
1. Introduction 

It is well known that low fixed-order 
controllers such as P, PI, PID, first-order, phase 
lead and phase lag controllers are widely used 
in industry processes. For this reason, many 
researchers were interested in determining the 
set of all stabilizing low-order controllers for 
linear time invariant systems; see [25], [26] and 
[31] and the references therein.  

Time delay inherently exists in many physical 
systems such as chemical, mechanical and 
hydraulic systems [3], [22] and [24]. Therefore, 
it is natural that the above line of research was 
extended to time delay systems, see [1], [2], 
[8], [9], [10], [11], [13], [14], [28] and [33]. 

This paper aims at proposing a method to 
design stabilizing lead-lag controllers for time 
delay systems. To the best of the authors’ 
knowledge this problem is not fully addressed 
in the literature. The proposed controller is a 
second-order PID-like controller with three 
parameters to regulate. First, the complete set 
of all stabilizing controllers are determined.  
The idea is to divide the problem into two 
equivalent sub-problems such that only two of 
the controller’s parameters appear in each of 
the sub-problems. This is achieved using 
Kharitonov’s Lemma. This can be considered 
as a first step in the path of designing optimal 
lead-lag controllers for the studied class of time 
delay systems. One of the main advantages of 
obtaining all stabilizing lead-lag controllers is 
need to be tuned.  Another  advantage  is to use 
 

 
 

to avoid stability tests each time the controller 
the stability regions as admissible search space 
for optimization techniques while avoiding 
stability tests in each iteration of the algorithm.  
For this reason, we choose to employ genetic 
algorithms once the complete set of stabilizing 
lead-lag controllers is determined, see [27]  
and [7]. 

The paper is organized as follows. Section 2 is 
devoted to explaining the method of 
determining the set of all stabilizing phase lead-
lag controllers for a class of time delay 
systems. In section 3, the genetic algorithm is 
introduced and then used to minimize some 
performance indices of the step response of the 
closed loop system. In Section 4, a numerical 
example is given to illustrate the efficiency of 
the proposed controller. Finally, some 
concluding remarks are given. 

2. Stabilizing second order 
controllers for time delay systems 
Given the feedback system of Fig. 1, where r  

y  
  C(s)  

LseG(s)
Q(s)

−

=  +  -  
r   

 
Figure 1. Classical feedback system 

and y are the input and the output of the system, 
respectively.  C(s) is a second-order lead-lag 
controller employed to stabilize and control a 
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linear time delay system whose transfer 
function is given by   

LseG( s )
Q( s )

−

=                                                (1) 

Where s is the Laplace operator, Q(s) a 
polynomial in s, and L > 0 represents the time 
delay. Many practical systems can be modelled 
by (1), see [24] and [33] for further details. 

The lead-lag controller employed in this study 
is given by  

2 3

1 4

1 1
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+ +
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Where 
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                                              (3) 

Conditions in (3) are imposed to guarantee the 
same gain for high and low frequencies and to 
combine the effects of phase lead and phase lag 
in certain frequency ranges and can realize the 
function of PID controller [5].  
By straight forward modifications [4], the 
controller can be re-written as  

2
3 1

2
2 1

s sC( s )
s s

α α
α α

+ +
=

+ +
                                (4) 

With this setting, the closed loop characteristic 
equation is given by  

2
2 1

1 2 3 2
3 1

*
Ls

( s s )Q( s )
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( s s )e
α α

α α α
α α −

 + +∆ = 
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   (5)          

In the rest of this section, we describe how to 
obtain the complete set of all stabilizing second 
order controllers for the studied class of time 
delay systems. The idea is to divide the 
problem into two equivalent sub-problems such 
that only two of the controller’s parameters 
appear in each of the sub-problems. The 
following sub-sections describe the details of 
the method.   

 A. Stability region in 1 2( , )α α plane 

The following lemma is used to divide the 
original problem into two equivalent sub-
problems: 

 

 Kharitonov’s Lemma [16]. Consider the 
quasi-polynomial 

  
0 1

j
n r

sn i
ij

i j
( s ) h s eτδ −

= =

=∑∑                               (6) 

such that: 1 2 r ,τ τ τ< < < with main term 

0 0rh ≠  and 1 0rτ τ+ > : If ( s )δ is stable, then 
the derivative of  ( s )δ , noted '( s )δ , is also a 
stable quasi-polynomial. 

