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ABSTRACT
Error correction is a fundamental problem in wireless system
design as wireless links often suffer high bit error rate due to
the effects of signal attenuation, multipath fading and inter-
ference. This paper presents a new cross-layer solution called
LEAD to improve the performance of existing channel de-
coders. While the traditional wisdom of cross-layer design is
to exploit physical layer information at upper-layers, LEAD
represents a paradigm shift in that it leverages upper-layer
protocol signatures to improve the performance of physical
layer channel decoding. The approach of LEAD is moti-
vated by two key insights. First, channel codes can correct
more errors when the values of some bits, which we refer to
as pilots, are known before decoding. Second, some header
fields of upper-layer protocols are often fixed or highly bi-
ased toward certain values. These distinctive bit pattern
signatures can thus be exploited as pilots to assist channel
decoding. To realize this idea, we first characterize bit bias
in real-life network traffic, and develop an efficient algorithm
to extract pilot bits with assured prediction accuracy. We
then propose a decoding framework to allow existing channel
decoders to effectively exploit extracted pilots. We imple-
ment LEAD on GNURadio/USRP platform and evaluate its
performance by replaying real-life packet traces on a testbed
of 12 USRP links. Our results show that LEAD significantly
improve wireless link performance, while incurring very low
overhead. Specifically, LEAD reduces more than 90% bit
errors for 48.9% packets, and improves the end-to-end link
throughput by 1.43x to 1.93x over existing error correction
schemes.
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1. INTRODUCTION
The last decade has witnessed a phenomenal penetration

rate of 802.11-based Wireless LANs (WLANs). Neverthe-
less, as an important part of communication infrastructure,
today’s WLANs struggle to keep up with the ever grow-
ing user demands for higher data rate and coverage. The
fundamental challenge for significantly improving WLAN
performance lies in the fact that wireless links suffer from
high error rate due to the effects of signal attenuation, mul-
tipath fading, and interference. To improve the resilience
to transmission errors, wireless communication systems em-
ploy channel coding at the physical layer (PHY). However,
when the number of errors exceeds the correcting capability
of channel code, the original data cannot be fully recov-
ered through channel decoding, leading to corrupted pack-
ets. The problem is exacerbated by user mobility, which be-
comes the common case due to the proliferation of portable
wireless devices such as tablets and smartphones.

In this paper, we propose LEAD, Leveraging protocol sig-
naturEs for pilot-Assisted Decoding, to reduce bit error rate
(BER) of 802.11 links. LEAD is motivated by two key ob-
servations. First, 802.11 traffic carries numerous upper-layer
protocol headers, and some particular fields in these headers
are often fixed or biased toward certain values. For instance,
the service type field of logical link control header is fixed to
0x0800 for packets that use IP at the network layer. More-
over, previous studies showed that network traffic is bursty
in nature [17]. As a result, IP packets that target the same
host will lead to temporal bias patterns in the destination
field of IP header. Second, the channel decoder of wireless
receiver can correct more errors when the values of some bits,
which we refer to as pilots, are predictable at the receiver
before decoding. This is due to the fact that the decoding
success rates of adjacent bits are dependent on each other,
and the predictable values of pilots may affect the decoding
of adjacent bits, improving their decoding success rates.

The key idea of LEAD is to leverage protocol signatures
as pilots to improve the performance of channel decoding.
By capturing these protocol signatures, a LEAD receiver
can ‘guess’ some values of received bits (before they are de-
coded), and then exposes them to the physical layer to guide
the decoding of whole packet. We address several challenges
in the design and implementation of LEAD. First, due to
the inherent dynamics of network traffic, bit patterns of pro-
tocol signatures are time-varying, leading to possible pilot
mispredictions and decoding errors. Second, protocol sig-
natures are only present in packet headers and hence have
limited impact on the decoding accuracy of packet payload.

333



Moreover, bits received at the physical layer are scrambled
and encrypted, making it challenging to recognize pilots be-
fore decoding. In summary, we make the following main
contributions in this paper.

1. We present LEAD, a novel cross-layer design to reduce
bit errors in 802.11-based WLANs. While traditional
wisdom of cross-layer design is to exploit physical layer
information at the MAC layer or above, LEAD repre-
sents a paradigm shift in that it leverages upper-layer
protocol signatures to improve physical layer channel
decoding. LEAD offers several key advantages. First,
the design of LEAD is independent of the underlying
channel code. Thus the pilot-assisted decoding mech-
anism of LEAD can be exploited by all existing chan-
nel codes to reduce error rates of wireless links. Sec-
ond, LEAD works with existing 802.11 encoders and
requires minimum modifications to the 802.11 physi-
cal layer. Moreover, it is largely orthogonal to existing
error recovery mechanisms (e.g., partial packet recov-
ery [16], link layer forward error correction [18], and
block retransmission-based recovery [13]) and can be
integrated with them to further reduce packet error
rate.

2. We conduct a measurement study to characterize bit
bias in real-life network traffic. Our results show that,
although bit bias is prominent in upper-layer protocol
signatures, it yields distinct patterns that significantly
affect the predictability of bit values. We then design
an efficient algorithm that classifies bit bias patterns
and extracts “good” pilot bits with assured prediction
accuracy.

3. We develop a decoding framework that consists of sev-
eral key components to enable pilot-assisted decoding
for existing channel codes: link addressing allows a
decoder to recognize the link identity of a received
packet, so that it can leverage the protocol signatures
extracted on this link to assist decoding; pilot spread-
ing interleaves extracted pilots across the whole packet
so that the decoding of payload can leverage adjacent
pilots; pilot reshaping deals with the impacts of scram-
bling and encyption on pilot-assisted decoding; and pi-
lot misprediction handling detects faulty pilots to avoid
decoding errors induced by mispredictions.

4. We develop pilot-assisted decoders for convolutional
code, LDPC, and rateless Spinal code, and integrate
them with LEAD to leverage protocol signatures. We
implement LEAD on GNURadio/USRP platform and
evaluate its performance by replaying real-life packet
traces on a testbed of 12 USRP links. Our results show
that LEAD significantly improve wireless link perfor-
mance, while incurring very low overhead. Specifi-
cally, LEAD reduces more than 90% error bits for
48.9% packets and corrects all errors for 29.4% pack-
ets. Moreover, LEAD improves the end-to-end link
throughput by 1.43x to 1.93x over the existing error
correction schemes.

The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 introduces the back-
ground of convoloutional code. Section 4 motivates the de-
sign of LEAD. In Section 5 we characterize protocol sig-
nature and propose a simple method of pilots extraction.

Section 6 introduce the details of LEAD design. Section 7
reports evaluation results and Section 8 concludes the pa-
per.

2. RELATED WORK
Reducing decoding errors. Several mechanisms have
been proposed to improve the performance of channel decod-
ing for 802.11-based WLANs. For example, SoftCast [15],
ParCast [19], and Joint source-channel decoding (JSCD) [8],
exploit source redundancy to improve video qualities over
wireless links. Different with these schemes that are de-
signed for wireless video streaming, LEAD provides a gen-
eral approach which exploits protocol signatures to improve
the performance of channel decoding. This allows LEAD
to work efficiently with diverse upper-layer protocols and
applications.

