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Abstract We consider the problem of leader election
among mobile agents operating in an arbitrary network mod-
eled as an undirected graph. Nodes of the network are unla-
beled and all agents are identical. Hence the only way to
elect a leader among agents is by exploiting asymmetries
in their initial positions in the graph. Agents do not know
the graph or their positions in it, hence they must gain this
knowledge by navigating in the graph and share it with other
agents to accomplish leader election. This can be done using
meetings of agents, which is difficult because of their asyn-
chronous nature: an adversary has total control over the speed
of agents. When can a leader be elected in this adversarial
scenario and how to do it? We give a complete answer to this
question by characterizing all initial configurations for which
leader election is possible and by constructing an algorithm
that accomplishes leader election for all configurations for
which this can be done.
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1 Introduction
1.1 The model and the problem

Leader election is one of the fundamental problems in dis-
tributed computing, first stated in [38]. Each entity in some
set has a Boolean variable initialized to O and, after the elec-
tion, exactly one of these entities, called the leader, should
change this value to 1. All other entities should know which
one becomes the leader. In this paper we consider the prob-
lem of leader election among mobile agents that operate in a
network. Electing a leader enables the agents to accomplish
many tasks in networks more efficiently. For example, the
leader may subsequently navigate in the network by itself to
periodically check the functionality of network components,
thus relieving other agents to accomplish other tasks. Alter-
natively, the leader may split some computational task among
agents that will complete different parts of it in parallel, thus
decreasing the total time of computation.

We assume that neither nodes of the network nor agents
have labels that can be used for leader election. This assump-
tion is motivated by scenarios where nodes and/or agents
may refrain from revealing their identities, e.g., for privacy
reasons. Agents may want to cooperate and may well be
trustworthy, but they may be reluctant to tell who they are.
Hence it is desirable to have leader election algorithms that
do not rely on identities but exploit asymmetries in the initial
configuration of agents due to its topology and to port label-
ings. From the methodological point of view, leader election
in anonymous networks performed by anonymous agents is
interesting because it isolates the structural properties of the
network and of the initial configuration of agents as the only
features that can be exploited to break symmetry. With unla-
beled nodes and agents, leader election is impossible for sym-
metric initial configurations, e.g., in a ring in which ports at
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each node are 0, 1, in the clockwise direction and agents are
initially situated at every node. Our goal is to answer the
following question:

For which initial configurations of agents is leader
election possible and how to do it when it is possible?

A network is modeled as an undirected connected graph
with unlabeled nodes. It is important to note that the agents
have to be able to locally distinguish ports at a node: oth-
erwise, the adversary could prevent an agent from choos-
ing a particular edge, thus making navigation in the net-
work impossible even in the simple case of trees. This justi-
fies a common assumption made in the literature: ports at a
node of degree d have arbitrary fixed labelings O, ..., d — 1.
Throughout the paper, we will use the term “graph” to
mean a graph with the above properties. We do not assume
any coherence between port labelings at various nodes.
Agents can read the port numbers when entering and leaving
nodes.

At the beginning, identical agents are situated in some
nodes of the graph, at most one agent at each node. The
graph with bicolored nodes (black if the node is occupied,
white if it is not) is called an initial configuration. Agents do
not have labels and have unlimited memory: they are mod-
eled as identical Turing machines. They execute the same
deterministic algorithm.

Agents navigate in the graph in an asynchronous way
which is formalized by an adversarial model used in [6,
15,18,19,28] and described below. Two important notions
used to specify movements of agents are the route of the
agent and its walk. Intuitively, the agent chooses the route
where it moves and the adversary describes the walk on this
route, deciding how the agent moves. More precisely, these
notions are defined as follows. The adversary initially places
an agent at some node of the graph. The route is chosen
by the agent and is defined as follows. The agent chooses
one of the available ports at the current node. After get-
ting to the other end of the corresponding edge, the agent
learns the port number by which it enters and the degree of
the entered node. Then it chooses one of the available ports
at this node or decides to stay at this node. The resulting
route of the agent is the corresponding sequence of edges
({vo, v1}, {v1, v2}, ...), which is a (not necessarily simple)
path in the graph.

We now describe the walk w of an agent on its route. Let
R = (e1, e, ...) betheroute of an agent. Lete; = {v;_1, v;}.
Let (#o, t1, 12, . . .), where 1o = 0, be an increasing sequence
of reals, chosen by the adversary, that represent points in
time. Let w; : [#;,#+1] — [vi, vi+1] be any continuous
function, chosen by the adversary, such that w;(;) = v;
and w;(tj+1) = vij41. For any ¢t € [f;,t;+1], we define
w(t) = w;(t). The interpretation of the walk w is as fol-
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lows: at time ¢ the agent is at the point w(#) of its route. This
general definition of the walk and the fact that (as opposed
to the route) it is designed by the adversary, are a way to for-
malize the asynchronous characteristics of the process. The
movement of the agent can be at arbitrary speed, the adver-
sary may sometimes stop the agent or move it back and forth,
as long as the walk in each edge of the route is continuous
and covers all of it.

This definition makes the adversary very powerful, and
consequently agents have little control on how they move.
This, for example, makes meetings between agents hard to
achieve. Note that agents can meet either at nodes or inside
edges of the graph.

Agents with routes R; and R, and with walks w; and
wy meet at time ¢, if points w(¢) and w;(¢) are identical.
A meeting is guaranteed for routes R; and Ry, if the agents
using these routes meet at some time ¢, regardless of the walks
chosen by the adversary.

When agents meet, they notice this fact and can exchange
all previously acquired information. However, if the meeting
is inside an edge, they continue the walk prescribed by the
adversary until reaching the other end of the current edge.
New knowledge acquired at the meeting can then influence
the choice of the subsequent part of the routes constructed
by each of the agents.

Since agents do not know a priori the topology of the graph
and have identical memories at the beginning, the only way
to elect a leader among agents is by learning the asymmetries
in their initial positions in the graph. Hence agents must gain
this knowledge by navigating in the network and share it
with other agents to accomplish leader election. Sharing the
knowledge can be done only as a result of meetings of agents,
which is difficult because of the asynchronous way in which
they move.

Itis not hard to see (cf. Proposition 2) that in the absence of
a known upper bound on the size of the graph, leader election
is impossible even for asymmetric configurations. Hence we
assume that all agents know a priori a common upper bound
n on the size of the graph. This is the only information about
the environment available to the agents when they start the
task of leader election.

Having described our model, we can now make the initial
problem more precise. Call an initial configuration eligible
if, starting from this configuration, leader election can be
accomplished regardless of the actions of the adversary. Thus
in order that a configuration be eligible, it is enough to have
some leader election algorithm starting from it, even one
dedicated to this specific configuration. Now our problem
can be reformulated as follows.

Which initial configurations are eligible? Find a univer-
sal leader election algorithm that elects a leader regard-
less of the actions of the adversary, for all eligible con-
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figurations in graphs of size at most n, where n is known
to the agents.

1.2 Our results

Assuming an upper bound » on the size of the graph, known a
priori to all agents, we characterize all eligible initial config-
urations and construct an algorithm that accomplishes leader
election for all of them. More precisely, we formulate a com-
binatorial condition on the initial configuration, which has
the following properties. On the one hand, if this condition
does not hold, then the adversary can prevent leader election
starting from the given initial configuration. On the other
hand, we construct an algorithm that elects a leader, regard-
less of the adversary, for all initial configurations satisfying
the condition, in graphs of size at most equal to the given
bound 7.

Intuitively, leader election is possible when the initial con-
figuration is asymmetric and when agents can learn this,
regardless of the actions of the adversary. Both these require-
ments are contained in the necessary and sufficient condition
on eligibility, which we formulate in Sect. 3. In fact, the
process of learning the asymmetries by the agents is the main
conceptual and technical challenge in the design and analysis
of our algorithm. Agents acquire and share this knowledge
as a result of meetings. The difficulty is to design the algo-
rithm in such a way that all asymmetries be finally learned
by all agents and that all agents be aware of this fact and thus
capable to correctly elect the leader.

