimate. Panel A shows the bias-adjusted estimate

(0.0135) falls into that interval, indicating that our original estimate is robust to selection
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on unobservables.57 Panel A also shows that this robustness can be justified for a wide range

of maximal R-squared, going from 0.2 to 0.46.58

In Panel B we conduct another robustness check also proposed by Oster (2019). Specifi-

cally, this method calculates the degree of selection on unobservables relative to observables,

which Oster (2019) refers to as the coefficient of proportionality.59 This calculation assumes

a value for the maximal R-squared and also assumes the true treatment effect is zero. The

calculated coefficient shows how large selection on unobservables has to be in order to pro-

duce a treatment effect of zero (i.e., completely eliminating the observed effect of prenatal

lead exposure on LBW). For example, in the case of a maximal R-squared set to be 0.2,

the calculated coefficient of proportionality turns out to be 5.6167, meaning that the un-

observables would need to be five to six times as important as the observables in order to

produce a treatment effect of zero. Oster (2019) recommends that the equal selection (i.e.,

the coefficient of proportionality being equal to one) should be used as the upper bound on

the coefficient of proportionality. Based on this upper bound, the observed effect will be

viewed as robust if the coefficient of proportionality is greater than one. In Panel B and in

the range of maximal R-squared previously discussed (regarding the results shown in Panel

A), we see that all calculated coefficients are greater than one. This result again suggests

that the original estimate could be viewed as robust to selection on unobservables.

57 Here, we choose the 90% confidence interval because the original estimate (0.0147) is significant at the
10% level.

58 Note that the R-squared in the regression model that does not control for residential address fixed effects
(i.e., replacing those fixed effects with a treatment dummy variable) is 0.0392. This R-squared increases to
0.1403 by about 258%, once the model controls for those fixed effects. Results in Panel A also indicates that
the original estimate can be viewed as robust to the inclusion of unobservables into the regression model
that raises the R-squared from 0.1403 to 0.46 by about 228%.

59 In Oster (2019), this coefficient of proportionality is referred to as “delta,” which is the ratio of selection
on unobservables over selection on observables. In that paper, selection on observables (or unobservables) is
defined by the covariance between the treatment dummy variable and observables (or unobservables) divided
by the variance of observables (or unobservables).
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4.5 Near-Border Analysis

While the findings from the robustness checks discussed above are reassuring, it may still be

preferable to focus on mothers living exactly on the service area boundary where selection

bias arising from residential sorting could be minimal. We begin this analysis with Figure

6, focusing on LBW and the period during which the effect on LBW is found to be most

salient (results reported in Table 3). The pattern we observe in Panel A is consistent with

the one observed in Table 1. There is a marked increase in the prevalence of LBW pre-

and post-crisis in the treatment group relative to the control group. Moreover, the spatial

discontinuity is far more pronounced and has noticeably widened at the boundary (between

the two service areas) in the post-period (Panel A), though caution needs to be warranted

in this inference since there is an uncertainty in estimating the LBW rate exactly at the

boundary.

To accommodate such an uncertainty, in Panel B we present the binned sample means

and the associated 95% confidence intervals by treatment status and period, for areas that are

within one mile of the boundary. As in Panel A, results in Panel B also indicate the presence

of a widened gap near the discontinuity in the post-crisis period. However, when confidence

intervals are taken into account, there appears to be no significant difference in the LBW

rate between the treatment and control groups in areas very close to the boundary. One

explanation for this finding is that in our empirical setting the population density very close

to the boundary is low (Figure 1), which limits the statistical power to detect a treatment

effect. The effect magnitude at the spatial discontinuity (Panel A), or that based on the

difference-in-discontinuity between the pre-crisis and the post-crisis period (Panel B), is on

the order of about one to 1.5 percentage points, similar to the treatment effects reported in

Table 3 (and in Table 5).

Overall, Figure 6 suggests that our empirical setting lacks sufficient density right at the

boundary to be suitable for a regression discontinuity (or difference-in-discontinuity) design.

In addition, estimating the LBW rate at the spatial boundary without bias requires the
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identification of an optimal bandwidth for the running variable (i.e., the signed distance to

the boundary, positive for the treatment group and negative for the control group), and this

optimal bandwidth is typically used as the upper bound for other bandwidths chosen for

robustness checks. For our empirical setting the optimal bandwidth for the running variable

is calculated to be about 0.5 miles.60 As Figure 1 shows, sample size matched to this optimal

bandwidth is small, particularly for analyzing LBW (which is a small-probability event).

Because of this limitation, we conduct a near- (rather than an at-) border analysis using

alternate bandwidths of one and two miles with a uniform kernel, with estimates reported

in Table 5. Using specifications based on equation (1) but allowing for non-linearities in

the effects of the running variable and its interaction with the treatment status, we find the

treatment effect estimates to be robust across those specifications, and especially salient for

LBW either within one mile or within two miles of the boundary. In particular, consistent

with the pattern observed in Tables 1 and 2, the treatment effect estimate for LBW among

mothers living within one mile of the boundary (columns 1 through 4 of Panel A of Table

5; 1-mile bandwidth with a uniform kernel) is very similar to the treatment effect estimate

(0.0147) obtained from the DID estimation for the full sample (column 1 of Table 3). The

robustness in the treatment effect magnitude across the various estimation strategies vali-

dates the exogeneity of the variation in lead exposure linked to the water treatment plant’s

service area, and the common-trend assumption for both the full sample of mothers across

the treated and control areas and for the sample near the boundary.

4.6 Event Study Analysis

Results reported in Table 3, for alternate post-treatment windows, indicated that the ad-

verse effects were most pronounced during the early periods of the crisis before attenuating.

We further assess these dynamics in the response as Newark’s water crisis unfolded with a

60 Specifically, we obtained the optimal bandwidth using the “rdrobust” package (Stata code downloaded
from https://rdpackages.github.io/, accessed in September 2021) developed by Calonico et al. (2017) and
Calonico, Cattaneo and Titiunik (2014). Results are available from the authors upon request.
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flexible event study analysis (2). Results (coefficient estimates of the time-varying treatment

effects and the associated 95% confidence intervals) are reported in Figure 7. Here, we find

no differential pre-treatment levels or trends between the treated and control groups condi-

tional on the observables included in the regression model, suggesting that the pre-existing

level differences in birth outcomes between the groups (Table 1) are fully explained by the

socioeconomic differences and also adding to the plausibility of the common trend.

Over the post-treatment period, the year-by-year comparison between the treated and

control groups, while lacking some statistical power, appears to confirm the same pattern

revealed in Table 3: the treatment effect is muted over time, with a marked increase in LBW

in the treatment group relative to the control group that occurred about one year after

Pequannock’s decision to reduce the pH level of its treated water, which made the corrosion

inhibitor in the water become ineffective. That decision was made in 2015 with no media

reports or coverage prior to 2016 about elevated lead levels in drinking water,61 and the

marked increase in LBW corresponds to babies born in 2016. The downward trend in the

treatment effect in the post-treatment period may reflect effects of information spillovers as

well as avoidance and compensatory behaviors, which we discuss in the next section.

4.7 Information Spillovers and Behavioral Responses

Trends in Google search queries shown in Figure 2 indicate that there was substantial public

interest after reports of elevated lead levels found in drinking water in Newark public schools

surfaced in March 2016; relative to this initial spike, interest quickly subsided but continued

till 2019, spiking again towards late 2018 with the publicity surrounding the city’s release

of its engineering report and the decision to distribute filters to affected residents, and then

spiking again in the fall of 2019 due to reports on elevated lead levels found in houses even

with filters installed. As a result, it is possible that as the water crisis continues, mothers

61 In fact, during our sample period (2011–2019), 2016 is the first year in which media reported the
existence of elevated lead levels (exceeding the EPA’s threshold of 15 ppb for taking regulatory actions)
found in Newark’s drinking water.
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living in the control area can become “treated” due to stress induced by the ongoing water

crisis; consequently, higher LBW rates may be observed in the control group given the

well-documented association between maternal stress during pregnancy and adverse birth

outcomes (e.g., studies summarized in Bussières et al., 2015). This partial treatment among

the control group may in part explain the muted treatment effects over time in the post-

treatment period shown in Figure 7.