Modern network standards, such as 802.11 and LTE, use
pilot symbols explicitly inserted into the physical layer to
improve the performance of demodulation. For example,
current 802.11 OFDM PHY deploys four pilot subcarriers in
each OFDM symbol to help the receiver track channel con-
ditions. In comparison, LEAD uses pilots to help channel
decoding, thus is complimentary to pilot-assisted demodula-
tion. Moreover, LEAD extracts decoding pilots from proto-
col headers, thus avoids the extra bandwidth consumption
for embedding pilot symbols.

Partial packet recovery. Partially corrupted packets can
be exploited to improve the performance of wireless net-
works. Selective retransmission based protocols [16] [13] re-
duce packet recovery overhead by only retransmitting the
bits that are likely to be wrong. Similarly, Zhang et al. [34]
propose μACK, which sends ACKs for every few symbols
on a separate feedback channel to enable in-frame recovery.
Other protocols, such as ZipTx [18], use link layer FEC to
correct bit errors. Unite [33] combines selective retransmis-
sion and link layer FECs to minimize error recovery over-
head. Leveraging the broadcast nature of wireless channel,
cooperative protocols [10] [20] [21] [32] coordinate multiple
receivers that hear the same transmission to correct packet
errors. Compared with these work, LEAD operates at the
physical layer to improve the performance of channel de-
coding. Therefore, LEAD is orthogonal to existing partial
packet recovery schemes, and can be integrated with them
to achieve better performance.

Cross-layer design. Cross-layer design has been exten-
sively studied in existing literature. Most prior work fo-
cus on leveraging physical layer information at the upper-
layer, e.g., using decoding confidence to reduce link layer
retransmission overhead [16], or exploiting the error struc-
ture at the PHY to provide unequal protection to upper-
layer flows [25] [5]. Similarly, PHY-aware rate adaptation
algorithms, such as EffSNR [11], AccuRate [28] and Soft-
Rate [31], exploit different physical layer hints to facilitate
bit rate adaptation. Compared with these work, LEAD fea-
tures a different design which leverages upper-layer protocol
signatures in channel decoding. LEAD can be integrated
with previous cross-layer design to further improve wireless
link performance.

Exploiting bit predictability. Prior work [1] [2] exploits
bit predictability for compressing IP/TCP and IP/UDP head-
ers. However, existing header compression protocols are ex-
clusively tied with specific protocols, thus cannot be applied
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Transition Output
state (m1m2) m0 = 0 m0 = 1 m0 = 0 m0 = 1

00 00 10 00 11
01 00 10 11 00
10 01 11 10 01
11 01 11 01 10

Table 1: The transition and output table of a rate-1/2

convlutional encoder with a constraint length of 2. The

two generator polynomials are n1 = m0 ⊕ m1 ⊕ m2, and

n2 = m0 ⊕ m2, where m0 is the input bit of the current

round, m1m2 represents the encoder state.

Tx Rx PATH-1 PATH-2
code code Code Bit Cost Code Bit Cost
00 01 00 0 1 11 1 1

00 11 00 0 3 01 1 2
00 00 00 0 3 01 0 3
00 00 00 0 3 00 1 3
00 10 00 0 4 10 0 3

Table 2: An example of using known bits to reduce

decoding errors. The true message is 00000, which is

encoded using the code defined in Tab. 1. The transmit-

ted and the received codeword sequences are 0000000000

and 0111000010, respectively. The table shows the ex-

pected codewords, decoded bits and accumulated costs

of the correct path (PATH-1) and a faulty path (PATH-

2). If the second bit of the original message is known to

be 0, then PATH-2 can be eliminated because its output

at the second round is (shown in a box) 1, even though

it has a lower cost than the correct path.

for signature extraction on other protocols. Moreover, the
main objective of header compression is to save the trans-
mission time of headers to improve bandwidth usage. This
may work on low bit rate networks, such as Deep Space Net-
works where the typical bit rate is below 100Kbps. However,
today’s 802.11n-based WLANs offer a maximum bit rate of
600Mbps, which reduces the transmission time of a 60-byte
IP/TCP header to 800 nano-seconds. Recent study shows
that most bandwidth resources of 802.11 are consumed in
error packet recovery [35] and channel contentions [26] [27].
As a result, the benefits of header compression diminish sub-
stantially. Compared with header compression protocols,
LEAD aims at exploiting protocol signatures to improve the
performance of physical layer channel decoding on high bit
rate 802.11 links, where the overhead of error recovery is sig-
nificantly higher than that of header transmissions. Another
alternative for exploiting bit predictability is to replace pre-
dictable bits with parties, which are then decoded at the
receiver to correct bit errors. Compared with this alter-
native, LEAD saves the computation overhead of removing
predictability and decoding parities, while significantly re-
ducing bit error rate.

3. BACKGROUND ON 802.11 CODING
In this section, we introduce the background of 802.11

channel coding that is necessary for understanding our ap-
proach. Although we focus on convolutional code in this sec-
tion, our approach is also applicable to other channel codes
(see Sec. 6).

Convolutional code is the default channel code used in
802.11. A rate-m/n convolutional code transforms each m-

Figure 1: Illustration of convolutional encoding. Each

branch is labeled by the input bit that triggers the tran-

sition, along with the output codeword.

bit symbol of the original message into an n-bit codeword
using n generator polynomials. Each polynomial defines how
modulo 2 additions are performed on the current and the last
k input symbols, which are buffered by the encoder using
shift registers. The state of encoder is defined by the values
of shift registers. Tab. 1 shows an example of a rate-1/2
code with k = 2. The transition table describes how an
input bit triggers a state transition inside the encoder, and
the output table gives the computation results of generator
polynomials.

Fig. 1 shows the encoding process using the code defined
in Tab. 1. PATH-1 and PATH-2 show the traces of state
transitions when encoding the messages of 00000 and 11010.
The objective of decoding is to find the most likely path
that yields the codeword sequence of minimum distance to
the received codeword sequence. A common metric that
quantifies the distance between two paths is the number of
different coded bits, namely Hamming distance. For exam-
ple, given a received codeword sequence of 0100000100, the
costs of PATH-1 and PATH-2 are 2 and 5, respectively. In
this case, PATH-1 is more likely the correct path.

