
   
 

  
Abstract—SSVEP-based brain-computer interface (BCI) 

has potential advantage of high information transfer rate. 
However, individual difference greatly affects its practical 
applications. This paper presents a method of lead selection to 
improve the applicability of SSVEP-based BCI system. 
Independent component analysis (ICA) is employed to 
decompose EEGs over visual cortex into SSVEP signal and 
background noise. Optimal bipolar lead is selected by 
comparing signal correlation and noise correlation between 
different channels.  The system with one optimal bipolar lead 
has reached an average transfer rate about 42bits/min for 
normal subjects. It has also been successfully applied to an 
environmental controller for the motion-disabled. 
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I.  INTRODUCTION 
 
  Visual evoked potentials (VEPs) recorded from scalp 
over visual cortex reflect the visual information processing 
mechanism in brain. Steady-state visual evoked potentials 
(SSVEPs) occur when stimulation repetition frequency is 
higher than 6Hz. SSVEP has been employed as an effective 
communication medium in BCI research. One of the 
examples is to determine gaze direction by SSVEP [1]-[3]. 
Several buttons flash at different rates. The user looks at a 
button and the system determines the frequency of the 
photic driving response over visual cortex. The button 
which matches the frequency is the target the user wants to 
select. The system designed by M. Cheng et al. reached a 
transfer rate greater than 50bits/min on some subjects, while 
the performance was unacceptable on some other subjects 
[1]. 
  Obviously, the applicability of SSVEP-based system is 
limited due to individual difference. Amplitude, source 
location of VEP, and background noise are important 
factors which affect the performance of the system. Here, 
we propose a method of lead selection for the purpose of 
signal-to-noise ratio enhancement. First, independent 
component analysis (ICA) is applied to decompose EEGs 
into SSVEP signal and background noise. Then, spatial 
power distribution is displayed for comparing the 
correlation of decomposed signal and noise between 
different leads. Finally, one bipolar lead with higher 
correlation of noise and lower correlation of signal is 
selected as the optimal lead. The result of online tests 
showed the significant improvement of system performance. 
 

 
II. METHODOLOGY 

 
A. Data acquisition 
 
  32-channel EEGs (see Fig.1.(a)) were recorded with a 
BioSemi ActiveTwo system. 13 channels were located 
between Pz and Oz to record EEGs over visual cortex with 
a higher spatial resolution. A blinking light-emitting diode 
(LED) modulated by square wave was used as the 
stimulator. The integer repetition rate of stimulation 
covered the bandwidth from 9Hz to 17Hz. 60-second-long 
data were acquired in each test with different stimulation 
frequencies. Signals were sampled at 256Hz and 
preprocessed by a 50Hz notch filter and a 4-35Hz band-pass 
filter. 
 
B. Lead consideration 
 
  Fig.1.(b) shows a typical example of temporal wave 
and amplitude spectrum of SSVEPs induced by 13Hz 
stimulation. The fundamental and second harmonics are 
identified clearly at 13Hz and 26Hz. The dominant 
background noise is α rhythm of spontaneous EEG. To 
detect the frequency of SSVEP accurately and conveniently, 
a proper bipolar lead should be selected. 
 

 
Fig.1. (a) Leads placement of 32-channel EEGs. (b) Temporal wave and 
amplitude spectrum of 13Hz SSVEPs. 
 
  In practice, channel with the most significant amplitude 
of SSVEP can be considered as the signal channel which 
commonly locates over visual cortex. The precise position 
can be determined with the study of EEG power map at 
stimulation frequency. The difficult problem is to select a 
proper reference channel for the bipolar lead. A correct 
choice of reference channel can enhance signal and reduce 
noise. Here, two factors for reference channel selection are 
under considerations: amplitude of SSVEP,  distance ① ②
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from the signal channel. To retain SSVEP, the reference 
channel must have lower amplitude of SSVEP. To reduce 
background noise, it should have similar background 
activities with the signal channel. Therefore, the ones close 
to the signal channel, with low amplitude of SSVEP, could 
be the candidates of the reference channel. In general, the 
nearest channels around the signal channel have high noise 
correlation, whereas, they also have large correlation of 
SSVEP. On the contrary, the channels with low amplitudes 
of SSVEP are usually far away from the signal channel, and 
have less noise correlation. Therefore, a comprehensive 
consideration must be taken for optimal bipolar lead 
selection in order to get best signal-to-noise ratio. 
  The lead selection patterns of two representative 
subjects are analyzed. The pattern of subject A focuses on 
correlation of signal and the pattern of subject B 
emphasizes correlation of noise. Independent component 
analysis (ICA) is used for decomposition of signal and 
noise from single channel EEG [4]. The detailed procedures 
are described as follows: 
  
1) 13-channel EEGs X (with embedded SSVEP at 13Hz) 

between Pz and Oz are selected as the input. 13 
independent components (ICs) are calculated as 
sources S through ICA, i.e. S=W·X, where W is the 
demixing matrix. 

2) Analyze the amplitude spectra of the ICs. The four 
with most significant power at stimulation frequency 
are supposed to be signal activities of SSVEP and the 
remaining are considered as noise activities. They are 
denoted as SSignal and SNoise. Then S can be expressed as 
S= SSignal+SNoise. 