We conduct further investigations to assess the possibility of information spillovers within

the city of Newark by using regions that are outside Newark, and the results are reported

in Table 6. In Panel A we use mothers living in cities and towns that are east of the area

serviced by the Wanaque plant to form the control group, for which and during our sample

period there were no known reports on lead in drinking water. Focusing on LBW, we repeat

the analyses done in Table 3, but contrary to the results in Table 3, here we find the adverse

effects on LBW to be persistent over time in the entire post-treatment period. This result

suggests that information spillovers may be present and only within the city of Newark, and

are driving some of the attenuation in the treatment effects over time.

In Panels B through D we use mothers living in the area west of the area of Newark

serviced by the Pequannock plant (shown in Figure 8) to form the control group. In Panel

B the control group includes mothers living within one mile of the city’s western border.

In this case we do not find any statistically significant treatment effect, which may be due

to two reasons. First, information-spillover-induced stress response may be present in areas

that are immediately outside the western part of the city (where the water crisis occurred).

Second, we have precise information on the boundary between the service areas of the two

water treatment plants within Newark; however, the city’s western border may not follow

exactly the boundary of the treated Pequannock plant’s service area. As a result, mothers

living very close to (within one mile of) the city’s western border outside of Newark may be

partially treated by being exposed to the contaminated water supply, which can attenuate

the treatment effect estimate.
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As a result, we carve out and exclude mothers living in the control area (west of the

Newark city border) but living within one mile of this border. With this exclusion, both the

treatment group and the control group include mothers living within three miles (in Panel

C) or five miles (in Panel D) of the border. Overall, results in Panels C and D show that,

similar to what we find in Panel A, the adverse effect on LBW appears to be persistent over

time. This finding is in contrast to what we find in Table 3, with the difference explained

by the use of two different control groups. These two control groups cover areas inside or

outside the city of Newark, respectively. Taken together, results in Table 6 and Table 3

suggest that within Newark propagation of the information regarding the water crisis that

is linked to the Pequannock plant could have affected residents living in the same the city

but serviced by the Wanaque plant.

Another related issue is the possible presence of avoidance or compensatory behaviors

triggered by the water crisis,62 which we examine indirectly (due to data limitation) by as-

sessing whether there is greater contact with the medical care community among pregnant

women during the water crisis. Results are reported in Table 7. Both columns use the

same pre-treatment period (2011–2015), focusing on the maternal behavioral responses of

the treatment group relative to that of the control group. In Panel A, column (1) reports

the estimated treatment effect on the number of prenatal visits for the entire post-treatment

period (2016–2019), while column (2) reports the estimated treatment effect that varies by

each year of the post-treatment period. Overall, we find an increase in prenatal care uti-

lization in the treatment group during the post-treatment period; in particular, the increase

appears to be most substantial in 2018, which could in part explain why we previously find a

muted treatment effect on LBW (or birth weight) once we expand the post-treatment period

from 2016–2017 into 2018. Although the overall effect of an increase in the number of pre-

natal visits (by 0.2131, or by about 2.4% relative to the average of 8.985 reported in Table

62 For more information on ways of reducing exposure to lead in drinking water, see the EPA’s website
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water#
reducehome (accessed in December 2019).
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1) is small, we interpret this finding as evidence of the presence, not the likely magnitude,

of behavioral responses aimed at mitigating health risks caused by the water crisis.63 The

literature on the effects of prenatal care on birth outcomes in general has produced mixed

and nuanced findings (Corman, Dave and Reichman, 2019). In the context of the water

crisis in Newark, however, physicians may provide valuable information to pregnant women

on how to avoid ingestion and absorption, for instance by using bottled or filtered water,

letting the faucet run prior to drinking to flush out the lead, and increasing the intake of

calcium, iron and vitamin C, which can inhibit lead absorption and help to get rid of lead

from the body.64

In Panel B of Table 7, we repeat the estimations done in Panel A but now for maternal

smoking. One limitation of the smoking measure in the NJDOH data is that it conflates

both smoking prior to as well as during pregnancy, and we therefore interpret these results

with caution. We find a statistically significant reduction (about 1.4 percentage points) in

maternal smoking among mothers living in the treatment area over the entire post-treatment

period (2011–2019); consistent with the pattern observed in Panel A, this reduction appears

to happen mostly in 2018, an eventful year with the unfolding of the water crisis (explained in

63 We also conduct the estimations by mother’s race and ethnicity (white, black, and Hispanic), and we
find that the significant effect on the number of prenatal visits reported in Panel A column (1) of Table 7
appears to be driven by mothers who are black, not by mothers who are white or Hispanic. These results
are available upon request.

64 In our study, we find that an increase in the number of prenatal visits is associated with a decrease
in the likelihood of LBW, suggesting a beneficial effect of prenatal care utilization on fetal health. This
result is reported in Appendix Table A2. In that table we also observe a slightly smaller magnitude of the
estimated effect of maternal lead exposure on LBW based on the regression model that excludes variables on
prenatal care and smoking (column 1). This pattern is consistent with the presence of protection behaviors
indicated by greater use of prenatal care and less smoking (results reported in Table 7), as well as the negative
association between prenatal care and LBW (column 2 of Appendix Table A2) and the positive association
between maternal smoking and LBW (column 2 of Appendix Table A2).
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Section 2.2).65 Since most smokers have initiated smoking prior to age 18,66 the decrease in

maternal smoking likely reflects an increase in cessation, either among women of childbearing

age prior to becoming pregnant or among pregnant women. The decline in smoking may

also be due to greater contact with physicians (increased prenatal care; Wehby, Dave and

Kaestner, 2020) or reflect a form of compensatory behavior to counteract the adverse health

impact of greater lead exposure.

4.8 Heterogeneous Treatment Effects

While it is important to investigate the heterogeneity in the impact of the prenatal lead ex-

posure on fetal health, identifying possible disparities, our ability to do so is limited because

of the sample size used for each dimension of the heterogeneity analysis. Nevertheless, one

dimension that imposes less restriction is fetal sex, since sample sizes for the two sexes are

largely balanced (not lopsided). Here, we estimate the treatment effect by fetal sex, given

that male and female fetuses may respond differently to a compromised intrauterine environ-

ment. Results are reported in Table 8. One robust and striking pattern is that the adverse

impact of prenatal lead exposure on fetal health appears to be concentrated among male

fetuses, which is consistent with the fragile male hypothesis (Eriksson et al., 2010; Kraemer,

2000). Coefficient magnitudes for female fetuses appear to suggest a much smaller response,

and these treatment effects do not achieve statistical significance at conventional levels. This

interpretation should also be qualified by noting that a smaller average effect could mask

65 Danagoulian and Jenkins (2021) find an increase in smoking among mothers exposed to the Flint water
crisis. The increase in smoking (reduction in cessation rates among pregnant women) is consistent with a
stress response induced by the water crisis. The Newark crisis differs from the Flint crisis, notably in regards
to information dissemination and public knowledge. Despite the finding of elevated lead levels in drinking
water in Newark public schools in March 2016, and further violations of the EPA standards in 2017, the
2017 Water Quality Report downplayed the violations. The public was subject to conflicting information,
and remained largely unaware of the scope of the water contamination. Public perceptions of the water
contamination in Flint were more immediate and pronounced, with Flint switching its water source in April
2014, city residents soon thereafter complaining about the color, taste and smell of their water, the city
issuing a boil advisory in August 2014, and General Motors announcing that it was discontinuing the use of
Flint tap water due to high levels of chlorine and corrosion.