4. MOTIVATION
The key observation that motivates the design of LEAD

is that, if some bits of a packet can be correctly predicted be-
fore decoding, then the receiver can exploit these predictions
to identify the correct coding path, reducing decoding errors.
Tab. 2 shows an example. We compare the costs of the cor-
rect path (PATH-1) and a faulty path (PATH-2). Due to the
large amount of errors in received codeword sequence, a con-
ventional convolutional decoder will prune PATH-1 due to
its higher cost, resulting in flipped bits in output. However,
if the value of second bit (which equals to 0) can be cor-
rectly predicted, the receiver can eliminate PATH-2 where
the second output is 1, therefore reviving PATH-1 in the
subsequent steps of decoding. We refer to the bits whose
values can be predicted by the receiver before decoding as
pilots, and the process of using these pilots to identify cor-
rect coding path as pilot-assisted decoding. Although we use
convolutional code in this example, we note that the idea
of pilot-assisted decoding is also applicable to other channel
codes. In Section 7, we will study the gains of pilot-assisted
decoding for LDPC [9] and Spinal [22], which are typical
examples of block code and rateless code, respectively.

To realize pilot-assisted decoding, a key question is how
to obtain the pilots. We propose a novel algorithm that
extracts pilots from real-life network traffic. This solution
is motivated by the observation that, upper-layer protocols
of 802.11 link have unique signatures in their headers, which
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have distinct bit bias patterns. The bit bias refers to the fact
that a bit takes the value of 1 or 0 with high frequency, such
that it can be predicted by the receiver with high accuracy.
There are numerous examples of bit bias in network traffic.
The link invariant bits, such as the bits located in MAC
addresses, are fixed across all the packets transmitted on a
link. In real-life traffic, the service type of logic link control
header is biased to 0x0800 because most of packets use IP
at the network layer. Moreover, bursty IP traffic [17] will
cause a temporary bias in the address fields of IP header.
Similarly, the retry flag of MAC header will be biased to 1
in the presence of interference caused bursty packet losses
[29] [3].

The above observations motivate the design of LEAD, a
cross-layer solution that leverages biased bits in upper-layer
protocol headers as pilots to improve the performance of
channel decoding. In the following, we first discuss how to
extract pilots from protocol signatures, and then introduce
the design of LEAD in detail.

5. EXTRACTING PILOTS FROM PROTO-
COL SIGNATURES

In this section, we formalize the definition of bit bias,
characterize bit bias in real-life network traffic, discuss the
causes of bit bias, and present the pilot extraction algorithm.
Our study focuses on data packets. Control packets such as
ACKs, RTSs and CTSs have heterogeneous protocol head-
ers. Applying pilot-assisted decoding to these packets is left
for the future work.

5.1 Definition of Bit Bias
We define bit bias as the high probability that a bit takes

value of 0 or 1 in a window of packets. Given a link, we use
Tm,n to represent a window of its packets,

Tn,m =

⎡
⎢⎣
b1,1 · · · b1,n
...

. . .
...

bm,1 · · · bm,n

⎤
⎥⎦ (1)

where bj,i=1 or 0 gives the value of the ith bit in the jth
packet, and n defines the maximum packet size. If the size
of jth packet is shorter than i, we define that bj,i takes 0 or 1
at equal probability. The bias of the bit i can be calculated
as follows,

βi(Tn,m) = 2×

∣∣∣∣
∑m

k=1 bk,i

m
−

1

2

∣∣∣∣ (2)

which gives the higher probability that 0 or 1 is observed on
bit i. Specifically, in a window of m packets Tn,m, if bit i is
perfectly biased, i.e., fixed to 0 or 1, βi(Tn,m) = 1. If the bit
is perfectly unbiased, i.e., takes 0 or 1 at equal probability,
βi(Tn,m) = 0.

5.2 Bit Bias of Real-life Network Traffic
In the following, we present a measurement study to char-

acterize bit bias in real-life network traffic. Our objectives
are to validate the abundance of biased bits and to under-
stand the temporal variations of bit bias.

Our measurement uses real-life traffic traces collected in
WLANs that differ from each other in both scales and de-
ployment scenarios. SIGCOMM’08 [24] and OSDI’06 [6]
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Figure 2: Bit bias measured in a window of 100 packets.
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Figure 3: Quantities and percentages of fixed bits. Min,
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were collected in WLANs of hundreds of users attending the
two conferences. PDX [23] includes traces collected in a li-
brary, an office building, and a cafeteria in a university. Our
trace, named as APT, was collected in an apartment from
an 802.11n WLAN that serves three laptops, one tablet,
and two smartphones. For each packet in the above traces,
application layer data was stripped out to preserve user pri-
vacy. Therefore, our measurements focus on the bit bias of
the first 80 bytes of each packet, which include all protocol
headers up to the transport layer.

We first validate the abundance of biased bits. For each
link in the datasets described above, we measure bit bias
using the first 100 packets. Fig. 2 plots the result for a
randomly selected link. Among the 640 bits studied, 314 are
fixed, i.e., have bias of one. Fig. 3 shows the quantities and
percentages of fixed bits, where the percentage is computed
as the ratio of fixed bits to the total traffic. Specifically, in
the SIGCOMM’08 trace, each IP packet contains an average
of 363 fixed bits, which account for 17.5% of the total traffic.

In Fig. 2 and Fig. 3, the bit bias is measured in a window
of 100 packets. It is critical to understand how bit bias
varies at different scales of windows. To this end, we collect
bit traces using 5000 packets on an uplink (e.g., packets are
transmitted from a client to an access point) that uses IPv4
at the network layer. Fig. 4 plots the trace measured in the
IPv4 header. We observe two distinct patterns of bit bias.
First, some bits, such as the bits located in the destination
and differentiated service (DiffServ) field, are consistently
biased. While other bits, especially the bits in the source and
time to live (TTL) field, experience bursty biases. Similar
results were observed in other protocol headers on most links
in the datasets.

5.3 Causes of Bit Bias
Bits in protocol headers have specific semantics. For ex-

ample, the 11th bit of 802.11 MAC header is defined as the
retry flag; the first four bits of IP header denote the ver-
sion of IP protocol. In our measurements, we identified two
classes of bit biases, namely consistent bias and bursty bias.
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Pattern Cause Examples

Consistent bias Link invariant data MAC addresses, IP address of WLAN client.
Uneven distribution of service types Frame type in MAC header, service type in logic link control

Bursty bias Network dynamics MAC retry flag, IP TTL, IP explicit congestion control (ECN).
Bursty traffic IP destination of uplink, IP source of downlink, IP protocol

number, source and destination port of TCP and UDP header.

Table 3: Causes of bit bias in 802.11 traffic.

In the following, we explain the causes of bit bias based on
bit semantics. Tab. 3 summarizes our discussion.

• Consistently bias. Bits that describe link invariant
protocol addresses, such as MAC addresses, the IP ad-
dress of WLAN client, are fixed on each link. Bits that
denote frame and service types are also consistently
biased because of the uneven distribution of packet or
service types in network traffic. For instance, most
data packets use IP at the network layer, which is de-
noted by 0x0800 in the service type field of logic link
control header.

• Bursty bias. Some bits experience bursty biases be-
cause of the burstiness of network traffic [17]. For ex-
ample, on a link that uses IPv4 at the network layer,
bursty TCP traffic causes the IP protocol number bi-
ased to 0x06, and leads to temporary biases on the bits
located in the source and destination fields of the TCP
header. Moreover, network dynamics, such as wireless
channel variations and network congestions, may af-
fect bit bias. For example, bursty packet losses [29] [3]
may cause the retry flag of MAC header biased to 1.
Similarly, the value of IP TTL is biased when many
packets of an IP flow traverse paths of the same hop
count through the Internet.