3) With the equation X=W-1·S= W-1·(SSignal+SNoise), X can 
be divided into two parts： 

XSignal=W-1·SSignal ，XNoise= W-1·SNoise 
XSignal and XNoise are the reconstructions of SSVEP and 
noise activities over visual cortex respectively. 

4) Calculate correlation coefficients for XSignal and XNoise 
between different channels. Denote D(X) as the 
variance of X , cov(X,Y) as the covariance of X and Y, 
correlation coefficients of channels i and j are 
expressed as: 
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5) Analyze amplitude spectra of X, XSignal and XNoise on all 
channels. Then map them (13 groups) to scalp (see 
Fig.2). For each group, the amplitude spectrum of X is 
in the bottom, the amplitude spectrum of XSignal is on 
the top right corner and that of XNoise is on the top left 
corner.  

 

 
 Fig.2. Spatial distributions of amplitude spectra on 13 channels over visual 
cortex ( (a) subject A, (b) subject B). The parts down are the amplitude 
spectra of signal channel, reference channel, and bipolar channel. 
 

The ratio of signal correlation to noise correlation 
between different channels is the basis of optimal lead 
selection. Besides the correlation coefficients, they can also 
be drawn out directly by observing the spatial distributions 
of amplitude spectra over scalp. As shown in Fig.2.(a), for 
subject A, EEGs have large amplitude of SSVEP and less 
background noise. Furthermore, amplitudes of SSVEPs 
change gradually over visual cortex. The key point of lead 
selection is to retain SSVEP component of the signal 
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channel. PO2 is selected as the signal channel due to its 
strongest SSVEP. Then the channels with weak SSVEP, 
such as Pz, P4, and P8, can be considered as reference 
channel. The channels around PO2 are rejected because of 
large SSVEP. The arrow in Fig.2.(a) denotes that PO2-Pz 
can be considered as an optimal bipolar lead. The SSVEPs 
of subject B (Fig.2.(b)) are contaminated by strong 
spontaneous EEGs. We can not choose the signal channel 
from original EEGs. Through decomposition of EEGs by 
ICA, the spatial distribution of signal activities shows that 
PO2 has the most significant SSVEP and the SSVEPs of 
most channels around PO2 decrease sharply. The key point 
under this pattern is to reduce the background noise of PO2. 
Therefore, the channels close to PO2 and with weak 
SSVEP are preferable. As shown in Fig.2.(b), PO2-POz is a 
good choice to weaken the background activities. 
 
C. Efficiency test 
 

 
Fig.3. Signal-to-noise ratio and peak detection accuracy versus data length 
(from 0.5s to 4s) with different leads selected. 
 
 Two parameters, signal-to-noise ratio and peak 
detection accuracy, are used as the criterions to evaluate the 
efficiency of optimal lead selection through off-line 
analysis of the EEG data. The amplitude spectrum is 
calculated by y=|FFT(x)|, where x is the temporal EEG data. 
FFT(x) is the 1024-point fast Fourier transform (FFT) of x. 
x is padded with zeros if it is shorter than 4s. The frequency 
corresponding to the maximum value of y is the stimulation 
frequency f if the result of frequency detection is accurate. 
Signal-to-noise ratio is defined as the ratio of y(f) to mean 
value of the 16 ajacent points: 
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It approximately reflects the signal-to-noise ratio of 
SSVEPs. Fig.3.(a) shows the SNR versus data length (from 
0.5s to 4s) on subjects A and B. Fig.3.(b) shows the 

corresponding frequency detection accuracy.   According to 
above lead consideration, PO2-Pz is the optimal lead for 
subject A and PO2-POz is that for subject B. The results 
shown in Fig.3 demonstrate the efficiency of optimal lead 
selection. With the proper leads, the accuracy approaches to 
100% when the data length is close to 4s.  
 
 

III. RESULTS 
 
 The BCI system with optimal lead selection has been 
tested on 16 volunteers with normal vision (6 female and 10 
male) in laboratory. The information transfer rate was 
estimated through an online phone call experiment. More 
details of the explanation can be found in [1]. The bit rate 
(B) of each selection can be expressed as  

)]1/()1[(log)1(loglog 222 −−−++= NPPPPNB . 
N is the number of targets and P is the accuracy of target 
selections. B multiplied by selecting speed is the transfer 
rate (bits per minute) [5]. All subjects fulfilled the task of 
11-digit phone number input successfully. The highest rate 
is 57 bits/min and the lowest is 29 bits/min. The average 
number is 42 bits/min, which is much higher than the 
reported 27bits/min of the SSVEP-based BCI with 
conventional lead placement (ear reference) [1]. 
 A BCI-based environmental controller [6] was tested in 
the Rehabilitation Center of China to help people with 
motion disability to control home appliances. 11 volunteers 
with spin cord injury (2 female and 9 male) participated in 
the experiments. Without any training, the average transfer 
rate is about 21 bits/min. This lower number may be caused 
by the noisy environment and big space between stimulator 
and subject set in the wheelchair. 
 The results demonstrate that optimal lead selection is an 
effective and reasonable method to improve the 
applicability of SSVEP-based BCI. The new system is 
applicable to >90% of the volunteers. This makes SSVEP-
based BCI a more practical system. 
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