66 Data from the 2018 National Survey of Drug Use and Health indicate that over 80 percent of smokers
have initiated smoking by age 18, and over 68 percent have initiated smoking by age 17.
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significant variation in the individual specific treatment effect across the population of female

births.67

5 Conclusion

We provide the first study of the effects of the lead crisis in Newark, informing how prenatal

exposure to lead through tap water impacts birth outcomes. Quantifying these effects is

important for several reasons. First, the crisis in Newark is not singular, but rather em-

blematic of the nation’s aging water infrastructure as many other cities in the U.S. face lead

contamination in their water supply. High lead levels have been found in the tap water in

Baltimore, Chicago, Detroit, Milwaukee, New York, Pittsburgh, and Washington D.C., and

between 2018 and 2020 nearly 30 million people in the nation received their drinking water

from community water systems that were in violation of the EPA’s Lead and Copper Rule

(Fedinick, 2021; Mulvihill, 2021). The American Society of Civil Engineers in its 2017 report

card rated the nation’s drinking water system a D grade, underscoring the aging pipes and

emerging problems with contaminants such as lead.68 The urgency of replacing all lead pipes

in the U.S. water systems was finally recognized in the Infrastructure Investment and Jobs

Act enacted by the U.S. Congress in November 2021 that includes funding of $15 billion for

lead pipe replacement.69

67In Appendix Table A5 we investigate the heterogeneity in the treatment effect along other dimensions.
Because of sample size limitations, we are not able to reject the null of similar adverse effects across the
sub-groups. However, patterns across coefficient magnitudes largely point to the adverse impact of the water
crisis being concentrated among pregnant women of lower socioeconomic status (characterized by educational
attainment and marital status). Women of lower socioeconomic status have been found to have higher rates
of calcium deficiency (Wallace, Reider and Fulgoni, 2013), which leads to greater absorption of ingested lead
for a given level of exposure. Women of lower socioeconomic status may also be less likely to engage in
avoidance and mitigation behaviors, which may otherwise have counteracted the effects of exposure for more
educated and married mothers.

68 Source: https://www.infrastructurereportcard.org/cat-item/drinking water/ (accessed on October 7,
2020).

69 See https://www.wsj.com/articles/how-the-1-trillion-infrastructure-bill-aims-to-affect-americans-lives-11636173786
for details (accessed on November 10, 2021). This final legislated amount is below the originally proposed
funding of $45 billion to eliminate lead service lines nationwide, and, by some amounts, falls well below the
estimated cost of nationwide replacement ($28–$47 billion). For more details, see https://www.brookings.
edu/blog/up-front/2021/05/13/what-would-it-cost-to-replace-all-the-nations-lead-water-pipes/, accessed
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Second, much of our understanding of the health effects of lead comes from potentially

endogenous associations between blood lead levels and health outcomes. The water crisis in

Newark provides a plausibly exogenous source of variation in lead exposure, allowing us to

identify a causal effect of prenatal exposure on fetal health—an effect that is salient because

it captures the overall impact in the population, operating through all channels (biological

and behavioral, including any avoidance behaviors) when water systems fail. The effect

we estimated is also of immediate policy interest since our estimate reflects the presence of

behavioral responses that are insufficient for eliminating the health risk due to lead exposure.

Moreover, population blood lead levels have declined considerably over the past five decades.

Our study therefore captures the effects of an increase in exposure relative to a current low

baseline.

Third, many public health advocates and experts on water systems have called for full

replacement of the nation’s estimated 6 to 10 million lead service lines, with some communi-

ties already having implemented successful replacement programs and other cities developing

plans to do so.70 A comprehensive evaluation of the cost implications of such public invest-

ments requires estimates of the public health impact of lead exposure.

We find robust and consistent evidence that the increased in utero exposure to lead

through water contamination in Newark significantly increased the prevalence of infants

being born with LBW or preterm. There is little evidence to suggest that these effects are

driven by selection into births. Our estimates indicate an approximately 1.5 percentage-point

(or 18 percent) increase in the likelihood of LBW, and an approximately 1.9 percentage-point

(or 19 percent) increase in the likelihood of a preterm birth. These are intention-to-treat

effects of residing during pregnancy in areas with increased lead levels in tap water, since not

every resident here is being exposed to high levels of lead. As part of the city’s lead service

on February 14, 2022).
70 For instance, Framingham (MA), Lansing (MI), Madison (WI), Medford (OR), Sioux Falls (SD), Spring-

field (MA), and Spokane (WA) have fully removed lead service lines in their communities. Subsequent to
the water crisis, Flint initiated a full replacement program of its lead water service lines in 2016, which is
currently underway. Recently, Chicago rolled out a plan for lead service line replacement, fully subsidizing
costs for eligible low-income households and waiving permit fees for other homeowner-initiated replacement.
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line inventory, approximately 61 percent of the city service lines were constructed of lead.71

Inflating the treatment effects by this “exposure” probability implies effect sizes between 2.5

and 3.1 percentage points, with respect to higher levels of lead exposure.72 Our estimates

imply an increase of about 27 to 49 LBW or preterm births in a given year attributed to the

lead-in-water crisis in Newark.73

In March 2019, Newark commenced a program to remove and replace all of the city’s

lead service lines in the water system at no cost to the homeowner, at a projected public

cost of $90–$180 million.74 With the lifetime societal economic burden of a preterm birth

estimated to be approximately $67,532 (Institute of Medicine, 2007),75 the annual societal

cost of the lead crisis in Newark amounts to $1.82–$3.31 million from the estimated increase

in worse infant health linked to the heightened lead exposure each year.76 Assuming a

discount rate for public policy of 2% based on the social rate of time preference (Council

of Economic Advisers, 2017), societal cost savings from averting this adverse fetal health

could be between $91 and $166 million.77 These calculations suggest that the benefits are

71 The city’s lead service line inventory, undertaken in response to its EPA’s LCR violations, shows
18,406 (out of 29,938) of its service pipes were lead (source: https://www.nj.com/essex/2019/08/
newarks-handing-out-bottled-water-what-you-need-to-know-about-the-citys-lead-crisis.html, accessed on
September 9, 2019).

72 To place these magnitudes in context, this increase in low birth weight, while large and clinically
significant, is about half the magnitude of the effect due to maternal cigarette smoking during pregnancy
(Evans and Ringel, 1999; Lien and Evans, 2005).

73 There were 5,210 (10,645) births in the treated part of Newark over the post-treatment period of 2016–
2017 (2016–2019). Combining these bases with the treatment effects for LBW and preterm births from
Tables 3, 5 and 6, and normalizing to an annual basis, yields a range of about 27 to 49 LBW or preterm
births.

74 Source: https://www.newarkleadserviceline.com/replacement (accessed on October 14, 2020).
75 The Institute of Medicine (2007) estimated the societal burden of a preterm birth to be $51,589 in 2005

dollar. We inflate this estimate to 2019 dollars.
76 Here is the calculation: 27 (or 49) preterm births×$67,532 per preterm births≈$1.82 million (or $3.31

million).
77 There is some debate as to the appropriate discount rate to apply for public policy (see for instance,

Council of Economic Advisers, 2017; Li and Pizer, 2021) depending on the social rate of time preference
or the social opportunity cost of capital, and the length of the time horizon under consideration. The U.S.
federal guidance requires agencies to use both a 3% and a 7% real discount rate in regulatory cost-benefit
analyses. Under this guidance, the annual societal cost savings of averting the adverse fetal health would be
between $61 million and $110 million (social discount rate of 0.03) and between $26 million and $47 million
(social discount rate of 0.07). Clearly, the cost implications are sensitive to the discount rate employed. With
long-term real interest rates decreasing substantially over the past decade, a recent issue brief by the Council
of Economic Advisers (2017) recommends lowering the estimate of the social discount rate in applications
to public policy cost-benefit calculus.
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roughly the same order of magnitude as the intervention costs, offsetting much, if not all, of

the public sector cost of lead abatement through service line replacement.78

That the public values such investments to improve the water system infrastructure

in the nation is apparent from the considerable engagement in avoidance behaviors when

contaminant violations in water systems are disclosed to the public (Graff Zivin, Neidell

and Schlenker, 2011). According to McCarthy (2017), drinking water pollution worries

are also at their highest levels since 2001, with 63% of the public reporting that they are

worried a great deal about this issue; concern is even higher among low-income individuals

(75%) and non-whites (80%). The cost-saving estimates we previously discussed are likely

to be lower-bound estimates given that the focus of this study is specifically on adverse

fetal health effects; lead exposure among children has also been found to independently

and adversely impact their development, increasing anti-social and criminal behaviors and

reducing achievement in school.79

We qualify this discussion that since our estimates are derived from a city composed of

a population of lower socioeconomic status (SES) compared to the U.S. as a whole (or even

an average similarly-sized city), the effects may not necessarily generalize due to variation

in media exposure, information processing, and mitigation behaviors. However, Newark is

emblematic of another pattern that speaks to the significance and external validity of our

estimates; low-income and high-minority communities have, in particular, been found to face

disproportionately higher pollutant exposures, and especially greater exposure to drinking

water contamination, for various reasons (Schaider et al., 2019). Thus, for communities that

are experiencing issues with lead-related water contamination, which tend to be low-SES

and minority-prevalent communities, the estimates from this study are highly salient and

78 We ignore here the possibility that replacement of lead service lines, due to partial replacement or
disturbing the pipes, may potentially increase exposure risk temporarily. Though, Gazze and Heissel (2021)
find no such increase in risk for lead service line disturbances in Chicago. Moreover, since Newark commenced
its lead service line replacement program in March 2019, and secured full financing in August 2019, any short-
term exposure risk from the start of the replacement program is likely to be small over our sample period
(2011–2019) and would not impact our treatment effect estimates.