5.4 Pilot Extraction
In this section, we present an algorithm that leverages bit

bias to extract pilots from the first 80 bytes of each packet,
which include all protocol headers up to the transport layer.
Since bit values of packet may appear random after encryp-
tion, the extractor works on decrypted bits to measure bit
bias. The extractor design is driven by the following objec-
tives.

Transparent to upper-layer protocols. The extractor should
NOT be tied with specific upper-layer protocols, such that
the extractor can be easily deployed on diverse wireless plat-
forms where different protocols are operated at the upper-
layers. Previous solutions [1, 2] predict bit values based on

bit semantics of protocol headers. For example, as the first
four bits in IP header denotes the version of IP protocol,
their values can always be predicted by the receiver if the
protocol version is known. However, existing solutions are
exclusively rely on prior knowledge of protocol header struc-
tures, thus cannot be applied to other protocols. Moreover,
as bits in protocol headers are coded during transmission,
knowledge about upper-layer protocols is not available be-
fore the packet is decoded.

Maximizing pilot number while achieving assured predic-
tion accuracy. Physical layer decoder can correct more bit
errors with more predictable bits. However, due to the dy-
namics of network traffic, bit values in protocol headers are
time-varying, making it challenging for accurate prediction.
To maximize the performance gain of pilot-assisted decod-
ing, the extractor should maximize the number of pilots
while achieving assured prediction accuracy.

Extractor overview. Instead of relying on prior knowl-
edge of bit semantics, we propose a simple extractor, which
sniffs network traffic at run-time and selects bit i as a pilot if
it is fixed in last ki packets. Because different bits may have
different bias levels and bias patterns, the extractor tunes
ki for each bit i to optimize pilot extraction performance.
Given a sequence of n packets, for the ith bit, we use Ni(k)
to denote the times that it is selected as pilot using a his-
tory size k. We have N (k0) ≥ N (k1), if k0 ≤ k1. This is
because hi(t, k0) ⊂ hi(t, k1), where hi(t, k) is the set of last
k observations on bit i when packet t is received. Thus if
bit i is selected using hi(t, k1), it will also be selected using
hi(t, k0). Let Ei(k) to be the pilot misprediction rate. Our
goal is to tune ki for each bit i, such that,

ki = argmin
t

{E(t) ≤ Δ} (3)

where Δ is the pre-defined threshold on pilot misprediction
rate. To reduce decoding errors, Δ should be lower than
the BER of conventional decoder. Recent study [7] shows
that the BER observed on commodity 802.11 radios typically
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ranges from 0% to 10%. In this work, we adopt a threshold
of 0.5%. We will study the effect of pilot misprediction in
Section 7.4.

A key factor that affects the predictability of protocol sig-
nature is the pattern of bit bias. Fig. 5 compares the burst
length CDFs for a bursty biased bit and a consistently bi-
ased bit, where the burst length is the size of packet window
in which a bit is fixed. The dashed curves in the figure
show the theoretical burst length CDFs of the memoryless
bits with the same bias, which follow the Bernoulli distri-
bution. As shown in the figure, the two bits have distinct
probabilistic distributions, calling for different strategies to
control the history size of pilot extraction. Specifically, a
small history size should be used for a bursty biased bit
to capture its temporal predictability. In contrast, a large
history size should be used on a consistently biased bit to
assure that the measured predictability is statistically sig-
nificant. In the following, we first present a bias pattern
classifier, and then discuss how to optimize the history size
for different bias patterns. Finally, we discuss how the pilot
extractor works in practice.

Classifying bias patterns. We propose a metric that for-
mally models the busrtiness of bit bias. Let Pi(t) to be the
CDF of burst length for bit i, and Qi(t) to be the theoreti-
cal burst length CDF for the memoryless bit, which follows
Bernoulli distribution. To quantify bias burstiness, we de-
fine μi as the Kullback-Leibler divergence between Pi(t) and
Qi(t) measured on bit i, which can be expressed as,

μi = DKL(Pi||Qi) =

∣∣∣∣∣
∑
t

Pi(t) ln
Pi(t)

Qi(t)

∣∣∣∣∣ (4)

where Pi(t) can be measured using empirical observations of
burst lengths. Our empirical study shows that a threshold of
2 is sufficient to classify bursty bias from consistent bias, i.e.,
bit i is classified as a bursty biased bit if its bias burstiness
satisfies μi ≥ 2.

Optimizing history size. The extractor selects bit i as a
pilot if it is fixed in the history of last ki packets. In the
following, we discuss how to tune ki to meet the objective
of Eq. (3).

Consistently biased bits. When using a consistently biased
bit as pilot, the misprediction rate can be computed as 0.5−

0.5β, where β is the bit bias. To satisfy Eq. (3), β must be
larger than 1− 2Δ. The extractor should use a large k such
that if bit bias is lower than 1 − 2Δ, the probability that
the bit is fixed in last k packets is small. This probability
can be computed as (0.5 + 0.5β)k . Using a confidence level
of 95%, k should satisfy (0.5 + 0.5β)k < 0.05. Therefore,
we can calculate the minimum history size for a consistently
biased bit as,

k =
log 0.05

log(1−Δ)
(5)

Bursty biased bits. Given a bursty biased bit which has
been fixed in last t packets, the probability that it will not
change in the next packet can be computed as Pr(t+1|t) =
1−P(t+1)
1−P(t)

, which is the conditional probability that the burst

length is longer than t+ 1, given that the length of current
burst is t. P(t) is the burst length CDF. As a result, the
minimum history size can be derived as,

k = argmin
t

{
1−P(t+ 1)

1− P(t)
> 1−Δ

}
(6)

However, calculation of k requires a fine grained burst length
CDF, which is difficult to obtain without a large number of
samples. We address this problem by curve fitting. Ob-
serving that Pi(t) of bursty biased bit is featured by a long
tail, we fit the measured burst length CDF to the power-law
Pareto distribution, whose CDF is given by,

F(t) =

{
1− 1

tα
, t > 1

0, otherwise
(7)

where α can be derived from on-line measurements using
maximum likelihood estimation. Given n observations of
burst lengths, denoted by {x1, ..., xn}, we have,

α̂ =
n

ln x1 + ...+ ln xn

(8)

Therefore, we can calculate the minimum history size for a
bursty biased bit as,

k =
1

1− exp
(

log(1−Δ)
α̂

) − 1 (9)

Putting them together. The extractor maintains a mov-
ing window of N correctly received packets, and updates the
burst length CDF P(t) and the burstiness metric μ for each
bit every T seconds. We observed that LEAD performance
is not sensitive to the update period T , i.e., the measured
burst length distribution is accurate enough to assure low
misprediction rate even using long update intervals. This
is because the burst patterns of header bits mainly depend
on the bit semantics defined by upper-layer protocols, which
do not vary over time. Motivated by this observation, we
conduct offline measurements using real-life packet traces
to find a long update interval, which minimizes the update
overhead while assuring that the misprediction rates of ex-
tracted pilots are below the given threshold. Our empirical
study shows that T = 10s and N = 600 work efficiently in
practice.