1.3 Related work

Leader election in networks was mostly studied assuming
that all nodes have distinct labels and election has to be per-
formed among nodes. This task was first studied for rings.
A synchronous algorithm, based on comparisons of labels,
and using O(nlogn) messages was given in [30]. It was
proved in [26] that this complexity is optimal for comparison-
based algorithms. On the other hand, the authors showed an
algorithm using a linear number of messages but requiring
very large running time. An asynchronous algorithm using
O (n log n) messages was given, e.g., in [42] and the optimal-
ity of this message complexity was shown in [9]. Determin-
istic leader election in radio networks has been studied, e.g.,
in [31,32,39] and randomized leader election, e.g., in [45].
In [29] the leader election problem is approached in a model
based on mobile agents for networks with labeled nodes.
Many authors [3-5,8,23,35,36,43,46,48] studied various
computing problems in anonymous networks. In particu-
lar, [7,48] characterize message passing networks in which
leader election can be achieved when nodes are anonymous.
In [47] the authors study the problem of leader election in
general networks, under the assumption that labels are not

unique. They characterize networks in which this can be done
and give an algorithm which performs election when it is fea-
sible. They assume that the number of nodes of the network
is known to all nodes. In [25] the authors study feasibility and
message complexity of sorting and leader election in rings
with nonunique labels, while in [24] the authors provide algo-
rithms for the generalized leader election problem in rings
with arbitrary labels, unknown (and arbitrary) size of the ring
and for both synchronous and asynchronous communication.
Characterizations of feasible instances for leader election and
naming problems have been provided in [10,12,13]. Mem-
ory needed for leader election in unlabeled networks has been
studied in [27].

Problems involving mobile agents navigating in various
environments have been extensively studied in the literature.
The environment can be either the plane [14] or a network
modeled by a graph. In the latter case the tasks accomplished
by agents include exploration of the network [2,11] and ren-
dezvous, in which two or more agents have to gather in the
same place. Scenarios in which rendezvous was considered
can be broadly divided into randomized, which are the subject
of the book [1], and deterministic, which are surveyed in [41].
Deterministic rendezvous in networks was studied either
assuming the possibility of marking nodes by agents [16,37],
or forbidding it[17, 18,20,44]. Another important dichotomy
is synchronous versus asynchronous navigation of the agents.
In the first case [17,20,21,44], agents traverse edges in lock-
step. The asynchronous scenario was in turn studied in two
variations. In the first one [33,34], agents could observe
positions of other agents, but were oblivious, i.e., could not
remember previously seen configurations. The second vari-
ation, which is the model used in this paper, has been previ-
ously used in [6,15,18,19,28] in the context of rendezvous
between two agents. In [6,15,18,19] agents had different
labels and in [28] agents were anonymous, as in our present
scenario.

In the scenario of mobile agents that get aware of other
agents only by meeting them, rendezvous of a pair of agents
and the problem of leader election are tightly connected.
Indeed, in order to elect a leader agents must meet other
agents. Hence, not surprisingly, we use rendezvous of two
agents, described in [18,28] as a building block for our leader
election algorithm. However, it should be pointed out that
leader election among many agents is a much harder task
than meeting of two agents. In the latter case, the task is
accomplished after meeting and the agents stop. No infor-
mation transfer is necessary. By contrast, in order to perform
leader election, agents must meet some agents, get informa-
tion from them, separate, meet other agents, try to recognize
if these other agents are those seen previously or different
ones (recall that agents are anonymous, and can share only
their memory content—see Sect. 2), and combine all this
knowledge to finally elect a leader.
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1.4 Roadmap

In Sect. 2 we formalize the description of how agents decide.
This concerns both navigation decisions (on what basis the
agents construct their routes) and the final decision who is
the leader. We define memory states of the agents that are
the basis of all these decisions. In Sect. 3 we formulate the
combinatorial condition EC concerning initial configurations
that is then proved to be equivalent to eligibility, and we for-
mulate our main result. In Sect. 4 we prove two negative
results concerning leader election: one saying that condition
EC is necessary for eligibility and the other saying that the
assumption concerning knowledge of the upper bound can-
not be removed. In Sect. 5 we give our main contribution:
we construct a universal algorithm electing a leader for all
configurations satisfying condition EC, if agents know an
upper bound on the size of the graph. Section 6 contains
conclusions.

2 Memory states and decisions of agents

In this section we describe formally on what basis the agents
make decisions concerning navigation in the graph (i.e., how
they construct their routes) and on what basis they make
the decision concerning leader election. All these decisions
depend on the memory states of the agents. At every time
t the memory state of an agent is a finite sequence of sym-
bols defined as follows. Before an agent is woken up by the
adversary, its memory state is blank: it is the empty sequence.
When an agent is woken up, it perceives the degree d of its
initial position, i.e., its memory state becomes the sequence
(d). Further on, the memory state of an agent changes when
it visits a node. It is caused by the following three types of
events: entering a node by the agent, meeting other agents,
and leaving a node by the agent. A change of a memory state
of an agent is done by appending to its current memory state
a sequence of symbols defined as follows. The change due
to entering a node of degree d by port number p, consists of
appending the sequence (p, d) to the current memory state
of the agent. The change due to leaving a node by port g con-
sists of appending g to the current memory state of the agent.
The change due to meeting other agents is defined as follows.
When entering a node v the agent considers all meetings with
other agents that occurred since leaving the previous node.
Suppose that the current memory states of the agents met
in this time interval by agent A were o1, ..., 0%, in lexico-
graphic order, regardless of the order of meetings in this time
interval and disregarding repeated meetings corresponding to
the same memory state (and thus to the same agent). Agent
A appends the sequence of symbols ([o1]. .. [o%]) to its cur-
rent memory state. When two or more of these events occur
simultaneously, for example an agent meets another agent

@ Springer

when it enters a node, or an agent meets simultaneously sev-
eral agents, then the appropriate sequences are appended to
its current memory one after another, in lexicographic order.
When in the previous memory state the agent made a deci-
sion to stay idle at the current node, then its memory state
can change only if and when some other agent enters this
node. This completes the description of how the memory
states of agents evolve. Notice that after traversing an edge
the action of agent A consisting of appending a sequence
of symbols [o] due to a meeting with an agent with cur-
rent memory state o since leaving the previous node, is per-
formed by A at most once. Since the number of agents is
finite, this implies that, by any given moment in time, the
memory state of an agent has changed only a finite number
of times, and each time a finite sequence of symbols has been
appended. Hence memory states are indeed finite sequences
of symbols.

The decisions of agents are made always when an agent
is at a node and they are of three possible types: an agent
can decide to stay idle, it can decide to exit the current node
by some port, or it can elect a leader and stop forever. All
these decisions are based on the memory state of the agent
after entering the current node and are prescribed by the
algorithm. (Recall that agents execute the same determin-
istic algorithm.) If an agent decides to stay at a given node,
then it remains idle at it until another agent enters this node.
At this time the memory state of the idle agent changes, and
in the new memory state the agent makes a new decision. If
an agent decides to leave the current node by a given port, it
walks in the edge in the way prescribed by the adversary and
makes a new decision after arriving at the other end of the
edge. Finally, if an agent decides to elect a leader, it either
elects itself, or it decides that it is not a leader, in which case
it has to give a sequence of port numbers leading from its
own initial position to the initial position of the leader: this
is the meaning of the requirement that every non-leader has
to know which agent is the leader.

3 Feasibility of leader election

In this section we express the necessary and sufficient condi-
tion on eligibility of an initial configuration and we formulate
the main result of this paper. We first introduce some basic
terminology.