The idea is to reduce the number of controller’s 
parameters in the sub-problems so that the D-
decomposition method can be used. It is 
straight forward to see that stability of * ( s )∆
given in (5) is equivalent to stability of 

Ls *( s ) e ( s )∆ = ∆  where   

2
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   (7) 

In the rest of this paper the quasi-polynomial 
( s )∆  will be used to study stability of the 

closed loop system. Now, using Kharitonov’s 
lemma if ( s )∆  is stable then ( s )'∆ is also 
stable where   

2 3
1 2 3 2
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2 2( s )P( s ) s
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and  
LsP( s ) Q( s )e= .                                         (9) 

Repeating the above steps once more,   if '( s )∆
is stable then ''( s )∆  is also stable, where 

''( s )∆  is given by 

2
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Only two parameters, namely 1α and 2α
appear in (10). Therefore, the D-
decomposition method, [12], [20], [21] and 
[29], is used to calculate the stabilizing 
regions in the parameter plane 1 2( , )α α .  
Let 

P( j ) R( ) jI( )
P'( j ) R'( ) jI '( )
P''( j ) R''( ) jI ''( )

ω ω ω
ω ω ω
ω ω ω

= +
 = +
 = +

                  (11) 

Replacing s by ( )jω  and equating the real and     
imaginary parts of (7) to zero, we get  

1
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Depending on the value of w, three cases will 
be investigated. 

Case1: When ω = 0, the following equation is 
obtained  

00''( s ) s∆ ==  

or 

     1 2
2P'(0) 2(P(0)+1)α =- α -
P''(0) P''(0)

                           (13) 

Case2: When 0ω > , a pair of conjugate 
complex roots crosses the imaginary axis. 
Setting the real and imaginary parts of (10) to 
zero, we get 
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where  
2 2

1 2
R'' ( ) I '' ( )

B
( I '( )R''( ) I ''( )R'( ))

ω ω ω ω
ω ω ω ω

 +
= 

+ −
        (15)  

Case 3: The case of ω → ∞ represents a root 
leaving the left-half plane (or the right half-
plane) at infinity [3],   the  quasi-polynomial 

( s )∆  possesses a root chain of retarded type. 

For this reason, this case will not be considered 
as it does not affect the stability regions [15].  

Using (13) and (14) the 1 2( , )α α plane is 
divided into several regions, and stability of 
(10) can be tested by choosing a point inside a 
region and using any classical method, such as 
Nyquist or Bode criterion.  

B. Stability region in 1 3( , )α α plane 

The second sub-problem consists of fixing one 
of the  controller’s  parameters  in  the  
admissible range determined by the approach 
of the previous sub-section, then solving a new 
problem where only two parameters of the 
controller are unknown.   We choose to fix 2α
and to calculate stability regions in  

1 3( , )α α  plane.  

Let P( s ) = LsQ( s )e , then the characteristic 
function becomes  

2
2 1

1 2 3 2
3 1

( s s )P( s )
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( s s )
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α α α
α α

 + +∆ = 
+ + +

            (16) 

 Two cases are studied after replacing s by
( )jω  and by equating the real and imaginary 
parts of (16) to zero. 
Case1: For ω  = 0, it comes 

1 0α =                                                           (17) 

Case2: For 0ω > , expressions of 1α  and 3α are 

2
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with  

1Y I( )sin( L ) R( )cos( L )ω ω ω ω= − + +       
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Using (17), (18) and (19) the 1 3( , )α α  plane 
can be divided into several regions, each region 
has the same number of poles in the right half of 
the complex plane. Stability region is 
determined by fixing any value of the pair 

1 3( , )α α  within the region and using any 
classical stability method.   

Repeating the above steps for the admissible 
values 2α  allows the determination of the 
complete set of stabilizing lead lag controller 
for the system (1).  

3. Controller parameters optimiza-
tion by Genetic Algorithms  
The Genetic Algorithm (GA) is an artificial 
optimization scheme developed in analogy to 
natural evolution performing an exploration of 
the search space [17], [18] and [19]. 

It has been considered as an efficient technique 
for searching the global or near global solution 
of complex optimization problems.  After 
finding the set of all stabilizing second order 
controllers, a genetic algorithm method is used 
to find the optimal parameters values of the 
proposed second order controller. The principle 
of controller parameters optimization using the 
GA is given in Fig. 2, where e, r and y are the 
error, the input and the output of the closed 
loop system, respectively. 

For the majority of the applications of genetic 
algorithms to solve optimization problems, the 
coding technique is used to represent a solution 
to a given problem. In this coding 
implementation, each chromosome is encoded 
as a vector of real numbers, of the same lengths 
as the solution vector. According to control 
objectives, three parameters 1α , 2α  and 3α of 
the studied second order controller are required 
to be designed. In this paper, the real-valued 
vector [ ]1 2 3, ,α α α  is adopted as a chromosome 
to represent a solution to the problem; 
Moreover, the primary population is fixed inner 
the stabilizing set values of the controller, 
determined by the method of section II, is 
estimated to be 100 individuals per population 
and the selected generation size is 50. 

y  
  C(s)  

LseG(s)
Q(s)