For each sender, the receiver allocates 160 bytes in the
physical layer RAM to store its pilots. Each bit in the first
80 bytes takes two bits: one is used to indicate whether it
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is a pilot; the other is the pilot value. At the MAC layer,
the extractor maintains a counter for each bit to monitor
the length of its ongoing burst. A bit is selected as pilot
to decode the next packet, if its counter is longer than the
computed minimum history size. The physical layer RAM
is updated when new pilots are extracted, or any existing
pilots are removed.

6. EXPLOITING PILOTS TO IMPROVE DE-
CODING PERFORMANCE

In this section, we present a decoding framework that al-
lows existing channel decoders to effectively exploit the ex-
tracted pilots. In the following, we first present the design of
LEAD framework, and then describe pilot-assisted decoding
algorithms.

6.1 LEAD Framework
Several key challenges must be addressed to enable pilot-

assisted decoding on 802.11 links. First, since extracted pi-
lots differ on different links, LEAD needs to know the link
address of a received packet for choosing pilots before decod-
ing. Second, as bits are typically scrambled and encrypted
during transmission, protocol signatures extracted at upper-
layer cannot be directly used as pilots to direct physical layer
decoding. Third, as pilots are extracted from packet head-
ers, they have limited impact on the decoding accuracy of
payloads. Fourth, due to the dynamics of network traffic,
bit predictabilities are time-varying, which leads to possi-
ble mispredictions of pilots, causing decoding errors at the
receiver.

We now introduce the framework of LEAD to address the
above challenges. The framework is composed of four key
components, including link addressing, pilot reshaper, pilot
spreader, and pilot misprediction handler.

Link addressing. To identify the link address before de-
coding, LEAD adopts a link addressing scheme, where the
sender and receiver MAC addresses are hashed into a one-
byte identity, which is then appended after the 802.11 SIG-
NAL symbol. At the receiver, LEAD parses the identity
before decoding, and then chooses the pilots that were ex-
tracted for this link to direct decoding. In practice, multiple
links may be hashed to the same identity. Such identity col-
lision can be easily detected by LEAD at the MAC layer.
When collision occurs, LEAD falls back to the conventional
decoding mode. Because the collision probability of two
links is only 1/256 when a one-byte link identity is used,
its effect on LEAD performance is negligible.

Pilot spreading. Since pilots are extracted from protocol
headers, LEAD needs an interleaver to spread pilots over the
whole packet, such that the decoding of payload bits can be
benefited from adjacent pilots. Unfortunately, the default
802.11 interleaver cannot serve this purpose because of its
limited interleaving depth. Specifically, it only permutates
coded bits within each OFDM symbol to mitigate the bursty
errors caused by frequency selective fading. In 802.11g, the
maximum number of bits carried by an OFDM symbol is
only 216 bits, while a packet can be as large as thousands of
bits. As a result, using the default 802.11 interleaver, pilots
extracted from protocol headers cannot be spread over the
entire packet. To address this problem, LEAD employs an
additional MAC layer interleaver to uniformly spread pilots
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Figure 6: The architecture of LEAD receiver. Stan-

dard 802.11 operations such as OFDM demodulation,

de-interleaving, and descrambling are not included.

to packet palyload. At the receiver, the reverse operation is
performed to recover bit orders after pilot-assisted decoding.

Pilot reshaping. Bit values of a packet may appear ran-
dom after encryption and scrambling. As discussed in Sec.
5, the pilot extractor of LEAD addresses this issue by ex-
tracting pilots after decryption and descrabmling. However,
since the extracted pilot values may not match those re-
ceived at the physical layer, the pilot cannot be directly ap-
plied in the physical layer decoding. LEAD addresses this
issue in the pilot reshaping module. Specifically, before us-
ing pilots to decode a packet, the receiver first scrambles and
encrypts the pilots, such that the values of reshaped pilots
will match those received at the physical layer. To allow the
pilot reshaper to use keystream for encryption before de-
coding, the LEAD sender appends the header of encryption
protocol after the 802.11 SIGNAL symbol. When a packet is
received, the receiver first decodes the encryption header to
retrieve the keystream. A practical concern is the process-
ing delay caused by reshaping. We will evaluate the delay
in Section 7.4.

Handling pilot mispredictions. Pilot misprediction oc-
curs when the pilot used in decoding does not match the
value of a received bit, causing decoding errors. LEAD
adopts a checksum-based method to detect pilot mispre-
dictions. Ideally, the checksum should be calculated over
only the pilot bits. However, this is difficult because pilots
are extracted at the receiver at run-time, and notifying the
sender of which bits are pilots may incur prohibitive messag-
ing overhead. Another approach is to compute the check-
sum for the first 80-byte of the packet, from which the pilots
are extracted. This approach is also inefficient because the
checksum failure may be caused by the errors of non-pilot
bits.

LEAD employs a block checksum mechanism to address
this problem. Specifically, the sender divides the first 80
bytes into blocks and then calculate checksum for each block.
If a checksum fails, the receiver stops using the pilots ex-
tracted from the corresponding block, until the pilots are
updated using a correctly received block. This approach
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Channel code Decoder
Number of lines

Standard Pilot-assisted
Convolutional BCJR [4] 143 147

LDPC BP [9] 87 97
Spinal code Bubble [22] 158 181

Table 4: Pilot-assisted decoders of LEAD.

avoids using faulty pilots to decode a sequence of packets,
therefore limiting the detrimental effect to a single transmis-
sion. In our implementation, we use two block checksums,
and employ CRC-4 for checksum computation.

Putting them together. In the following, we describe the
decoding process of LEAD by tracing the transmission and
reception of an 802.11 packet.

At the transmitter, LEAD first uses a MAC layer inter-
leaver to spread bits in protocol headers over the whole
packet. After the packet is encrypted and scrambled, LEAD
inserts its own header after the 802.11 SIGNAL symbol. The
LEAD header contains the one-byte link identity, the two
block checksums computed using CRC-4, and the encryption
protocol header. To notify the receiver that the packet uses
LEAD protocol for decoding, the sender flips the reserved bit
in 802.11 SIGNAL symbol as the delimiter of LEAD packet.

Fig. 6 shows the architecture of a LEAD receiver. When
a LEAD packet is received, the receiver first decodes the
LEAD header, parses the link address to choose pilots, and
retrieves keystreams to reshapes pilots through scrambling
and encryption. The reshaped pilots are then fed into the
pilot-assisted decoder. If decoding is successful, LEAD logs
the first 80 bytes to the MAC layer packet history, and up-
dates the physical layer buffer if new pilots are extracted.
Otherwise, LEAD uses the two block checksums embedded
in LEAD header to locate bad blocks that contain mispre-
dicted pilots. If detected, all pilots in the bad blocks will
be purged from the physical layer buffer to prevent further
decoding errors.