We will use the following notion from [48]. Let G be a
graph and v a node of G. We first define, for any [ > 0, the
truncated view V' (v) at depth [, by induction on /. VO (v) is
a tree consisting of a single node xq. If V! (u) is defined for
any node u in the graph, then V/*1(v) is the port-labeled tree
rooted at xo and defined as follows. For every node v;, i =
1,...,k, adjacent to v, there is a child x; of xo in V'T1(v)
such that the port number at v corresponding to edge {v, v;}
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is the same as the port number at x( corresponding to edge
{x0, x;}, and the port number at v; corresponding to edge
{v, v;} is the same as the port number at x; corresponding to
edge {xo, x;}. Now node x;, fori = 1, ..., k becomes the
root of the truncated view V! (v;).

The view from v is the infinite rooted tree }V (v) with labeled
ports, such that V’(v) is its truncation to level /, for each
! > 0. For an initial configuration in which node v is the
initial position of an agent, the view V(v) is called the view
of this agent.

We will also use a notion similar to that of the view but
reflecting the positions of agents in an initial configuration.
Consider a graph G and an initial configuration of agents in
this graph. Let v be a node occupied by an agent. A func-
tion f that assigns either 0 or 1 to each node of V(v) is
called a binary mapping for V(v). A pair (V(v), g), where
fis a binary mapping for V(v), such that f(x) = 1 if and
only if x corresponds to an initial position of an agent, is
called the enhanced view from v. Thus, the enhanced view
of an agent additionally marks in its view the nodes cor-
responding to initial positions of other agents in the initial
configuration.

For any route R = (e1,e2,...,e) such that ¢; =
{vi_1, v;}, we denote b(R) = vy and d(R) = vg, and we
say that R leads from vy to v; in G. Since nodes of G are
unlabeled, agents traveling on a route are aware only of the
port numbers of the edges they traverse. Hence, it will be
usually more convenient to refer to these sequences of port
numbers rather than to the edges of the route. Any finite
sequence of non-negative integers will be called a trail.

We define an operator 7, that provides the trail cor-
responding to a given route. More formally, if R =
({v1, v2}, {v2, v3}, ..., {vj—1,v;}) is a route in G, then
define 7(R) = (p1,..., p2j—2) to be the trail such that
p2i—1 and py; are the port numbers of {v;, v;1+1} at v; and
vi4+1, respectively, fori = 1, ..., j — 1. We say that a trail
T is feasible from v in G, if there exists a route R in G such
that b(R) = v and 7 (R) = T, and in such a case the route
R is denoted by R(v, T).

For a sequence A = (ay,...,ax) we denote by A
the sequence (ai, ax—1,...,a1). For two sequences A =
(ai,...,ar) and B = (by, ..., b,) we write (A, B) to refer
to the sequence (ay, ..., ak, by, ..., by).

For any agent A, let 2(X) denote its initial position. Con-
sider two agents A and A". Consider any route R leading from
h()) to k() and let T = T(R). If T = T, then we say
that the route R is a palindrome. For a given initial configu-
ration, a palindrome R is called uniform, if for any route R’
such that 7 (R") = T (R), whenever b(R’) is occupied by an
agent, then d(R’) is also occupied by an agent.

We are now ready to formulate our condition on an initial
configuration, that will be called EC (for eligibility condition)
in the sequel:

Enhanced views of all agents are different and (There exist
agents with different views or There exists a non-uniform
palindrome)

We now formulate our main result whose proof is the objec-
tive of the rest of the paper.

Theorem 1 Assume that all agents are provided with an
upper bound n on the size of the graph. Then an initial con-
figuration is eligible if and only if condition EC holds for
this configuration. Moreover, there exists an algorithm elect-
ing a leader for all eligible configurations, regardless of the
actions of the adversary.

4 The negative results

In this section we prove two negative results concerning the
feasibility of leader election. Impossibility results concern-
ing breaking symmetry by anonymous agents navigating in
anonymous networks are based on general ideas going back
to Angluin [3]. In our scenario we use a perfectly synchro-
nous adversary that forces agents to move in lock-step, and
we prove that for each agent there is another agent that has the
same memory state at each round, and consequently leader
election is impossible because at least two leaders would have
to be elected. A similar argument was used in [28] in the con-
text of rendezvous, but in the present situation we need to deal
with an additional problem that was absent in [28]: showing
that the two agents have the same memory state after each of
them meets other agents. This will have to be argued in the
proof of Lemma 2.

The first result shows that condition EC is necessary to
carry out leader election, even if the graph (and hence its
size) is known to the agents.

Proposition 1 Suppose that the condition EC does not hold
for the initial configuration. Then there exists an adversary,
such that leader election cannot be accomplished for this
configuration, even if the graph is known to the agents.

The proof of Proposition 1 is split into two lemmas. Con-
dition EC can be abbreviated as o A (8 V y), where « is
“Enhanced views of all agents are different”, B is “There
exist agents with different views”, and y is “There exists a
non-uniform palindrome”.

Lemma 1 Condition « is necessary for leader election.

Proof Fix an initial configuration. Suppose that o does not
hold. This means that there exist agents A and A’ with the same
enhanced view. This in turn implies that for every agent u
there exists an agent w’ that has the same enhanced view as
. Indeed, if T is the trail corresponding to a route that leads
from (1) to h(), agent i’ is the agent whose initial position
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is at the end of the route corresponding to 7' and starting at
h(1)). For every agent u we will call the agent p/ its twin.
Consider a hypothetical leader election algorithm and the
“perfectly synchronous” adversary that starts the execution
of the algorithm simultaneously for all agents and moves all
of them with the same constant speed. Such an adversary
induces rounds which are units of time in which all agents
traverse an edge. The beginning of a round coincides with
the end of the previous round. Hence at the beginning and
at the end of each round every agent is at a node. If agents
meet inside an edge, they must meet exactly in the middle of
around in which they traverse an edge in opposite directions.
We will show that the memory state of twins is identical at
the end of each round. This implies that leader election is
impossible, as an agent elects a leader when it is at a node,
and consequently if some agent elects itself as a leader, its
twin would elect itself as well, violating the uniqueness of
the leader.

The invariant that the memory state of twins is identical
at the end of each round is proved by induction on the round
number. It holds at the beginning, due to the same degree of
initial positions of twins. Suppose that after some round i the
memory states of twins are identical. Consider twins u and
. Inround i + 1 they exit by the same port number and enter
the next node by the same port number. If in round i + 1 they
don’t meet any agent in the middle of the edge, at the end of
the round © must meet agents with the same memory states
as those met by u (if any), and hence memory states of
and p at the end of round i + 1 are identical. If in round i + 1
agent i meets some agents in the middle of the edge, then
agent ' must meet exactly the twins of these agents in the
middle of the edge. By the inductive hypothesis, these twins
have the same memory states as agents met by x and hence
again, at the end of the round the memory states of w and ©
are identical. This concludes the proof of the lemma. Notice
that the argument holds even when agents know the graph in
which they operate. O

Lemma 2 Condition BV y is necessary for leader election.

Proof Suppose that B V y is false. This means that views of
all agents are identical and every palindrome for the initial
configuration (if any) is uniform. For any trail 7 that yields
a uniform palindrome, this gives a partition of all agents into
pairs (ur, 17, ) of agents at the ends of routes that correspond
to this trail.

Again we consider the “perfectly synchronous” adversary
described in the proof of Lemma 1. There are two subcases.
If there is no palindrome in the initial configuration, then
we prove the following invariant, holding at the beginning of
each round, by induction on the round number: the mem-
ory state of all agents is the same and there is no palin-
drome between agents. The invariant holds at the beginning
by assumption. Suppose it holds after round i. In round i + 1
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all agents choose the same port number and enter the next
node by the same port number. There are no meetings in
round i + 1. Indeed, the only meeting could be in the mid-
dle of an edge but this would mean that agents were joined
by a one-edge palindrome at the beginning of round i + 1.
If a pair of agents were joined by a palindrome after round
i + 1, they would have to be joined by a palindrome longer or
shorter by two edges at the beginning of the round, contra-
dicting the inductive assumption. Hence the invariant holds
by induction.