79 See, for instance, Aizer and Currie (2019), Aizer et al. (2018), and Billings and Schnepel (2018).
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would have greater external validity.
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Figure 1: City of Newark and the Areas Serviced by the Two Water Treatment Plants
Notes: The authors produced this map in ArcGIS Pro 2.8.3. The shapefile delineating the boundary of Newark 
(New Jersey) was obtained from the City of Newark Open Data portal (https://data.ci.newark.nj.us/dataset/wards, 
accessed in September 2021). The authors used ArcGIS 2.8.3 to georeference the image showing the service areas 
of the two water treatment plants (obtained from 
https://www.nj.com/essex/2018/11/newarks_now_under_a_national_spotlight_for_lead_in.html, accessed in 
November 2019). The georeferenced image is shown on the map: the area shaded in blue indicates the area of 
Newark serviced by the Wanaque plant; the area shaded in yellow indicates the area of Newark serviced by the 
Pequannock plant; the red line shows the boundary between the two service areas. The yellow dots represent home 
addresses that are within 1 mile of the boundary; the orange dots represent home addresses that are between 1 and 2 
miles of the boundary; and the red dots represent home addresses that are between 2 and 3.3 miles (which is the 
maximum distance in our data) of the boundary.
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Panel A

Panel B

Notes: Panels A and B are for 2015–2018 and 2015–2019, respectively. Google trends do not provide the absolute number 
of queries. In each period (2015–2018 or 2015–2019), the day with the largest number of queries is indexed to be 100 (the 
maximum), and queries on all other days are measured relative to this maximum.

Figure 2: Google Trends Based on Query Terms “Lead + Water + Newark”
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Notes: The figure in Panel A is reproduced from the report by the CDM Smith titled “Pequannock WTP Corrosion Control 
Review and Recommendations—Draft. City of Newark Lead and Copper Rule Compliance Study” (City of Newark, 2018). 
The original figure in the report is denoted “Figure ES-3 – Historic Pequannock WTP Delivered Water pH”. The authors 
have received permission from the CDM Smith to include this figure in this study. In Panel B calculations were based on 
data from City of Newark (2018) and New Jersey Drinking Water Watch from the New Jersey Department of 
Environmental Protection (https://www9.state.nj.us/DEP_WaterWatch_public/index.jsp, accessed in February 2020). 

Panel A

Panel B

Figure 3: pH Levels of Water Delivered by the Pequannock Plant (Panel A) and Percent of Drinking 
Water Testing Samples with Results Showing Lead Levels in Drinking Water > 15 ppb (Panel B)
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Figure 4: Comparisons of Maternal Demographic Characteristics between the Treatment Group and the Control Group
Notes: The estimation samples include live and singleton births among mothers who live in Newark, New Jersey (Case A), or who live in Newark, New Jersey, 
and within 1 mile of the boundary (Case B) between the areas serviced by the two water treatment plants (shown in Figure 1). The treatment group (treat = 1) 
includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers living the area serviced by the Wanaque 
plant. The pre-treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred 
between 2016 and 2019 (Case A) or between 2016 and 2017 (Case B). Each subgraph contains two “rope ladder” plots for Cases A and B, showing the point 
estimates and the associated 95% confidence intervals of the coefficient on “treat × T” of an ordinary least squares (OLS) regression of a maternal demographic 
characteristic on an intercept and “treat × T”, together with the year-month of birth (i.e., monthly) fixed effects and the residential address fixed effects. Standard 
errors in all OLS regressions are clustered by the year-month (i.e., monthly) of birth. The numbers of observations in Cases A and B are 34,276 and 17,684, 
respectively.
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Notes: In Panel A the red line represents the estimate of the effect, which is 0.0147 and statistically significant at 
the 10% level (reported in column 1 of Table 3). The associated confidence interval at the 90% level is also 
reported in Panel A. The bias-adjusted estimate of the effect is referred to as “beta star” in Oster (2019). Also in 
Oster (2019) the coefficient of proportionality is referred to as “delta,” which is the ratio of selection on 
unobservables over selection on observables. In Oster (2019) selection on observables (or unobservables) is 
defined by the covariance between the treatment dummy variable and observables (or unobservables) divided by 
the variance of observables (or unobservables).

Panel A

Panel B

Figure 5: Robustness Checks on the Estimates of the Effect of Prenatal Exposure to Lead on Low 
Birth Weight
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Panel A

Panel B

Figure 6: Low Birth Weight Rate and Distance to the Boundary between the Areas Serviced by the Two Water Treatment Plants
Notes: This figure shows the relationship between the low birth weight (LBW, birth weight < 2,500 grams) rate among singleton births and the distance (measured 
in miles) of each home address to the boundary between the areas serviced by the two water treatment plants (shown in Figure 1). The treated area is the area 
serviced by the Pequannock plant; the control area is the area serviced by the Wanaque plant. In Panel A this relationship is represented by smoothed lines, 
produced by Stata’s “lowess” smoothing estimator with the default bandwidth of 0.8. In Panel B this relationship is represented by binned sample means and the 
associated 95% confidence intervals for home addresses that are within 1 mile of the boundary; dashed horizontal lines represent the average LBW rates by 
treatment status and treatment period. The two plots in Panel B were produced by the “rdplot” package (Stata code downloaded from https://rdpackages.github.io/, 
accessed in September 2021) developed by Calonico et al. (2017) and Calonico, Cattaneo and Titiunik (2014).
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Figure 7: Event Study of Effects of Prenatal Exposure to Lead on Low Birth Weight
Notes: The estimation sample includes live and singleton births among mothers who live in Newark, New Jersey. The outcome variable is low birth 
weight (LBW), a binary variable equal to one for birth weight < 2,500 grams, and equal to zero otherwise. The intervals reported (in the “rope ladder” 
plots) are constructed at the 95% confidence level. Birth years are from 2011 to 2019. Birth year 2016 is defined as year 0, when the treatment was 
present. The reference category is birth year 2015 (i.e., the year before the treatment was present). The treatment group includes mothers living in the 
area serviced by the Pequannock plant. The control group includes mothers living in the area serviced by the Wanaque plant. Standard errors are 
clustered by the year-month (i.e., monthly) of birth. The number of observations in the estimation sample is 34,276.
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Figure 8: Area of Newark Serviced by the Pequannock Plant and the Area West of Newark
Notes: The georeferenced image is shown on the map. Explanations about the georeferencing were given in Figure 
1’s notes. The area shaded in yellow indicates the area of Newark serviced by the Pequannock plant; the red line 
shows that area’s border excluding the boundary (shown in Figure 1) between the service area of the Pequannock 
plant and the service area of the Wanaque plant. The area shaded in gray indicates the area west of the area of 
Newark serviced by the Pequannock plant. The yellow dots represent home addresses that are within 1 mile of the 
border; the orange dots represent home addresses that are between 1 and 2 miles of the border; and the red dots 
represent home addresses that are between 2 and 5.5 miles (which is the maximum distance in our data) of the 
border.
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Appendix Figure A1: Service Areas of the Two Water Treatment Plants of Newark, New Jersey
Notes: This figure shows the image of a map of the City of Newark (which is divided into five wards) and the areas served by the two water 
treatment plants. The image was obtained from the following source: 
https://www.nj.com/essex/2018/11/newarks_now_under_a_national_spotlight_for_lead_in.html (accessed in November 2019). In this image 
the area shaded in blue is served by the Wanaque plant; the area of the rest of the city (i.e., the unshaded area within the city’s border) is 
served by the Pequannock plant. 
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Appendix Figure A2: Comparisons of Maternal Demographic Characteristics between the Treatment Group and the Control Group for the 
Pre-Treatment Period