6.2 Pilot-Assisted Decoders
The design of LEAD is independent with the underlying

channel code. Thus LEAD can be exploited by all exist-
ing channel codes using their pilot-assisted decoders. In
this work, we augment three decoding algorithms, includ-
ing BCJR [4] of convolutional code, the belief propagation
(BP) decoder [9] of LDPC code, and the bubble decoder
of rateless Spinal code [22], to perform pilot assisted de-
coding. Tab. 4 summarizes our implementations of these
pilot-assisted decoders. Due to space limitation, we only in-
troduce the design of pilot-assisted BCJR. Details of other
decoding algorithms are available in a technical report [14].

Pilot-assisted BCJR decoder. BCJR is a popular soft-
output decoding algorithm for maximum a posteriori de-
coding. Given a sequence of k received codewords o1:k, the
BCJR decoder infers the coding input with the maximum a
posteriori probability estimation. Specifically, the decoder
performs forward recursion and backward recursion to com-
pute the posterior marginals of all states for inference. Dur-
ing the forward recursion, the decoder computes the proba-
bility that the coder ends up at a particular state s at time t
given the first t observations in received codeword sequence.

αt(s) = Pr(s|o1:t) =
∑
s′

αt−1(s
′)γt(s, s

′) (10)

where γt(s, s
′) computes the probability of state transition

from s to s′ at time t, which depends on the distance be-
tween received codeword at time t and the expected code-
word given the transition. During the backward recursion,
the decoder computes the probability of observing the re-
maining codewords given a start point t.

βt−1(s) = Pr(ot:k|s) =
∑
s′

βt(s
′)γt(s, s

′) (11)

Based on the Bayes rule, the probability that the coder
reaches state s at time t given the received codeword se-
quence o1:k can be calculated by

λt(s) ∝ Pr(s|o1:t)× Pr(ot+1:k|s) (12)

Since the encoder starts and ends up at state 0, the BCJR
decoder can be initialized as follows

α0(0) = βk(0) = 1

α0(s) = βk(s) = 0 for all s �= 0
(13)

Let s0 and s1 denote the state where the starting bit is 0
and 1 respectively. The soft-output of the decoder is the
log-likelihood for bit yt, which is calculated as

LLR(yt) = log

∑
s∈s1

λt+1(s)∑
s∈s0

λt+1(s)
(14)

Pilot-assisted BCJR augments the standard BCJR by im-
proving the estimation of λt(s) in Eq. (12), where the
γt(s, s

′) in Eq. (10) and Eq. (11) equals to 0 if the bit
that corresponds to the transition s → s′ does not match
the pilot bit. Therefore the pilot bits reduce the space of
possible transitions and improves the estimation quality of
adjacent data bits.

7. EVALUATION
LEAD is implemented atop the OFDM implementation

of GNURadio/USRP platform. LEAD takes demodulated
symbols as input, converts complex symbols on constella-
tion to soft coded bits using a soft-output demapper [30],
and then performs pilot-assisted decoding through the pro-
cedures illustrated in Fig. 6.

In this section, we evaluate the performance of LEAD.
Our evaluation centers around four aspects. (1) How effi-
ciently can LEAD extract decoding pilots from upper-layer
protocols? (2) Compared with standard channel decoder,
how much performance gain does LEAD yield on decod-
ing 802.11 packets in real-life traffic? (3) How much is the
overhead of LEAD? and (4) How does LEAD perform on
different channel codes?

7.1 Pilot Extraction
We first evaluate the performance of pilot extractor pro-

posed in Section 5.4. LEAD extracts a bit as pilot if it is
fixed in the last k packets. Because bit predictability de-
pends on the bias level and bias pattern, LEAD classifies
bias patterns, and tunes the history size k for each bit to
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Figure 9: Bit error rates of LEAD and BCJR when decoding the same 802.11 packet trace. Each point in the figure

represents a packet. For clear illustration, we divide the two dimensional space into grids of 0.002 × 0.002, and use
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in the figure, compared with BCJR decoding, LEAD yields a significant BER reduction for most partially corrupted

packets.
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maximize the number of extracted pilots while limiting the
misprediction rate under a pre-defined threshold. In our im-
plementation, we adopt a threshold of 0.005, and update
the history size every 10 seconds. In the following, we first
study how efficiently LEAD controls the pilot mispredic-
tion rate, and then evaluate the quantity of extracted pi-
lots. Our evaluation is performed using five real-life traffic
traces introduced in Section 5. Due to space limitation, we
only present the results measured using the SIGCOMM’08
trace [24]. The results observed on other traces are similar.

Fig. 7 shows the average misprediction rates for the bits
located in the first 80 bytes of packets wen using a mispre-
diction threshold of 0.005. The results are measured using

14968 packets collected on a WLAN downlink. Among the
first 80 bytes of packet, total 575 bits were used as pilots.
Only 14 bits have an average misprediction rate higher than
0.005. This result shows that our history size estimation
(described in Section 5.4) can effectively bound the mispre-
diction rate. We further evaluate the quantity of pilots ex-
tracted by LEAD. Two baseline algorithms are employed
for performance comparison. The first baseline, named Uni-
form, uses the same history size for all the bits. The history
size is set as the minimum value that bounds the average
misprediction rate below 0.005 on all the bits. The second
baseline, named Oracle, chooses the optimal history size for
each bit. For both baselines, the history sizes are updated
every 10 seconds. To implement Oracle, we first run the ex-
traction algorithm using all history sizes in each interval of
10 seconds, and then look back to choose the optimal history
size that meets the misprediction bound. Fig. 8 shows the
distributions of pilot quantity measured on 24 links. The av-
erage numbers of pilots extracted by Uniform, LEAD, and
Oracle are 375, 477 and 522, respectively. LEAD outper-
forms Uniform by 27.2%, which validates the effectiveness
of our per-bit history size optimization mechanism based on
the level and pattern of bit bias.

7.2 Bit Error Reduction
Experiment setting. We now evaluate the performance
of LEAD a convolutional code, which is the default channel
code of 802.11. To quantify the decoding efficiency, we com-
pare the BERs of packets decoded by the standard BCJR
algorithm and LEAD, which uses the pilot-assisted BCJR
algorithm described in Section 6.2. Our evaluation is con-
ducted on a testbed of 12 USRP links deployed in an office
building, on a 4MHz channel centered at 5 GHz. We observe
that channel conditions differ substantially in our testbed,
where the average signal-to-noise ratios (SNR) measured on
USRP links range from 7 dB to 20 dB. To improve the real-
ism of our evaluation, we replay the traffic trace collected in
SIGCOMM’08 [24] on our USRP testbed. For each USRP
link, we randomly select a link from the trace, and replay 10
minutes of traffic at the USRP transmitter. The experiment
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is repeated multiple times, each time using a different combi-
nation of modulation and coding rate. For a fair comparison
over time-varying wireless channels, we log the demodulated
symbols at the receiver, and decode them using LEAD and
the standard BCJR to compare their BERs.