The second subcase is when there is a palindrome in the
initial configuration (and hence all such palindromes are uni-
form). Now we prove the following invariant holding in the
beginning of each round: the memory state of all agents is
the same and every agent is at the end of a palindrome corre-
sponding to the same trail. The invariant holds at the begin-
ning by the assumption. Suppose the invariant holds after
round i. In round i + 1 all agents choose the same port num-
ber and enter the next node by the same port number. If after
round i no pair of agents were at the ends of an edge with
both ports equal, or they were but agents did not choose this
portin round i + 1, then no meeting occurred and the invari-
ant carries on after round i + 1. If after round i every pair
of agents were at the ends of an edge with both ports p and
the agents chose this port in round i + 1, then meetings of
agents with identical memory states occurred in pairs in the
middle of each joining edge. Since meeting agents had iden-
tical memory state during the meeting, this holds also after
round i + 1 and agents are again in pairs at the ends of edges
with both ports p. Thus the invariant holds at the end of round
i+ 1.

Hence at the beginning of each round the memory state of
all agents is the same. This implies that with the “perfectly
synchronous” adversary leader election is impossible. Notice
that the argument holds even when agents know the graph in
which they operate. O

Now Proposition 1 follows directly from Lemmas 1
and 2.

Our second negative result shows that the assumption
about the knowledge of an upper bound on the size of the
graph cannot be removed from Theorem 1.

Proposition 2 There is no algorithm that accomplishes
leader election regardless of the adversary for all initial con-
figurations satisfying condition EC.

Proof Suppose for a contradiction that such a universal algo-
rithm A exists. Consider an “almost” oriented ring of size m:
ports 0,1 are in the clockwise direction at each node except
one, where they are counterclockwise. This node is called
special. The initial configuration on this ring consists of two
agents: one at the special node, and one at the neighbor clock-
wise from it. Call this configuration C; (cf. Fig. 1a). This



Leader election for anonymous asynchronous agents in arbitrary networks

27

(a)

(b)

distance 2tm

3 h(V)

distance 2tm

Fig. 1 a Configuration Cj in aring of size m = 5; b configuration C3
in the corresponding ring of size 4tm. Special nodes are encircled

configuration satisfies condition EC: agents have different
views. Hence algorithm A must elect a leader for this con-
figuration, regardless of the adversary. Consider a “perfectly
synchronous” adversary that starts the execution of the algo-
rithm simultaneously for all agents and moves all of them
with the same constant speed. It induces rounds correspond-
ing to edge traversals by all agents. Suppose that a leader is
elected for this adversary after # rounds.

Now consider a ring of size 4tm in which there are 4¢
special nodes at distances m: at these nodes ports 0, 1 are in
the counterclockwise direction, and in all other nodes they are
in the clockwise direction. The initial configuration consists
of 8¢ + 1 agents. There is an agent at every special node and
at every clockwise neighbor of a special node. Additionally
there is an agent at the counterclockwise neighbor of one
special node. Call this configuration Cy (cf. Fig. 1b). This
configuration satisfies condition EC. Indeed, due to the single
group of three consecutive agents, all agents have distinct
enhanced views. On the other hand, agents at special nodes
have a different view from agents at clockwise neighbors of
special nodes. Hence algorithm A must elect a leader for this
configuration as well, regardless of the adversary. Consider
the same “perfectly synchronous” adversary as before.

Consider the agent A in the configuration C thatis initially
situated at the special node v antipodal to the special node
with both neighbors hosting agents. Consider the agent A/
initially situated at the special node v’ that is clockwise from
v and closest to v. In the first # rounds of the execution of
A starting from configuration C, memory states of agents A
and A" are identical to memory states of the agent w initially

situated at the special node of configuration Cj. This is due
to the large size of the ring in configuration C». Hence if in
configuration Cy agent u elects itself, then in configuration
C, agents A and A’ elect each of them itself as the leader after
t rounds. If in configuration C; agent p elects its neighbor,
then in configuration C; agents A and A’ elect each of them
their neighbor as the leader after 7 rounds. In both cases two
different agents are elected, which is a contradiction. O

5 The algorithm and its correctness

In this section we present an algorithm that elects a leader for
all initial configurations satisfying condition EC, assuming
that an upper bound on the size of the graph is known to all
agents. In view of Proposition 2, this assumption cannot be
removed. This upper bound, denoted by n, is an input of our
algorithm.

The section is divided into three subsections. In the first
subsection we provide additional terminology and notation,
as well as some auxiliary results used in the algorithm and
in its analysis. In the second subsection we give the intuitive
overview of the algorithm and its formal description, and we
provide some illustrative examples of its functioning. Finally,
the third subsection is devoted to the proof that the algorithm
is correct.

5.1 Additional notions and auxiliary results

Let G be a graph and let v be any node of G. For any integer
[ > 0, we define the code of V! (v) as a sequence of integers
denoted by £(V!(v)) and obtained as follows. Perform the
complete depth first search traversal of V! (v), starting at its
root, in such a way that at each node an edge with a smaller
port number is traversed prior to an edge with a larger port
number. Let the i th traversed edge be from a node x; to anode
vi,i = 1,..., j, where j is the number of edges traversed,
and let p; and p; be the port numbers of the edge {x;, y;} at
x; and y;, respectively. Then, the length of eV (v)) is 27,
and the (2i — 1)th and (2i)th elements ofE(Vl(v)) are p; and
pi, respectively, i =1,..., j.
The following is a direct consequence of this definition.

Proposition 3 Let u and v be any nodes of G andletl > 0 be

aninteger. V! (u) # V' (v) ifand only ife V' (1)) # £V (v)).
O

Let [ > 0 be an integer. We extend the notion of binary
mappings to the truncated views. We say that f is a binary
mapping for V! (v), if f assigns either O or 1 to each node
of Vi(v). If f is a binary mapping for V(v) (or for Vl/(v)
for some I/ > 0), then (V! (v), f) (where [ < I, respec-
tively) refers to f restricted to the nodes of V'(v). Given
two binary mappings f1, f> for V/(v), we write fi < f>
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if f1(x) < f2(x) for each node x of V(). If (V(v), f)is
the enhanced view from v and f’ is a binary mapping for
Vi (v) such that f' < f, then the pair (V! (v), f') is called
a partially enhanced view from v. Intuitively, in a partially
enhanced view only some nodes corresponding to initial posi-
tions of agents are marked.

Let (V(v), f) be the enhanced view from v, where v is
selected so that there exists an agent A with /(1) = v. Then,
(EWV1(v)), f) is called the complete identifier of i. The
significance of the notion of a complete identifier is the fol-
lowing. An agent can never get the entire view or the entire
enhanced view, as these are infinite objects. However, the fol-
lowing propositions from [40] show that to differentiate two
views or two enhanced views, it is enough to consider their
truncations to depth n — 1. Thus, as stated in Corollary 1,
complete identifiers identify agents with different enhanced
views.

Proposition 4 ([40]) For an-node graph G and for all nodes
u and v of G,V() = V() if and only if V' '(u) =
yr=l). O

Proposition 5 ([40]) For a n-node graph G, for all nodes
uand v of G, if V), f) and V(v), f') are the enhanced
views fromu and v, respectively, then (V(u), f) = V(v), f')
ifand only if V""'(u), f) = V"7 (), f). O

Corollary 1 Fora n-node graph G and for any agents \. and
A, the enhanced views from h().) and h()') are equal if and
only if the complete identifiers of . and )" are equal. O

A sequence o = (C, fi, ..
following conditions hold:

., fj) is called a label, if the

(i) j > Ois an integer,

(ii) there exists a graph G” with at most n nodes and there
exists a node v of G’ such that C is the code of the
truncated view to depth 3(n — 1) from v in G/,

(iii) f; is a binary mapping for V3"~V (v) for each i =
..., J,

(iv) fi is the binary mapping for V3"~ (v) that assigns 1
only to the root, and f; < f;4) for every index i =
L....j—1

Moreover, we say that j is the length of the label «, denoted
by £(«). Let £; be the set of all labels of length at most ;.
Note that if j > 1, then we do not impose any restrictions
other than f;_1 < f; on the binary mapping f;. Also notice
that the definition of o does not depend on G, but it depends
on n.