Notes: The estimation samples include live and singleton births that occurred between 2011 and 2015 (the pre-treatment period), and among mothers who live in 
Newark, New Jersey (Case A), or who live in Newark, New Jersey, and within 1 mile of the boundary (Case B) between the areas serviced by the two water 
treatment plants (shown in Figure 1). The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group 
(treat = 0) includes mothers living the area serviced by the Wanaque plant. Each subgraph contains two “rope ladder” plots for Cases A and B, showing the point 
estimates and the associated 95% confidence intervals of the coefficient on the “treat” dummy variable of an ordinary least squares (OLS) regression of a 
maternal demographic characteristic on an intercept and the “treat” dummy variable, together with the year-month of birth (i.e., monthly) fixed effects. Standard 
errors in all OLS regressions are clustered by the year-month (i.e., monthly) of birth. The numbers of observations in Cases A and B are 19,284 and 12,816, 
respectively.
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Samples: Full
Treatment periods: Pre Post Post Pre Post Post sample
Birth years: 2011-2015 2016-2017 2016-2019 2011-2015 2016-2017 2016-2019 2011-2019

(1) (2) (3) (4) (5) (6) (7)
Birth weight (in grams), among singleton births 3307.991 3295.058 3267.412 3217.152 3178.111 3182.602 3227.627

[515.709] [535.797] [551.023] [548.341] [590.489] [595.238] [560.304]
Low birth weight (1/0): birth weight < 2,500 grams, among singleton births 0.054 0.054 0.065 0.081 0.095 0.095 0.079

[0.226] [0.225] [0.247] [0.273] [0.294] [0.293] [0.269]
Gestational length (in weeks), among singleton births* 38.723 39.083 38.978 38.484 38.752 38.752 38.667

[2.005] [1.742] [1.892] [2.290] [2.203] [2.239] [2.189]
Preterm (1/0): gestational length < 37 weeks, among singleton births* 0.077 0.055 0.064 0.098 0.089 0.086 0.087

[0.267] [0.229] [0.244] [0.297] [0.284] [0.281] [0.281]
Female baby (1/0) 0.505 0.489 0.496 0.491 0.491 0.494 0.495

[0.500] [0.500] [0.500] [0.500] [0.500] [0.500] [0.500]
Mother's age 28.629 29.486 29.598 27.601 28.552 28.711 28.367

[6.021] [6.064] [6.083] [6.187] [6.101] [6.143] [6.172]
Mother being White (1/0) 0.710 0.594 0.543 0.303 0.273 0.237 0.379

[0.454] [0.491] [0.498] [0.459] [0.446] [0.425] [0.485]
Mother being Black (1/0) 0.211 0.203 0.203 0.643 0.606 0.610 0.506

[0.408] [0.402] [0.402] [0.479] [0.489] [0.488] [0.500]
Mother being Hispanic (1/0) 0.657 0.674 0.662 0.360 0.386 0.379 0.453

[0.475] [0.469] [0.473] [0.480] [0.487] [0.485] [0.498]
Mother having completed a four-year college or higher (1/0) 0.136 0.117 0.128 0.141 0.128 0.138 0.137

[0.342] [0.321] [0.335] [0.348] [0.334] [0.345] [0.344]
Mother being married (1/0) 0.358 0.394 0.400 0.256 0.299 0.315 0.309

[0.480] [0.489] [0.490] [0.437] [0.458] [0.465] [0.462]
Number of previous live births the mother had 1.081 1.102 1.143 1.236 1.283 1.281 1.213

[1.194] [1.206] [1.223] [1.372] [1.373] [1.377] [1.330]
Mother having previous preterm birth (1/0) 0.010 0.021 0.024 0.013 0.036 0.032 0.020

[0.100] [0.143] [0.154] [0.114] [0.186] [0.177] [0.140]
Number of prenatal visits 9.725 9.932 9.556 8.886 9.232 8.985 9.139

[3.552] [3.903] [3.949] [3.806] [3.941] [4.047] [3.875]
Mother having smoked before or during pregnancy (1/0) 0.043 0.049 0.045 0.080 0.075 0.067 0.066

[0.204] [0.216] [0.208] [0.271] [0.263] [0.251] [0.247]
Number of observations 5,596 2,216 4,347 13,688 5,210 10,645 34,276

Table 1: Summary Statistics
Control group Treatment group

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The means and standard deviations (in brackets) reported in the table are 
based on the estimation sample including live and singleton births among mothers who live in Newark, New Jersey. The treatment group includes mothers living in the area serviced by the 
Pequannock plant. The control group includes mothers living the area serviced by the Wanaque plant. *: The numbers of observations are 5,497; 2,132; 4,190; 13,489; 4,987; 10,171; 33,347 for 
columns 1 through 7, respectively.
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Samples: Full
Treatment periods: Pre Post Post Pre Post Post sample
Birth years: 2011-2015 2016-2017 2016-2019 2011-2015 2016-2017 2016-2019 2011-2019

(1) (2) (3) (4) (5) (6) (7)
Birth weight (in grams), among singleton births 3296.502 3275.951 3243.062 3230.507 3189.932 3192.229 3230.414

[513.024] [551.206] [561.163] [541.946] [578.428] [591.952] [557.046]
Low birth weight (1/0): birth weight < 2,500 grams, among singleton births 0.056 0.057 0.069 0.077 0.092 0.092 0.077

[0.230] [0.232] [0.254] [0.266] [0.290] [0.289] [0.267]
Gestational length (in weeks), among singleton births* 38.694 39.036 38.901 38.493 38.770 38.755 38.654

[2.031] [1.816] [2.004] [2.258] [2.105] [2.214] [2.185]
Preterm (1/0): gestational length < 37 weeks, among singleton births* 0.078 0.063 0.071 0.093 0.086 0.085 0.085

[0.268] [0.243] [0.257] [0.290] [0.280] [0.279] [0.280]
Female baby (1/0) 0.501 0.486 0.492 0.491 0.491 0.495 0.494

[0.500] [0.500] [0.500] [0.500] [0.500] [0.500] [0.500]
Mother's age 28.050 28.945 29.106 27.600 28.401 28.632 28.176

[6.041] [6.139] [6.089] [6.180] [6.119] [6.142] [6.160]
Mother being White (1/0) 0.632 0.540 0.485 0.378 0.342 0.295 0.405

[0.482] [0.499] [0.500] [0.485] [0.474] [0.456] [0.491]
Mother being Black (1/0) 0.282 0.257 0.265 0.568 0.522 0.531 0.475

[0.450] [0.437] [0.441] [0.495] [0.500] [0.499] [0.499]
Mother being Hispanic (1/0) 0.644 0.661 0.641 0.446 0.475 0.465 0.507

[0.479] [0.473] [0.480] [0.497] [0.499] [0.499] [0.500]
Mother having completed a four-year college or higher (1/0) 0.135 0.115 0.126 0.139 0.121 0.128 0.133

[0.341] [0.319] [0.332] [0.346] [0.326] [0.334] [0.340]
Mother being married (1/0) 0.322 0.353 0.360 0.260 0.307 0.315 0.299

[0.467] [0.478] [0.480] [0.438] [0.461] [0.465] [0.458]
Number of previous live births the mother had 1.090 1.135 1.186 1.219 1.233 1.258 1.207

[1.237] [1.267] [1.283] [1.345] [1.322] [1.350] [1.324]
Mother having previous preterm birth (1/0) 0.011 0.019 0.024 0.014 0.034 0.032 0.020

[0.103] [0.136] [0.154] [0.116] [0.182] [0.175] [0.140]
Number of prenatal visits 9.603 9.876 9.444 9.049 9.395 9.127 9.208

[3.592] [3.924] [3.954] [3.761] [3.891] [4.023] [3.848]
Mother having smoked before or during pregnancy (1/0) 0.048 0.053 0.050 0.078 0.068 0.064 0.065

[0.213] [0.224] [0.218] [0.268] [0.251] [0.245] [0.247]
Number of observations 3,514 1,423 2,792 9,302 3,445 7,029 22,637

Table 2: Summary Statistics, within 1-Mile of the Boundary between the Areas Serviced by the Two Water Treatment Plants
Control group Treatment group

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The means and standard deviations (in brackets) reported in the table are 
based on the estimation sample including live and singleton births among mothers who live in Newark, New Jersey, and within 1 mile of the boundary between the areas serviced by the two water 
treatment plants (shown in Figure 1). The treatment group includes mothers living in the area serviced by the Pequannock plant. The control group includes mothers living the area serviced by the 
Wanaque plant. *: The numbers of observations are 3,451; 1,366; 2,682; 9,170; 3,305; 6,719; 22,022 for columns 1 through 7, respectively.
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Dependent variables:

Birth years used in the estimation: 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat × T 0.0147* 0.0110 0.0089 0.0191** 0.0162** 0.0125** -30.7860** -19.4990 -10.0914 -0.1638*** -0.1136* -0.0828
(0.0083) (0.0071) (0.0064) (0.0080) (0.0067) (0.0063) (15.2933) (13.9825) (13.1544) (0.0602) (0.0580) (0.0526)

Number of observations 26,710 30,645 34,276 26,105 29,868 33,347 26,710 30,645 34,276 26,105 29,868 33,347
R-squared 0.1403 0.1334 0.1279 0.1612 0.1516 0.1444 0.1764 0.1689 0.1627 0.1787 0.1711 0.1644
Control variables
Individual level demographic variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Residential address fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes live and singleton births among mothers who live in Newark, 
New Jersey. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers living the area serviced by the Wanaque plant. The pre-
treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred between 2016 and 2017 (in columns 1, 4, 7, 10), between 2016 and 2018 
(in columns 2, 5, 8, 11), or between 2016 and 2019 (in columns 3, 6, 9, 12). Individual level demographic variables controlled for are infant being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy 
variables for White, Black, and Hispanic), mother having completed a four-year college education or higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having previous 
preterm birth (1/0), number of prenatal visits, and mother having smoked before or during pregnancy (1/0). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -value 
< 0.1; ** p -value < 0.05; *** p -value < 0.01.

Table 3: Effects of Prenatal Exposure to Lead on Birth Outcomes
Low birth weight (1/0, equal to 1 if 

birth weight < 2,500 grams)
Preterm (1/0, equal to 1 if gestational 

length < 37 weeks)
Birth weight (in grams) Gestational length (in weeks)

63



Dependent variables:
Birth years used for the fake post-treatment period: 2015 2014-2015 2013-2015 2012-2015 2015 2014-2015 2013-2015 2012-2015
Birth years used for the pre-treatment period: 2011-2014 2011-2013 2011-2012 2011 2011-2014 2011-2013 2011-2012 2011

(1) (2) (3) (4) (5) (6) (7) (8)

Treat × T 0.0042 -0.0027 0.0005 0.0267 0.0040 0.0050 -0.0097 0.0026
(0.0087) (0.0090) (0.0095) (0.0178) (0.0100) (0.0098) (0.0095) (0.0218)

Number of observations 19,284 19,284 19,284 19,284 18,986 18,986 18,986 18,986
Control variables
Individual level demographic variables Yes Yes Yes Yes Yes Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Residential address fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Table 4: Checks on the Common Pre-Treatment Trend Using Fake Post-Treatment Periods
Low birth weight (1/0, equal to 1 if birth weight < 2,500 grams) Preterm (1/0, equal to 1 if gestational length < 37 weeks)

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes live and singleton births among mothers who 
live in Newark, New Jersey. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers living the area 
serviced by the Wanaque plant. The definitions of the pre-treatment period (T = 0) and the fake post-treatment period (T = 1) are given in the table. Individual level demographic variables 
controlled for are infant being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and Hispanic), mother having completed a four-year college education 
or higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having previous preterm birth (1/0), number of prenatal visits, and mother having smoked before 
or during pregnancy (1/0). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -value < 0.1; ** p -value < 0.05; *** p -value < 0.01.
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Dependent variables:
Birth years used in the estimation: 2011-2017 (1) (2) (3) (4) (5) (6) (7) (8)

Treat × T 0.0147* 0.0145* 0.0146* 0.0146* 0.0077 0.0076 0.0076 0.0077
(0.0086) (0.0086) (0.0086) (0.0086) (0.0087) (0.0087) (0.0087) (0.0087)

Treat -0.0036 -0.0069 -0.0068 -0.0036 -0.0028 -0.0045 -0.0050 -0.0025
(0.0074) (0.0073) (0.0074) (0.0098) (0.0075) (0.0076) (0.0077) (0.0104)

Number of observations 17,684 17,684 17,684 17,684 17,292 17,292 17,292 17,292

Treat × T 0.0163** 0.0163** 0.0163** 0.0164** 0.0139* 0.0139* 0.0139* 0.0139*
(0.0071) (0.0071) (0.0071) (0.0071) (0.0075) (0.0075) (0.0075) (0.0075)

Treat 0.0033 0.0031 0.0028 -0.0070 -0.0018 -0.0017 -0.0019 -0.0086
(0.0056) (0.0055) (0.0055) (0.0080) (0.0060) (0.0060) (0.0060) (0.0087)

Number of observations 24,050 24,050 24,050 24,050 23,506 23,506 23,506 23,506
Control variables used in Panels A and B
Individual level demographic variables Yes Yes Yes Yes Yes Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Distance (signed) Yes Yes Yes Yes Yes Yes Yes Yes
Distance (signed) squared No Yes No Yes No Yes No Yes
Treat × Distance (signed) No No Yes Yes No No Yes Yes
Treat × Distance (signed) squared No No No Yes No No No Yes

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes live and singleton births among mothers who 
live in Newark, New Jersey. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers living the area 
serviced by the Wanaque plant. The pre-treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred between 2016 
and 2017. Distance (signed) is the distance (measured in miles) between a home address and the boundary between the areas serviced by the two water treatment plants (shown in Figure 1): the 
signed distance is positive for the treatment group and negative for the control group. Individual level demographic variables controlled for are infant being female (1/0), mother’s age, mother’s race 
and ethnicity (1/0 dummy variables for White, Black, and Hispanic), mother having completed a four-year college education or higher (1/0), mother being married (1/0), number of previous live 
births the mother had, mother having previous preterm birth (1/0), number of prenatal visits, and mother having smoked before or during pregnancy (1/0). Standard errors (reported in parentheses) are 
clustered by the year-month (i.e., monthly) of birth. * p -value < 0.1; ** p -value < 0.05; *** p -value < 0.01.

Panel A: Sample includes home addresses that are within 1 mile of the boundary between the areas serviced by the two water treatment plants.

Panel B: Sample includes home addresses that are within 2 miles of the boundary between the areas serviced by the two water treatment plants.

Table 5: Effects of Prenatal Exposure to Lead on Birth Outcomes near the Boundary between the Areas Serviced by the Two Water Treatment Plants
Low birth weight (1/0, equal to 1 if birth weight < 2,500 grams) Preterm (1/0, equal to 1 if gestational length < 37 weeks)
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Birth years used in the estimation: 2011-2017 2011-2018 2011-2019
(1) (2) (3)

Treat × T 0.0161** 0.0131*** 0.0134***
(0.0061) (0.0049) (0.0043)

Number of observations 64,160 73,596 82,656
Residential address fixed effects Yes Yes Yes

Treat × T 0.0038 -0.0008 -0.0014
(0.0065) (0.0059) (0.0054)

Number of observations 31,321 36,052 40,474
Distance (in miles) and treat (1/0) Yes Yes Yes

Treat × T 0.0153** 0.0108* 0.0111**
(0.0069) (0.0061) (0.0055)

Number of observations 33,615 38,584 43,388
Residential address fixed effects Yes Yes Yes

Treat × T 0.0162** 0.0097 0.0096*
(0.0066) (0.0061) (0.0054)

Number of observations 38,014 43,621 49,067
Residential address fixed effects Yes Yes Yes

Individual level demographic variables Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes

Panel D: The control group includes mothers living in the area west of the area of Newark serviced by the Pequannock plant. 
The estimation sample includes home addresses that are within 5 miles of the boundary (shown in Figure 8) but excluding 
home addresses in the control group that are within 1 mile of that boundary. 