BER reduction. Fig. 9 compares the BERs of standard
BCJR and LEAD at two bit rates, including QAM16 rate-
1/2, and QAM64 rate-2/3. We observe that LEAD signifi-
cantly reduces bit errors in both settings. Specifically, when
QAM64 and rate-2/3 coding are used, LEAD reduces more
than 90% bit errors for 48.9% packets. Moreover, LEAD
mitigates all bit errors for 29.4% partially corrupted pack-
ets. Only in 1.4% packets, LEAD induces more bit errors
due to pilot mispredictions. We observed similar results un-
der other bit rates. Unless stated otherwise, we will use
QAM16 and rate-1/2 in the following experiments.

Effect of packet size. Fig. 10 evaluates the effect of
packet size on LEAD performance. We observe that LEAD
achieves significant performance gain for packets that are
shorter than 256 bytes. Specifically, when the packet size
is shorter than 128 bytes, LEAD mitigates 89% bit errors.
When the packet size is between 128 and 256 bytes, LEAD
reduces the bit error rate from 0.077 to 0.027. This is be-
cause the ratio of pilots is higher for short packets. We
note that short packets, which are used extensively by Inter-
net telephony and gaming applications, account for a major
fraction of real-life network traffic. For example, in the SIG-
COMM’08 and our APT trace, 57.3% and 49.5% packets

are smaller than 256 bytes. As a result, reducing the loss
rates of short packets will significantly improve the channel
utilization rate, leading to overall performance improvement
on lossy wireless links.

Different upper-layer protocols. We further evaluate
the gain of LEAD for different upper-layer protocols. Fig.
11 compares the BERs of packets decoded by LEAD and
the standard BCJR. We observe that LEAD consistently
outperforms BCJR for all protocols. LEAD is especially
efficient for those protocols that extensively use short pack-
ets. For example, for IGMP, LEAD reduces 97.3% bit errors
compared to the standard BCJR decoder.

7.3 Impact on Link Layer Performance
In the following, we evaluate the impact of LEAD on link

layer performance. Due to the processing delay, USRP can-
not support full-featured link-layer protocols (e.g., real-time
rate adaptation). Therefore, we turn to trace-driven sim-
ulations in this section to evaluate the end-to-end perfor-
mance gain of LEAD. To collect fine-grained channel trace,
we employ the tool introduced in [12] to sample channel
state information (CSI) on a 20 MHz channel using a link of
two Intel 802.11n NICs. During trace collection, the sender
transmits UDP packets at a speed of 2,000 packets/second.
Meanwhile, the receiver moves around the sender at normal
walking speed. We then run our implementations of LEAD
and standard 802.11 over this channel trace to compare their
performance.

Link layer settings. To adapt bit rate over time-varying
channel, we employ the algorithm proposed in [11], where
the transmitter tunes its bit rate based on the effective SNR
measured using receiver ACKs. We implemented the binary
exponential backoff at the MAC layer, where the transmit-
ter doubles its backoff window whenever a packet drop is
detected. According to 802.11, the maximum retry limit is
set to 6. To evaluate the impact of LEAD on link layer er-
ror recovery mechanisms, we implemented three protocols,
including Maranello [13], link layer forward error correction
(FEC) [18], and partial packet retransmission (PPR) [16].

• Maranello. Maranello [13] is a block retransmission
based partial packet recovery protocol. Specifically, a
partially corrupted packet is divided into blocks. For
each block, a 32-bit checksum is computed and re-
turned to the sender for identifying block(s) that con-
tain bit errors. To reduce recovery overhead, Maranello
only retransmits corrupted block(s). In our implemen-
tation, we use a block size of 64 bytes, which is com-
pliant to the setting introduced in [13].

• Link layer FEC. To evaluate the impact of LEAD on
link layer error correcting schemes, we implemented
the protocol introduced in [18]. To correct bit er-
rors, Reed-Solomon (RS) code is adopted at the link
layer. RS code breaks each packet into n-bit symbols,
and then groups each r symbols to a codeword, where
r ≤ 2n. Two redundant symbols can correct up to one
bad symbol in a codeword. In our implementation, we
set n=8, which is the popular choice on byte-oriented
systems. When an ACK timeout is detected, the trans-
mitter sends the optimal amount of parity symbols,
which is the minimum number of symbols that assures
error correction.
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• PPR. PPR [16] exploits physical layer decoding confi-
dence to estimate bit error probabilities. The sender
only retransmits the bits of low decoding confidence to
avoid the costs of retransmitting correct bits.

Evaluation results. We evaluate the impact of LEAD on
link layer performance by replaying real-life traffic traces
over our channel trace. Total 100 links are randomly selected
from the SIGCOMM’08 trace. For each link, we replay a 10-
minute traffic trace and measure the link layer goodput at
the receiver. Higher layer factors, such as TCP reactions,
affect how this link layer goodput translates to real system
throughput.

We integrate LEAD with the above error recovery proto-
cols, and evaluate their effects on link layer goodput. The re-
sults are shown in Fig. 12. The goodputs shown in the figure
is normalized to 802.11 goodput. Our result shows that the
performance gain of LEAD is significantly boosted with the
support of link layer error recovery protocols. Specifically,
when both 802.11 and LEAD are integrated with Maranello,
PPR, and optimal link layer FEC, the performance gains
of LEAD over 802.11 are 1.72x, 1.43x, and 1.93x, respec-
tively. This is because LEAD enables error recovery proto-
cols to better exploit partially corrupted packets to improve
network performance. Since LEAD is able to significantly
reduce bit errors, the error recovery protocols need to re-
transmit fewer bits, leading to higher system throughput.
The results demonstrate that the bit-level error reduction
achieved by LEAD results in a significant end-to-end per-
formance gain at the link layer.

7.4 Overhead
In the following, we evaluate the overhead of LEAD, in-

cluding the protocol overhead, the cost of pilot mispredic-
tion, and the processing delay of pilot reshaping.

Protocol overhead. For each data packet, LEAD requires
two bytes for inserting its own protocol header. A ques-
tion we aim to answer is if it is better off to use these two
bytes to carry redundant information for error correction.
To justify the protocol overhead of LEAD, we compare its
performance to an error correction scheme, which adopts
the Reed-Solomon (RS) code at the link layer to correct bit
errors. In our implementation, we adopt the setting used
in [18], where n=8 and r=255. For each packet, we ran-
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domly select a RS codeword to add two redundant symbols,
which is equivalent to the protocol overhead of LEAD.

Fig. 13 compares the BERs of 802.11, LEAD, and the
link layer RS code. We observe that LEAD yields significant
performance gains when compared with 802.11 and link layer
RS code. This is because RS code cannot partially reduce
bit errors when the number of flipped bits goes beyond its
error correcting capability. In comparison, LEAD is able to
significantly reduce bit errors, which can be transformed to
a significant performance gain when error recovery protocols
are available at the link layer, as discussed in Sec. 7.3.