5.2 The algorithm

In this section we give a high-level description of the algo-
rithm and its pseudo-code formulation.
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An important ingredient of the algorithm are meetings
between agents during which information is exchanged. The
method that guarantees that some meetings between pairs of
agents will occur uses the idea of tunnels introduced in [18]
and also used in [28] in the context of rendezvous of two
anonymous agents. The routes R = (ey, ..., e;) and R’ form
atunnel if R = (ej, ei—1,...,e1,€|,..., e;.,) for some i €
{1,..., j} and for some j’ > 0. Moreover, we say that the
route (eq, ..., ¢;) is the tunnel core with respect to R. Note
that if C is the tunnel core with respect to R, then C is the
tunnel core with respect to R’.

Proposition 6 ([18]) Let A; be an agent with route R;,i =
1,2. If Ry and Ry form a tunnel with the tunnel core
C = (e1,...,ec), then A1 and Ay are guaranteed to have
a meeting such that (e1, ez, ...,e;) and (e, €c—1, ..., ¢€;)
are the routes of the agents traversed till the meeting, where
ief{l,..., c} O

Informally speaking, if the routes of two agents form a tunnel,
then they are guaranteed to have a meeting with the property
that the routes traversed to date by the agents give (by taking
one of the routes and the reversal of the other) the tunnel
core.

Let S, be the set of all integer sequences with terms in
{0,...,n — 2}, whose length is even and equals at most
6(n — 1). Then, we define

P'=((e,/,T):a,0' € L3 and €(a) =L(a') and
TeS, and (@ #d V(e=a AT =T))),

and let P! be the ith triple in P",i = 1,..., |P"|.

In our leader election algorithm we will proceed in phases,
and in each phase the label of each agent is fixed. (Due to the
fact that the model is asynchronous, the adversary may force
the agents to be in different phases in a particular point of
time.) The total number of phases for each agent is 3. After
the first phase each agent computes its label used in phase 2.
These labels are defined in such a way that there exist two
agents A and A with different labels. The aim of phase 2
is that agents A and A" correctly identify each other’s initial
positions in their respective views. After phase 3 every agent
can identify the initial positions of all agents in its view and
hence is able to perform leader election.

The label of an agent A used in phase p is denoted by
ap(A), p=1,2,3. Label a1 (1) is computed before the start
of phase 1, and o, 11(2) is computed at the end of phase p,
for p = 1,2, 3. Label a4 (4) is used to elect the leader at the
end of the algorithm. Each phase is divided into |P"| stages.
By R (1) we denote the route traversed by agent A till the
end of stage s in phase p, p = 1,2,3,s = 1,...,|P"|. As
we prove later, each agent X starts and ends each stage at its
initial position #(1). Let R, o(A) be the route of an agent A
traversed till the beginning of phase p, and hence till the end
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of phase p — 1, whenever p > 0. Hence, R; o(}) is the route
traversed by A prior to the beginning of the first phase.

Now we give an informal description of Algorithm
Leader-Election. This algorithm is executed by each
agent, and X in the pseudo-code is used to refer to the exe-
cuting agent. Note that the upper bound »n on the number
of nodes of G is given as an input. The pseudo-code of the
algorithm and pseudo-codes of its subroutines are in frames.
In the informal description we refer to lines of these pseudo-
codes.

First, we discuss Procedure Initialization that is
called at the beginning of Algorithm Leader-Election.
The agent starts by computing P"*. This can be done knowing
n, without any exploration of the graph because in order to
construct P" the agent needs to compute S, and L3, and
both of them (by the definition) depend only on the integer
n. Then, the agent computes V3= (1 (1)) by performing a
DFS traversal of G to the depth 3(n — 1) (line 2). The function
f* is set (line 3) to be the binary mapping for V3= (h (1))
that assigns 0 to all nodes of V3*~D(h (L)) except for the
root. Hence, V3~V (h(1)), f*)isapartially enhanced view
from i (A). The value of (L), that will be the label of A in
the first phase, is set to (V3D (h(1))), f*) (line 4).

Procedure Tnitialization(n)

Input: An upper bound n on the size of G.
begin
. Compute P".

2:  Compute V3"~D(n(1)) by performing a DFS tra-
versal of graph G to depth 3(n — 1) that ends at
h(X).

3:  Let f* be the binary mapping for V3"'=D(h (1))
that assigns 1 only to the root of V3"*=D (h(1)).

4 () < EVDRG)). )

end Initialization

Now we informally describe the main part of Algorithm
Leader-Election, refering to the lines of the pseudo-
code given below. The pth iteration of the main ‘for’ loop in
lines 2—13 is responsible for the traversal performed by the
agentin phase p, p € {1, 2, 3}. Aninternal ‘for’ loop in lines
3-10 is executed and its sth iteration determines the behav-
ior of A in stage s. The stage s of each phase ‘processes’ the
stheelement (o', o”, T) of P". If ¢, (1) ¢ {o’, &”}, then the
agent A does not move in this stage and proceeds to the next
one. Otherwise let o) (1) = o’ (we describe only this case
as the other one is symmetric). The agent checks in line 5
whether a certain trail (7, H) is feasible from A (}), and if
it is not, then the stage ends. As we prove later, the verifica-
tion of the feasibility of (7, H) can be done by inspecting
V30=D(p(1)). If (T, H) is feasible from A()), then A fol-

lows the route R(h(}), (T, H, T)) (line 6), which guarantees
that:

— if the agent A is located at 4(X) at the beginning of stage
s, then A is located at h(X) at the end of stage s (see
Lemma 5), and

— if the route R(h(A), T) leads from Ah(A) to the initial
position of another agent A" and o, (1) = «”, then the
routes R, (1) and R, ¢(A") form a tunnel.

The agent ends phase p by updating its label. This is done by
calling Function Update-Label inline 11, which produces
abinary mapping f* thatis used to update the label in line 12.
After completing the tree phases (for p = 1, 2, 3) the agent
calls Procedure Choose-Leader which completes the task
of leader election.

Algorithm Leader-Election(n)
Input: An upper bound 7 on the size of G.

begin
1 Call Initialization(n).
2 for p < 1to3 do
3: for s < 1to |P"| do
4: (', a", T) < P!
5 if ap(A) = o and (T, H(a”,s — 1)) is

feasible from 4 (A) then

6: Follow the route
R(h(A), (T, H(@", s — 1), T)).
7: else if a,(A) = «” and (T, H(a', s — 1))
is feasible from /4 ()) then
8: Follow the route
R, (T, H(a', s — 1), T)).
9: end if
10: end for
11: f* < Update-Label(M), where M is the
memory state of A.
12: app1(A) < (ap, f)‘)
13:  end for

14: Call Choose-Leader.

end Leader-Election

In order to formally describe the trail H mentioned above
we need the following notation. Let o’ € L3 be a label of
length p € {1,2,3},lets € {1, ..., |P"|} and let v be a node
of G. We define H(o/, s) to be the trail that corresponds to
the route performed till the end of stage s of phase p by an
agent A" whose label equals o’ in phase p, a, (1) = o, and
whose initial position corresponds to the root of the truncated
view V3D (1(1/)) in . We prove (see Lemma 4) that, for
any « and s the trail H (e, s) can be computed on the basis
of o and s. The trail H mentioned above is H(a”, s — 1).
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Fig. 2 The routes (R, s—1(A), R(h(X),T),Rps-1(X)) (dashed
route) and (R, s—1(A), R(h(M), T), R, s—1 (1)) (dotted route)

Figure 2 illustrates the routes of a pair of agents A and A’
that execute one iteration of the internal ‘for’ loop in lines 3—
10 of Leader-Election, for the same values of p and s,
such that («, (1), ap (1), T) = P}. We assume in this exam-
ple that R(h()), T) leads from k(1) to #(A) in G. Figure 2
gives the prefixes of two routes R, ;(A) and R, s(\) tra-
versed by the two agents. The fact that the routes form a tun-
nel (as shown in Fig. 2) follows from Lemma 7 proven later.
The routes in Fig. 2 are extended to R ;(1) and R s )
once A goes from /(1) to its initial position 2 (A) by follow-
ing the route R(h(X'), T) in G, and A’ follows R(h(%), T)
in order to return to i(1'), respectively. Note that the routes
Rps—1(0), Rp s—1 (1) and R(h (1), T) are not edge disjoint.