Control variables used in Panels A through D

Table 6: Effects of Prenatal Exposure to Lead on Low Birth Weight Based on Alternative Control Group 
Definitions

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The 
estimation sample includes live and singleton births among mothers who live in Newark, New Jersey. Low birth weight is a 
dummy variable, equal to one if birth weight is less than 2,500 grams and equal to zero otherwise. The treatment group (treat = 
1) includes mothers living in the area serviced by the Pequannock plant. The definitions of alternative control groups (treat = 0) 
are given in the table. The pre-treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-
treatment period (T = 1) includes births that occurred between 2016 and 2017 (in column 1), between 2016 and 2018 (in 
column 2), or between 2016 and 2019 (in column 3). Individual level demographic variables controlled for are infant being 
female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and Hispanic), mother having 
completed a four-year college education or higher (1/0), mother being married (1/0), number of previous live births the mother 
had, mother having previous preterm birth (1/0), number of prenatal visits, and mother having smoked before or during 
pregnancy (1/0). In Panel B residential address fixed effects are replaced by controlling for treat (1/0) and the distance 
(measured in miles) between a home address and the boundary (shown in Figure 8). Standard errors (reported in parentheses) 
are clustered by the year-month (i.e., monthly) of birth. * p -value < 0.1; ** p -value < 0.05; *** p -value < 0.01.

Panel A: The control group includes mothers living in the area east of the area serviced by the Wanaque plant, including the 
following New Jersey cities and towns: Bayonne, Elizabeth, Harrison, Jersey City, and Kearny.

Panel B: The control group includes mothers living in the area west of the area of Newark serviced by the Pequannock plant. 
The estimation sample includes home addresses that are within 1 mile of the boundary (shown in Figure 8). 

Panel C: The control group includes mothers living in the area west of the area of Newark serviced by the Pequannock plant. 
The estimation sample includes home addresses that are within 3 miles of the boundary (shown in Figure 8) but excluding 
home addresses in the control group that are within 1 mile of that boundary. 
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(1) (2)

Treat × T 0.2131**
(0.1021)

Treat × 3rd year post-treatment (i.e., 2019) 0.2510
(0.1874)

Treat × 2nd year post-treatment (i.e., 2018) 0.4097**
(0.1708)

Treat × 1st year post-treatment (i.e., 2017) 0.2302
(0.1604)

Treat × year 0 (i.e., 2016) -0.0303
(0.1317)

Number of observations 34,276 34,276

Treat × T -0.0142**
(0.0057)

Treat × 3rd year post-treatment (i.e., 2019) -0.0141
(0.0100)

Treat × 2nd year post-treatment (i.e., 2018) -0.0192**
(0.0084)

Treat × 1st year post-treatment (i.e., 2017) -0.0130
(0.0087)

Treat × year 0 (i.e., 2016) -0.0104
(0.0082)

Number of observations 34,276 34,276
Control variables used in Panels A and B
Individual level demographic variables Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes
Residential address fixed effects Yes Yes

Panel A: Dependent variable is the number of prenatal visits. 

Panel B: Dependent variable is maternal smoking before or during pregnancy (1/0)

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of 
Health. The estimation sample includes live and singleton births among mothers who live in Newark, New 
Jersey. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. 
The control group (treat = 0) includes mothers living the area serviced by the Wanaque plant. The pre-treatment 
period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment period (T = 1) includes 
births that occurred between 2016 and 2019. Individual level demographic variables controlled for are infant 
being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and 
Hispanic), mother having completed a four-year college education or higher (1/0), mother being married (1/0), 
number of previous live births the mother had, and mother having previous preterm birth (1/0). In column (2) the 
“treat” dummy variable is interacted with dummy variables for each year of the post-treatment period (i.e., 2016 
through 2019). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. 
* p -value < 0.1; ** p -value < 0.05; *** p -value < 0.01.

Table 7: Effects of Prenatal Exposure to Lead on Prenatal Visits and Maternal Smoking
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Estimation by subsample: Male Female
(1) (2)

Treat × T 0.0212** 0.0150
(0.0104) (0.0130)

Number of observations 13,520 13,190

Treat × T 0.0344*** 0.0119
(0.0124) (0.0124)

Number of observations 13,204 12,901

Treat × T -47.2849* -30.5808
(25.5924) (25.2247)

Number of observations 13,520 13,190

Treat × T -0.3267*** -0.0671
(0.0910) (0.0877)

Number of observations 13,204 12,901

Individual level demographic variables Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes
Residential address fixed effects Yes Yes

Panel D: Dependent variable is gestational length (in weeks). 

Control variables used in Panels A through D

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of 
Health. The estimation sample includes live and singleton births among mothers who live in Newark, New 
Jersey. The birth years used in the estimation are 2011 through 2017. The treatment group (treat = 1) includes 
mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers 
living the area serviced by the Wanaque plant. The pre-treatment period (T = 0) includes births that occurred 
between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred between 2016 and 
2017. Individual level demographic variables controlled for are mother’s age, mother’s race and ethnicity (1/0 
dummy variables for White, Black, and Hispanic), mother having completed a four-year college education or 
higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having 
previous preterm birth (1/0), number of prenatal visits, and mother having smoked before or during pregnancy 
(1/0). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -
value < 0.1; ** p -value < 0.05; *** p -value < 0.01. 

Table 8: Effects of Prenatal Exposure to Lead on Birth Outcomes by Sex

Panel A: Dependent variable is low birth weight (1/0, equal to 1 if birth weight < 2,500 grams).  

Infant's sex

Panel B: Dependent variable is preterm (1/0, equal to 1 if gestational length < 37 weeks).

Panel C: Dependent variable is birth weight (in grams). 
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Newark, NJ U.S. Identified cities in the ACS with 
population +/- 10% of Newark, NJ

Median household income ($) 44,000 72,500 60,400
% Below poverty 27.1 13.4 19.8
% High school educated or below (ages 24+) 63.7 44.2 41.2
% College educated or above 14.6 32.3 35.9
% White 29.1 72.3 62.4
% Black 50.2 12.7 20.0
% Hispanic 36.6 18.1 19.0
% Married 33.0 50.0 40.2
% Immigrant 37.8 15.2 16.8
% Uninsured 17.3 9.1 10.3
% Rent 73.8 34.1 47.6
% Homes built ≤ year 1979 71.2 49.3 67.9
Population 283,000 326,000,000 287,000

Appendix Table A1: Demographics of Newark, NJ and Other Cities

Notes: Statistics are based on the 2016–2019 American Community Surveys (ACS). Identification of cities in the ACS is 
incomplete; the following cities are identified with a population within +/- 10% of the population in Newark: Anchorage, 
AK; Buffalo, NY; Jersey City, NJ; Laredo, TX; Lincoln, NE; Pittsburgh, PA; Saint Louis, MO; Saint Paul, MN; Toledo, 
OH.
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Birth years used in the estimation: 2011-2017 2011-2017
For column (1) of Table 3, 

without controlling for 
prenatal visits and smoking

For column (1) Table 3

(1) (2)

Treat × T 0.0127 0.0147*
(0.0087) (0.0083)

Female baby (1/0) 0.0112*** 0.0123***
(0.0034) (0.0034)

Mother's age 0.0017*** 0.0026***
(0.0004) (0.0004)

Mother being White (1/0) -0.0127* -0.0107
(0.0066) (0.0067)

Mother being Black (1/0) 0.0072 0.0074
(0.0077) (0.0075)

Mother being Hispanic (1/0) -0.0192*** -0.0121**
(0.0049) (0.0049)

Mother having completed a four-year college or higher (1/0) -0.0140** -0.0116**
(0.0055) (0.0056)

Mother being married (1/0) -0.0173*** -0.0112***
(0.0040) (0.0040)

Number of previous live births the mother had -0.0055*** -0.0106***
(0.0017) (0.0017)

Mother having previous preterm birth (1/0) 0.1524*** 0.1556***
(0.0209) (0.0204)

Number of prenatal visits -0.0093***
(0.0005)

Mother having smoked before or during pregnancy (1/0) 0.0524***
(0.0093)

Number of observations 26,710 26,710
R-squared 0.1227 0.1403

Year-month of birth (i.e., monthly) fixed effects Yes Yes
Residential address fixed effects Yes Yes

Appendix Table A2: Effects of Prenatal Exposure to Lead on Low Birth Weight, Full Set of Coefficient 
Estimates

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The 
estimation sample includes live and singleton births among mothers who live in Newark, New Jersey. Low birth weight is a 
dummy variable, equal to one if birth weight is less than 2,500 grams and equal to zero otherwise. The treatment group 
(treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes 
mothers living the area serviced by the Wanaque plant. The pre-treatment period (T = 0) includes births that occurred 
between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred between 2016 and 2017. Standard 
errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -value < 0.1; ** p -value < 0.05; 
*** p -value < 0.01.