Cost of pilot misprediction. During pilot-assisted de-
coding, LEAD eliminates the outputs that do not match
the values of pilots. As a result, pilot misprediction may
cause decoding errors. We evaluate this cost by studying
the packet loss rate when replaying real-life packet traces
on a wireless channel of good quality (average SNR=20dB)
using the most robust bit rate (i.e., BPSK with rate-1/2
coding). Fig. 14 shows the distribution of packet loss rate.
The results are measured using 24 links randomly selected
from the SIGCOMM’08 trace. We observe that the packet
loss rates are lower than 5% for more than 90% links. When
link layer retransmission is enabled, the impacts of mispre-
diction on packet loss rate and link goodput are negligible.

Pilot reshaping delay. As bit values observed in upper-
layer protocols usually differ from those received at the phys-
ical layer, protocol signatures extracted from packet head-
ers cannot be directly used in decoding. Therefore LEAD
receiver reshapes pilots through encryption and scrambling
before using them in pilot-assisted decoding, which incurs
a processing delay. To evaluate the processing delay, we
implemented a software pilot reshaper for the WiFi Pro-
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tected Access (WPA) protocol and the standard scrambler
of 802.11. The reshaper follows the key mixing function
defined in Temporal Key Integrity Protocol (TKIP) to com-
bine the root key and the initialization vector into a 128-bit
RC4 key, and then generates the keystream. The reshaper
performs encryption and scrambling on 80 bytes, which is
the upper bound on the length of bits used by LEAD to find
bit bias. To measure the distribution of reshaping delay, we
repeat this experiment 10000 times on a laptop equipped
with a 2.9GHz CPU. Fig. 15 shows the distribution of re-
shaping delay. We observe that for more than 95% cases,
the reshaping delay is below 7 us, which is shorter than the
10 us SIFS defined in 802.11g. As a result, the reshaping
delay does not cause an 802.11 link to drop packets. We
also note that such delay can be significantly reduced when
the pilot reshaper is implemented in the firmware of WLAN
NICs.

7.5 Pilot Availability and Other Channel Codes
Our measurements presented in Section 5 on five real-life

traffic datasets show that the ratio of pilot bits typically
ranges from 10% to 30%. However, the percentage of pilot
bits in a particular network also varies substantially depend-
ing on the size of packet payload. Moreover, the efficiency of
pilot-assisted decoding also depends on the specific channel
codes.

We now evaluate the effect of pilot ratio on the decoding
performance. We demonstrate the efficiency of pilot-assisted
decoding for three channel codes, including the BCJR de-
coder of convolutional code, the belief propagation decoder
of LDPC, and the bubble decoder of Spinal code. We aug-
ment these standard decoders to exploit pilots, and measure
the percentage of error reduction. The spinal code is config-
ured using the parameters introduced in [22]. For LDPC and
convolutional code, we use a coding rate of 1/2 with QPSK
for modulation and demodulation. We also conducted the
same experiments under other physical layer settings. Sim-
ilar results are observed.

We deployed a link of two USRP nodes in an office en-
vironment. The transmitter sends back-to-back packets us-
ing different transmission power levels. The receiver logs
the trace of demodulated symbols, and decodes them us-
ing standard and pilot-assisted decoders, respectively. For
each packet, a group of bits are randomly selected as pilots1,
whose values are made known to the pilot-assisted decoder.
We then vary pilot ratios to study the impact on decoding
performance. For each channel code, the performance gain

1The random pilot selection strategy is consistent with our
implementation where the pilots are uniformly spread over
the entire packet by the interleaver.

of pilot-assisted decoding is measured using 10000 packets
that are erroneously decoded by the standard decoder.

The results are shown in Fig. 16. We observe that pilot-
assisted decoding significantly reduces BERs for all codes.
Specifically, when the pilot ratio is 20%, bit error is reduced
by 71% and 74% for convolutional code and LDPC, respec-
tively. Using Spinal code, the transmitter keeps sending
coded symbols round by round, until the receiver success-
fully decodes the packet. We hence compare the BERs of
the standard and pilot-assisted decoders in different rounds.
Using 30% pilots, the BER is reduced by 44%, 80%, and 94%
in the second, fifth and tenth round. The results demon-
strate the efficiency of exploiting pilots to reduce decoding
errors across different channel codes.

8. CONCLUSION AND FUTURE WORK
We present a new cross-layer wireless error correction ap-

proach called LEAD. The key idea of LEAD is to predict the
values of some received bits based on the signatures of upper-
layer protocols, and then use them as pilots to improve the
PHY decoding performance. We first characterize the bit
bias of protocol signatures in real 802.11 traffic, and develop
an efficient algorithm to extract pilot bits whose values have
high predictability. We then develop several mechanisms to
integrate LEAD with 802.11 protocol stack, including inter-
leaving protocol signatures across a whole packet so that the
decoding of payload can leverage adjacent pilots, handling
scrambled and encrypted pilots, and detecting and handling
mispredicted pilots. We augment three standard decoders,
including the BCJR decoder of convolutional code, the be-
lief propagation decoder of LDPC code, and the bubble de-
coder of the Spinal code to effectively exploit pilots. We
implement LEAD on USRP platform and evaluate its per-
formance by replaying real-life traffic traces on a testbed of
12 USRP links. Our results show that LEAD can reduce
BER by more than 90% for half of the error packets while
incurring very low overhead. Moreover, LEAD improves the
end-to-end link throughput by 1.43x to 1.93x over the exist-
ing error correction schemes.

The performance of LEAD depends on the availability of
“good” pilots whose values can be correctly predicted by the
receiver. The pilot extraction algorithm of LEAD maximizes
the number of pilots while limiting the misprediction thresh-
old under a given threshold. When the wireless channel con-
dition is good, it is desirable to set a lower misprediction rate
to minimize the additional bit errors caused by pilot mispre-
diction. In contrast, when the channel condition is bad, the
threshold should be set higher to produce more pilots. In
the future, we will develop an adaptive scheme which ad-
justs the bound dynamically according to the measurement
of channel quality.

LEAD has important implications for the efficiency of sev-
eral types of wireless protocols. The pilots extracted by
LEAD can be utilized to estimate accurate channel BER at
the receiver without resorting to probing packets. This can
significant reduce the overhead of rate adaptation. Several
cross-layer protocols such as PPR [16] utilize PHY informa-
tion (e.g., decoding confidence) to estimate packet errors.
LEAD can improve the decoding performance and hence
helps error estimation accuracy. We will integrate LEAD
with these protocols and study the benefits of pilot-assisted
decoding on partial packet recovery and rate adaption.
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(a) Convolutional code.
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(b) LDPC.
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(c) Rateless spinal code.

Figure 16: Ratios of reduced errors when using pilot-assisted decoding for convolutional code, LDPC, and Spinal.
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