Although we use tunnels, we use them differently than
in [18,28]. First, we are able to construct much simpler routes
that form tunnels. This is due to the fact that [18,28] deals
with the rendez-vous problem in finite graphs of unknown
size and in infinite graphs. As argued before, for leader elec-
tion we have to assume that an upper bound n on the size
of the graph is known, and we take advantage of knowing
n to construct ‘shorter’ tunnels which simplifies our analy-
sis. Second and more importantly, it is not sufficient for our
purposes to just generate a meeting for a particular pair of
agents—the meetings are generated to perform the exchange
of information. In particular, as a result of a meeting that
occurs in a tunnel an agent should be able to determine the
node (in its own view) corresponding to the initial position
of the other agent. This leads us to the following concept of
meetings with ‘confirmation’ of a trail.

Definition 1 Let 7 € S,,. Suppose that agents A and 1" meet.
We say that A confirms T as a result of this meeting if

(i) A isinstage s of phase p and A/ is in stage s’ of phase p/,
where p’ < p,or p’ = pands’ <s,

@ Springer

(a) -7 T~ PN
// \\ , N
/ \ 4 \
/
‘T(prs—l(k))ll ‘H(Oé S — 1)\,
\ / | ’ |
\ / \ /
\ 7 \ /
\ / \ //
\ 7 P
o-__ T . -®
b
// \\ T)\’
/ \ S p
| | Y
\ ]
\ , 4
\ / !
\ 7 /
\ e !
< T)\ ' -
o -

Fig. 3 aThe trail (7 (Rp,s—1(2)), T',H(a', s — 1)); b a meeting of A
and A’ in case when condition (iii) in Definition 1 is satisfied

(i) P! = (ap(M),a, T, Whil‘e T = T, or P! =
(@, op(h), T),where T' =T,

(iii) if 7y, and Ty, are the trails traversed by A and A’, respec-
tively, till the meeting, then

(T(Rps—10)), T', H(', s = 1)) = (Ty, Ty).

As we prove in Sect. 5.3, if an agent A confirms 7 as a result
of a meeting with 1, then d(R(h(X), T")) = h(X).

Figure 3 depicts the equation in part (iii) of Definition 1.
Figure 3a presents the trail

(T(R,,’S_l()\)), T Ha,s — 1))

that is a prefix of the trail corresponding to the route R, ;(4)
followed by the agent A till the end of stage s of phase p.
Figure 3b presents the trails 7), (dashed line) and 7; (dotted
line) in the case of the meeting that occurs when A is in stage
s of phase p and A’ has not completed the traversal of its
route till the end of stage s — 1 of phase p.

It remains to describe Function Update-Label and Pro-
cedure Choose-Leader that are called in the Algorithm
Leader-Election.

We start by giving intuition of the first of them. This proce-
dure is crucial for the entire algorithm, as it takes advantage
of memory state exchanges between agents that meet and
permits every agent to insert initial positions of all agents in
its view. This in turn allows the agents to learn asymmetries
in the initial configuration and thus correctly perform leader
election. Function Update-Label takes as an input the cur-
rent memory state of an agent A and returns a binary mapping
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Function Update-Label(M)
Input: A memory state M of an agent X.
Output: A binary mapping for V3"~V (h(1)).
begin
1:  Let f* be the binary mapping for V3?~D (A (1)) that assigns 1 only to the root of V3~ (h(1)).
2:  Let M, ..., M; be the memory states of all agents A1, ..., A; previously met by A, at the times of the respective
meetings.
3: fori < 1tojdo
4 Let 7’ = T if A confirms T and let 7’ = T if A; confirms T as a result of their meeting.
5: if X or A; confirms T then
6: f*(x) < 1, where x is the node of V3~V (h(1)) at the end of T’ from the root.
7: if the length of R(h()1), T) is at most n — 1 then
8: f! < Update-Label(M;)
0: Compute transition ¢ from V2*=1 (h (1)) to V3~ (v) such that ¢(x) is the root of V3=D (v).
10: for each y € V2"~ (v) such that f'(¢(y)) = 1 do
11: Ay <1
12: end if
13: end if
14:  end for
15:  return f*
end Update-Label

f* forits view V3D (h(1)), such that V3" =D (n (1)), f*)
is a partially enhanced view for agent A. Agent A considers
memory states My, ..., M of all previously met agents at the
times of the meetings. The memory state M;,i € {1, ..., j},
of an agent A" and the memory state of A at the time of their
meeting permit the agent A to verify whether A or A" con-
firmed 7 as a result of their meeting. If one of the agents
confirms T, then A takes the advantage of this fact to deter-
mine the nodes of its view corresponding to initial positions
of agents. In particular, X is able to locate a node in its own
view that corresponds to the initial position of A/, because
there exists a route corresponding to 7' and connecting the
initial positions of the two agents. Afterwards, if this route
is of length at most n — 1, then X recursively calls Function
Update-Label for the memory state M; (which is shorter
than the current memory state of A and thus recursion is
correct). Hence, A can compute the binary mappings corre-
sponding to memory states of all previously met agents at the
times of the meetings. Using trails between initial positions
of these agents and /(1), as well as the obtained binary map-
pings, agent A can correctly position all partially enhanced
views of these agents in its own view. A call to Function
Update-Label at the end of phase p executed by agent A
permits to compute ap41(A).

In the formulation of Function Update-Label we use
the following notions. Let # and v be two nodes of G. We say
that a function ¢ assigning to each node of V2"~ (1) a node

of V3" =D (v) is a transition from V2"~ (u) t0 V3 =D (v),
if ¢(x) and x correspond to the same node of G for each node
x of V2= (4). For any trail T and any node v, we say that
anode x atdepth i in V(v) is at the end of T from the root, if
the length of T is 2i and the sequence of ports corresponding
to the simple path from the root of V(v) to x is T'.

In the following example we illustrate one iteration of
the ‘for’ loop in lines 3—14 of Function Update-Label.
The graph G is given in Fig. 4a, and let n = 4 be an upper
bound that was initially provided to each agent. The black
nodes of G are the initial positions of some agents. Denote
by Ay, Ap and X, the agents whose initial positions are a, b
and c, respectively. Note that the views from any two nodes
of G are identical in this case. However, the enhanced view
from each node of G is unique. We focus on the instance of
Function Update-Label executed by A. during its meet-
ing with A;. For simplicity, we show only some subtrees of
V3=D(¢) and V3@~V (b) in Fig. 4b, c, respectively. Note
that the nodes of G, and therefore the nodes of any view, are
unlabeled and we provide the labels only for the illustrative
purpose. In this example the trail 7', computed in line 4 of
Function Update-Label equals (0,0, 1, 1), which deter-
mines the node of the truncated view V3"~ (¢) that cor-
responds to the root of V"~ (b). The black nodes of both
views correspond to the initial positions of agents that A, and
Ap determined prior to this meeting. The dotted arrows give
the part of the transition ¢ that maps the nodes of V2"~ (¢)
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Fig. 4 a A graph G; b V"~!(¢); ¢ a subtree of V3"~ D (b)

to the black nodes of V3"=D(p). It follows from the defi-
nition of the view that, in general, more than one node of
V"= 1(h())) can be mapped by ¢ to a node of V3"~ D ().