−

=  +  -  
  

Fitness function

  GA

Fitness function

r e

 
Figure 2. Principle of controller parameters 

optimization based GA 

The use of crossover, fitness and mutation is in 
order to invent a new generation. Crossover, 
fixed as 0.8, is a process that combines two 
parents and performs an interpolation along the 
line formed by this two parents. To transmute 
the generation’s individuals, the mutation 
process  is utilized. Thus, it is possible to try a 
completely different solution. The probability 
of mutation should be small in order to enable 
the population to improve itself by crossover; 
henceforth its chosen value is 0.01. To find 
optimal controller, there are several 
performance criteria that can be evaluated, such 
as the Rise Time (RT), the Settling Time (ST) 
and the Integral Square Error (ISE) defined 
in [23]. 

ss ss0.9y 0.1yRT= t t−                                          (20) 

ssST y(t)-y 0.02= ≤                                 (21) 
2ISE e( t ) dt= ∫                                           (22) 

ssy  is the steady state value of y(t), 
ssytγ the 

time to reach γ % of ssy   and e( t )  the error 
signal in time domain. 

The steps of calculating parameters using GA, 
are as follows [7] and [30] 

Step1: Generate a fixed-size initial random 
population of individuals. 

Step2:   Calculate the fitness for each string in   
         the population. 

Step3:   Evaluate the initial population.  

Step4:  Create offspring using genetic operators 
and invent a new  population.  

Step5: Growth of the recent reproduced 
population.  

Step6: Stop, if the search goal is achieved. 
Otherwise, repeat with Step4. 
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This GA will be used in the next section to 
optimize section II results. 

4.  Example 
In this example, the proposed method is applied 
on a stable third-order system  

0 2

3 22 2 5 3 1

. seG( s )
s . s s

−

=
+ + +

 

whose open-loop step response is given  in 
Figure  3. The first step in the design procedure 
is to determine the set of stabilizing regions.  

 

 

Figure 3. Step response of the studied 
open loop system 

The admissible stabilizing values of  ( )1 2, .α α  
are calculated using (13) and (14), which are in 
turn derived using characteristic function 
given by  
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The stability region for this sub-problem is 
shown in Fig. 4.  

 

Figure 4. Stability  region in the ( )1 2,α α  plane 

To show the second part of the method , let us 
choose a value of  2α  from this stability region, 
for example  2 1 5.α = , and apply  (17), (18) 
and (19), to obtain the stability region in the 
( )1 3,α α plane, given in Fig. 5. Fig. 6 shows a 3-
D plot of the stability regions for, [ ]2 1 5 2.α ∈ .  

 
Figure 5. Stability region  in the ( )1 3,α α plane 

obtained for 2 1 5.α =  

 
Figure 6. Stability regions obtained  

for [ ]2 1 5 2.α ∈  
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Let’s consider  choosing 1α and 3α such that: 

1 1α = and 3 3.α = The lead-lag parameters 
values then, in the form (3), are determined and 
they are: 1 0 51.τ = , 2 0 39.τ = , 3 2 61.τ = and

4 0 99. .τ = It allows us to deduce that conditions 
(4) are verified.   

Once the stabilizing values of 1α , 2α and 3α  
are obtained, the genetic algorithm is applied to 
minimize the ISE, RT and ST performance 
indices. The upper and lower bounds of the 
parameters ( )1 2 3, ,α α α  are within the 
following ranges: [ ]0 15 , [ ]0 10  and 

[ ]20 20 ,−  respectively.  

In Table 1, a comparison is made between the 
performances of the second order controller 
obtained using GA and  the second order 
controller without optimization.   

 

Table 1. Performances of the obtained second order 
controllers 

 ( )1 2 3, ,α α α  ISE RT 

(sec) 

ST 

(sec) 

Case1: Second 
order controller 

(1.50, 3.00, 0.50) 1.62 6.10 12.80 

Case2: Second 
order controller 
based GA 

(3.97, 7.73, 6.41) 1.55 3.50 12.60 

 

 

In case 1, 1α , 2α and 3α  values are chosen 
arbitrarily within the upper and lower bounds, 
and in case2 the controller’s parameters are 
determined by applying the GA. As can be seen 
in Table 1 and Fig. 7, minimizing the ISE leads 
to an oscillatory response and an important 
peak with a short Rise Time and Settling Time.  

 

Figure 7. Step responses  of the closed  loop system 
without (case1) and with (case2) using GA 

technique 

5. Conclusion 

In this paper, a lead–lag controller is used to 
stabilize a class of linear time delay systems. 
The proposed approach is based on using the 
D-decomposition method to determine, first, 
the stability range of the controller’s 
parameters 1α and 2 ,α  then one of these 
parameters is fixed within the admissible range 
and the stability regions in the space of the 
remaining two parameters are determined. 
Once the stabilizing regions are found, some 
performance can be evaluated such that the 
integral square error, the rise time and the 
settling time and then an optimal second order 
controller could be obtained using the genetic 
algorithm  optimization method. 
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