Control variables 
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Dependent variables:

Birth years used in the estimation: 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019 2011-2017 2011-2018 2011-2019
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Treat × T 0.0150* 0.0112 0.0083 0.0189** 0.0160** 0.0117* -30.5986** -18.6975 -8.0556 -0.1595** -0.1088* -0.0740
(0.0083) (0.0074) (0.0067) (0.0082) (0.0071) (0.0066) (15.1592) (13.9807) (13.3057) (0.0619) (0.0598) (0.0552)

Number of observations 26,710 30,645 34,276 26,105 29,868 33,347 26,710 30,645 34,276 26,105 29,868 33,347
R-squared 0.1424 0.1350 0.1292 0.1631 0.1528 0.1456 0.1780 0.1702 0.1638 0.1800 0.1721 0.1654
Control variables
Individual level demographic variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Residential address fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Zip code specific linear time trend of year-month 
of birth

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes live and singleton births among mothers who live in Newark, 
New Jersey. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes mothers living the area serviced by the Wanaque plant. The pre-
treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment period (T = 1) includes births that occurred between 2016 and 2017 (in columns 1, 4, 7, 10), between 2016 and 2018 
(in columns 2, 5, 8, 11), or between 2016 and 2019 (in columns 3, 6, 9, 12). Individual level demographic variables controlled for are infant being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy 
variables for White, Black, and Hispanic), mother having completed a four-year college education or higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having previous 
preterm birth (1/0), number of prenatal visits, and mother having smoked before or during pregnancy (1/0). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -value 
< 0.1; ** p -value < 0.05; *** p -value < 0.01.

Appendix Table A3: Effects of Prenatal Exposure to Lead on Birth Outcomes, Controlling for Zip Code Specific Time Trend
Low birth weight (1/0, equal to 1 if 

birth weight < 2,500 grams)
Preterm (1/0, equal to 1 if gestational 

length < 37 weeks)
Birth weight (in grams) Gestational length (in weeks)
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Birth years used in the estimation: 2011-2017 2011-2017
Dependent variables: Female (1/0): individual-level analysis Number of births for each zip code-year 

and month of birth pair
(1) (2)

Treat × T 0.0031 -1.2496
(0.0162) (1.2985)

Number of observations 26,710 756

Treat × T -0.0134 -0.8089
(0.0134) (0.6087)

Number of observations 33,615 2,108

Treat × T -0.0045 -0.9193
(0.0113) (0.5952)

Number of observations 38,014 2,566

Individual level demographic variables averaged at the 
zip code-monthly level No Yes
Individual level demographic variables Yes No
Year-month of birth (i.e., monthly) fixed effects Yes Yes
Zip code fixed effects No Yes
Residential address fixed effects Yes No

Appendix Table A4: Effects of Prenatal Exposure to Lead on Whether the Birth Is Female and on the Number of Births

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes 
live and singleton births among mothers who live in Newark, New Jersey. In all four panels the pre-treatment period (T = 0) includes births that 
occurred between 2011 and 2015, and the post-treatment period (T = 1) includes births that occurred between 2016 and 2017. 

In Panel A the treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes 
mothers living the area serviced by the Wanaque plant. 

In Panel B the treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes 
mothers living in the area west of the area of Newark serviced by the Pequannock plant. The estimation sample includes home addresses that are within 
3 miles of the boundary (shown in Figure 8) but excluding home addresses in the control group that are within 1 mile of that boundary.

In Panel C the treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The control group (treat = 0) includes 
mothers living in the area west of the area of Newark serviced by the Pequannock plant. The estimation sample includes home addresses that are within 
5 miles of the boundary (shown in Figure 8) but excluding home addresses in the control group that are within 1 mile of that boundary.

In column (1), estimations use individual level data. The dependent variable is the newborn being female (1/0). Individual level demographic variables 
controlled for are mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and Hispanic), mother having completed a four-
year college education or higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having previous preterm birth 
(1/0), number of prenatal visits, and mother having smoked before or during pregnancy (1/0). 

In column (2), the dependent variable is the total number of births within each cell defined by the mother’s residential zip code and her year and month 
of childbirth. Here, the “treat” variable is the proportion of observations that are in the treatment group for each cell defined by the mother’s residential 
zip code and her year and month of childbirth. This “treat” variable is included as a control variable in the regression model. Individual level 
demographic variables are averaged over each cell defined by the mother’s residential zip code and her year and month of childbirth. These individual 
level demographic variables include infant being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and 
Hispanic), mother having completed a four-year college education or higher (1/0), mother being married (1/0), number of previous live births the 
mother had, mother having previous preterm birth (1/0), number of prenatal visits, and mother having smoked before or during pregnancy (1/0).

In both columns, estimations use standard errors (reported in parentheses) that are clustered by the year-month (i.e., monthly) of birth year. * p -value < 
0.1; ** p -value < 0.05; *** p -value < 0.01.

Panel A: 

Panel B: 

Panel C: 

Control variables used in Panels A, B and C
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Estimation by subsample: White White and Non-
Hispanic

White and 
Hispanic Hispanic Black Yes No Married Not married

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treat × T 0.0146 -0.0532 0.0115 0.0121 0.0122 -0.0342 0.0148 0.0052 0.0191*
(0.0106) (0.0677) (0.0126) (0.0108) (0.0210) (0.0285) (0.0096) (0.0127) (0.0102)

Number of observations 10,852 1,539 9,313 12,107 13,586 3,610 23,100 7,942 18,768

Treat × T 0.0276** 0.0675 0.0232** 0.0255*** 0.0050 -0.0101 0.0181* 0.0157 0.0177
(0.0107) (0.0737) (0.0114) (0.0094) (0.0241) (0.0349) (0.0096) (0.0136) (0.0109)

Number of observations 10,575 1,498 9,077 11,799 13,323 3,551 22,554 7,762 18,343

Treat × T -34.2122 -132.9173 -16.9295 -36.7191* 5.2194 -43.7037 -29.8218 -42.2028 -26.2058
(20.9072) (152.7994) (25.0801) (21.5254) (38.0367) (77.7710) (18.3357) (25.4825) (20.1201)

Number of observations 10,852 1,539 9,313 12,107 13,586 3,610 23,100 7,942 18,768

Treat × T -0.1538** -0.5294 -0.1255 -0.1655** -0.0443 0.2039 -0.1598** -0.0933 -0.1792**
(0.0760) (0.4668) (0.0766) (0.0698) (0.1932) (0.2660) (0.0713) (0.1011) (0.0839)

Number of observations 10,575 1,498 9,077 11,799 13,323 3,551 22,554 7,762 18,343

Individual level demographic variables Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-month of birth (i.e., monthly) fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Residential address fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Panel C: Dependent variable is birth weight (in grams). 

Panel D: Dependent variable is gestational length (in weeks). 

Control variables used in Panels A through D

Notes: Data are from the New Jersey birth records on all live births collected by the New Jersey Department of Health. The estimation sample includes live and singleton births among mothers who 
live in Newark, New Jersey. The birth years used in the estimation are 2011 through 2017. The treatment group (treat = 1) includes mothers living in the area serviced by the Pequannock plant. The 
control group (treat = 0) includes mothers living the area serviced by the Wanaque plant. The pre-treatment period (T = 0) includes births that occurred between 2011 and 2015. The post-treatment 
period (T = 1) includes births that occurred between 2016 and 2017. Except those used as the conditioning variables shown in columns (1) through (9), individual level demographic variables 
controlled for are infant being female (1/0), mother’s age, mother’s race and ethnicity (1/0 dummy variables for White, Black, and Hispanic), mother having completed a four-year college education 
or higher (1/0), mother being married (1/0), number of previous live births the mother had, mother having previous preterm birth (1/0), number of prenatal visits, and mother having smoked before 
or during pregnancy (1/0). Standard errors (reported in parentheses) are clustered by the year-month (i.e., monthly) of birth. * p -value < 0.1; ** p -value < 0.05; *** p -value < 0.01.

Appendix Table A5: Effects of Prenatal Exposure to Lead on Birth Outcomes by Maternal Characteristics
Mother having completed a four-
year college education or higher Mother's marital status

Panel A: Dependent variable is low birth weight (1/0, equal to 1 if birth weight < 2,500 grams).  

Panel B: Dependent variable is preterm (1/0, equal to 1 if gestational length < 37 weeks).

Mother's race and ethnicity
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