We finally present Procedure Choose-Leader that is
called by Algorithm Leader-Election after the third
phase. The leader is selected by an agent A on the basis of
the label as (1) = (V=D (()), £, ..., f1). Letx be
anode at depth at most n — 1 in V3= (h (1)) and satisfying
fi‘ (x) = 1.Let S be asubtree of depthn —1 of V3IO=D (1))
rooted at x. We prove later that the pair (S, f4k) is the com-
plete identifier of some agent. Since the initial positions of all
agents have been detected till the end of phase 3, the agent
can determine all complete identifiers and hence elect the
leader.

Procedure Choose-Leader

begin
. A<«0¢
2:  for each node x of V"~ (h(1)) such that fi\ (x) =
1do
3: Let /' be fj restricted to the nodes of V"1 (v),

where v corresponds to x.
Compute trail 7 such thatv = d(R(h(A), T)).

5: if (V"1 (v)), f') # I for each I such that
(I,T) € Athen
6: A<~ AU{EV" W), £, T)}
: end for

8 Find (I,T) € Asuchthat I =min{l’': (I',T') €
A}, where min is in lexicographic order.

9:  Elect the agent whose initial
d(R(h()), T)) to be the leader.

end Choose-Leader

position is
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5.3 Correctness of the algorithm

This section is devoted to the proof that Algorithm Leader-
Electioncorrectly elects aleader whenever an initial con-
figuration satisfies condition EC, regardless of the actions of
the adversary. The proof is split into a series of lemmas. The
role of the first lemma is to show that knowing V2=l is
enough to check if a trail of any length is feasible from v.

Lemma 3 Let v be any node of G. Using V"~ (v), the trun-
cated view V' (v) can be computed for any positive integer I.

Proof If I < 2n — 1, then V! (v) is a subtree of V"~ (v),
so we may assume that [ > 2n — 1. We extend the view
Vi(v) to ViTl(v) foreachi = 2n — 1,...,1 — 1. To this
end we perform the following computation for each node x
at depth i — (n — 1) of V' (v). Let u be the node of G that
corresponds to x. Note that the subtree of V' (v) rooted at
x and containing all descendants of x in V' (v) is equal to
V"~ 1(u). Hence, there exists a node x” in V"~ !(v) such that
x' corresponds to u, in view of the connectedness of G. This
implies that there exists a node y in V"=1(v) such that the
subtree of V*"~!(v) consisting of y and all its descendants
to depth n — 1 from y is equal to V"~ (u). Hence, one can
find any such node y of Y"=1(p). Let u’ be the node of G
that corresponds to y. Due to Proposition 4, V" (1) is equal
to V" (u). Since y belongs to V"~!(v) we obtain that V" (i)
is a subtree of V! (v) rooted at y, and therefore we can extend
the subtree V"~ () by replacing in V' (v) the subtree rooted
at x with V" (u'). O

Corollary 2 Let v be any node of G and let x be any node
of V¥'=1(v). Then, the subtree of V(v) to depth | and rooted
at x can be computed for any | > 0, using V"~ (v). O

Corollary 3 Let T be any trail and let v be any node of G.
Using V¥~ (v) it can be verified if T is feasible from v in G.
O

The next lemma shows that given any label « and the stage
number s, it is possible to compute the trail H (¢, s) which,
informally speaking, is the history of the moves of the agent
with label « till this stage.

Lemma 4 Using a label @« € L3 and an integer s €
{1,...,|P"|}, the trail H(«, s) can be computed.

Proof Suppose that « is of length p, p € {1, 2, 3}. By def-
inition, « = EV3 D)), f1, fo. ..., fp), where f; is a
binary mapping for V3"~V (v) and v is a node of G. First
note that V3"~ (v) can be reconstructed from its code. Sup-
pose that A is an agent whose initial position is v and whose
label in phase pis o, o, (1) = «.

The trail H(w, s) can be computed by simulating the
execution of Algorithm Leader-Election for the agent
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A. By its formulation, the agent A executed Procedure
Initialization, p — 1 iterations of the main ‘for’
loop in lines 2—13 of Algorithm Leader-Election, and
exactly s iterations of the nested ‘for’ loop in lines 3—-10
of Algorithm Leader-Election in the pth iteration of
the main ‘for’ loop. Thus results in traversing the route
R(h(A), H(a, 5)). Note that G is unknown to A, but we
will reconstruct the route by simulating edge traversals in
V(v). (While V(v) is infinite, it can be reconstructed from
V3= (y) to any finite depth, using Corollary 3.)

We prove the lemma by induction on the total number
of stages ‘processed’ by an agent. Note that if « € £ and
s = 0, then the trail H(«, s) corresponds to the route that is
the DFS traversal of G to depth 3(n — 1) and starting at v.
This trail can be obtained by performing the DFS traversal
of V3= () that starts and ends at the root.

Now assume that s > 0. In order to simulate the
behavior of A in any stage j, j € {l,...,|P"|}, of phase
i,i € {1,..., p}, one needs to know «;(}). By construc-
tion, o;(A) = (EOV3" D)), f1,..., f;). The induction
hypothesis and Corollary 3 imply that the second part of
the condition in line 5 of Algorithm Leader-Election
can be checked. If ; (1) ¢ {a’, "}, where (¢/, ", T) =
73;', then A does not move in stage j of phase i. Hence,
assume without loss of generality that «;(A) = «’. This
implies that A executes the instruction in line 6 of Algorithm
Leader-Election. By the induction hypothesis, the trail
H(a””, j — 1) in lines 5 and 6 can be computed on the basis
of @’ and j. O

We say that a route R is closed if b(R) = d(R).
The following lemma implies that at the end of each stage
each agent comes back to its initial position.

Lemma 5 Let A be any agent. For every p € {1, 2,3} and
foreverys € {0,1,...,|P"|} the route R, (1) is closed.

Proof Denote by R;,’ s(A) the route that the agent A follows
in stage s, s € {1, ..., |P"|}, of phase p, p € {1,2,3}. We
prove the lemma by induction on the total number of stages
processed in all phases by an agent.

First note that Ry o(A), i.e., the route of A performed as a
result of the execution of line 2 of Procedure Tnitiali-
zationis closed. Hence, it remains to prove thatif R, ¢ )
is closed for each agent A/, for some p € {1,2, 3} and for
some s € {0,...,|P"| — 1}, then R, ;11(X) is closed as
well. Note that R, 11 (A) = (R 5(X), R;,’Hl (1)). Hence,
b(R;z,s—H (A) = d(Rps(A)) = h(A) and therefore it is
enough to argue that R;m 4+1(2) is closed.

LetP! | = (&', a",T).Ifa,(1) ¢ {o’, "}, then accord-
ing to lines 5 and 7 of Algorithm Leader-Election,
R}, .1 (1) is empty, i.e., A does not move in stage s + 1
of phase p. In this case the proof is completed. Otherwise,

we obtain that

1) =R (A, (7', i@, ), 7))

where T/ € (T, T} and @ € {a', a”} (see lines 6 and 8 of
Algorithm Leader-Election). Letu = d(R(h()A), T")).
Hence, R;z,s+1()‘) is closed if and only if R(u, H(x, s))
is closed. However, by definition, the latter route equals
Rp, ¢()/) for an agent A" such that its initial position is u
and «, (1) = o (if such an agent exists). It follows from
the induction hypothesis that R, ;(1') is closed, which com-
pletes the proof of the lemma. O

The next lemma shows the importance of confirmation of
a trail. It implies that if an agent A confirms 7 as a result
of a meeting with A’, then it can correctly situate the initial
position of A in its view.

Lemma6 Let p € {1,2,3}, lets € {1,...,|P"|} and let
Pl = (o, &”, T). Suppose that the agent A meets an agent
A/, when % is in stage s of phase p. If a,(A) = o and
confirms T' = T, or if a,(.) = " and \ confirms T' =T
as a result of this meeting, then h(\') = d(R(h()0)), T").

Proof Suppose without loss of generality that o’ = ap(%).
Condition (iii) in Definition 1 implies that the route R =
(Rp,s—1(A), R(h(X), (T', H(a”, s — 1)))) leads from A (i)
to h(A) in G. Let u = d(R(h()), T')). By Lemma 5, both
Ry s—1(A) and R(u, H(a”, s — 1)) are closed. This implies
that 2(A") = d(R) = d(R(h(X), T")) as required. O

The following lemma shows that processing an appropri-
ate triple («, &', T) by two agents guarantees their meeting
confirming 7.

Lemma7 Let p € {1,2,3}). Let A and )/ be two agents
such that P! = (ap(1), ap(X), T) for some T € S, and
se{l,...,|P"|}. If d(R(h()), T)) = h()\), then prior to
the first moment when one of the agents completes phase p,
the agents ). and )\ have a meeting as a result of which either
A confirms T or A confirms T.

Proof Suppose without loss of generality that A ends the
traversal of R, _1(A) at the same time or earlier than
A" ends the traversal of R, _1(A"). Let R;,S(A) be the
route traversed by A in stage s of phase p. By Lemma 5,
b(R;,YS()L)) = d(Rps-1(0)) = h(}). The route R;,’S(X)
is constructed as a result of the execution of lines 5-6 of
Algorithm Leader-Election by A. Since a” = a, (1)
in line 6 of Algorithm Leader-Election, we obtain
that R;,’S (2) and R, (A") form a tunnel with the tunnel
core C = (R(h(}), (T, H(ap(X),s — 1)))). By Proposi-
tion 6, A and A’ will have a meeting while A is in stage
s of phase p and before A’ ends the traversal of R, ().
This implies that (i) of Definition 1 holds. Moreover, (ii)
of Definition 1 for «' = «,(A) and 7' = T is satisfied
by assumption. Let 7; and T/ be the trails traversed by
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A and 2/, respectively, till the meeting. By Proposition 6,
(T(Rps—1(M), T(C)) = (T, Ty), where C is the tunnel
core. This proves that (iii) of Definition 1 holds. Hence, the
agent A confirms 7 as a result of the meeting. O

The role of the next lemma is to show that an agent never
marks falsely an initial position of another agent in its view.

Lemma 8 Leta,(h) = VDm0, f1, ..., fh) be
the label of any agent X in phase p € {1,2,3}. If z is any
node of V3"~V (h(L)) corresponding to a node of G that is
not an initial position of an agent, then f;} (z) =0.

Proof Suppose for a contradiction that an agent A sets f*(z)
to be 1, and z corresponds to a node of G that is not an initial
position of an agent.

Suppose that the input memory state M of the agent A
is the shortest that satisfies this property. This assumption
implies that if f’ is computed by agent A in line 8 of Function
Update-Label for any memory state M;,i = 1,...,J,
then (V3D (v), ') is a partially enhanced view from v,
where v corresponds to the node x at the end of 7’ from the
root in V3= (n(1)). Hence, if v is an initial position of an
agent, then, due to the definition of transition, each node y
from line 11 of Function Update-Label corresponds to an
initial position of an agent.

The latter implies that the node x in line 6 of Function
Update-Label does not correspond to the initial position
of A;. By construction, x is at the end of 7’ from the root in
V3=D(h(1)). Due to line 5 of Function Update-Label,
either A or A; confirms T’ € {T, T} as a result of their meet-
ing. By Lemma 6, d(h(1), T') = h(};), where T is deter-
mined in line 4 of Update-Label. Thus, h(A;) corresponds
to the node at the end of 7’ from the root in V3~ (h(1)).
The latter implies that & ();) corresponds to x, a contradiction.

O

The next lemma is a companion result to Lemma 8. It says
that if an agent confirms a trail 7" as a result of a meeting with
A/, then both of them correctly mark their respective initial
positions in their views.

Lemma9 Let p € {1,2,3). Let . and )" be two agents
with labels api1(M) = (ap(R), f; L) and ap (V) =

(op (M), ;;_1). Ifagent A confirms T as a result of a meeting
with agent )/ in phase p', p’ < p, then

(i) f;‘H(x) = 1, where x is at the end of T from the root
in V=D (h(0)) and d(R(h(}), T)) = h()).

(ii) I’};_l(x/) = 1, where x' is at the end of T from the root
in V=D (h(\)) and d(R(h()), T)) = h(}).

Proof Suppose that A is in some stage of phase p’, p’ < p,

when a meeting with A" occurs as a result of which A con-
firms 7. Hence, one of the memory states in line 2 of
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Function Update-Label called at the end of phase p is
the memory state M;,i € {l,...,j}, of A’ at the time
of the meeting. We consider the ith iteration of the ‘for’
loop in lines 3—-14 of Function Update-Label, i.e., infor-
mally speaking, the iteration in which A ‘analyzes’ the meet-
ing with A’. The agent A determines in line 5 of Function
Update-Label the fact that A confirms T as a result of the
meeting. Then, in line 6 of Function Update-Label, f A (x)
is set to 1, where x is at the end of T’ from the root of
V3=D(h(1)). By Lemma 6 and by the choice of 7” in line 4
of Function Update-Label, x corresponds to 4 ()"). Func-
tion Update-Label returns f*. Duetoline 12 of Algorithm
Leader-Election, f;‘H(x) =1.

In order to prove the second part of the lemma notice that
agent A" has also access to the memory states of A and A at
the time of the meeting. Hence, upon completing phase p it
performs analogous computations as A during its execution
of Function Update-Label at the end of phase p and sets

;’H(x/) =1. O

Let A be an agent and let x be a node of the truncated
view V3=D(h(1)) at the end of a trail 7' from the root of
V3= (p(0)). If the agent A sets f*(x) = 1 during the
execution of Function Update-Label and x corresponds
to the initial position of some agent A/, then we say that
Anoted) on'T.

Alabel @ = VD)), f. ..., f}), where p €
{1,2, 3}, of an agent A is complete with respect to A if
fg‘ (x) = 1 foreachnode x of V3= (h (1)) that corresponds
to an initial position of A’. We say that « is semi-complete
with respect to ) if f ,f (x) = 1 for each node x that cor-
responds to an initial position of A" and belongs to a level
i <2(n—1)of V=D,

The next lemma explains how agents confirm trails as
a result of their meetings. Agents with different labels can
confirm any trail in S, between their initial positions, while
agents with equal labels are able to confirm only ‘palin-
dromes’.

Lemma 10 Let p € {1,2,3} and let X and )’ be any two
agents.

(Q) If ap(X) # ap(k’), then ap1(A) is complete with
respect to \.

(it) If ap(h) = ap(X), then prior to the end of its phase
p the agent A has noted A on each trail T such that
TeS, T=Tandh(\)=dRmh®),T)).

Proof To prove (i) let T € S, be any trail such that
R(h(X), T) leads from h(A) to k(1)) in G. By construc-
tion of P", PI' = (ap(R), atp(X), T) for some index i €
{1,...,|P"]}, because o) (A) # «,(2). By Lemma 7, A
confirms 7 or A’ confirms 7 as a result of a meeting that
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occurs when the agent is in phase p. This is done by check-
ing the conditions (i), (ii) and (iii) in Definition 1, which can
be accomplished by analyzing the memory states of A and A/
at the time of the meeting. By Lemma 9, f*(x) = 1, where
x is at the end of 7 in V3=V (h(1)), regardless of which
agent confirmed a trail as a result of the meeting.

The proof of (ii) is analogous. O

Lemma 11 There exist two agents A and A such that
a2(1) # ar(1).

Proof If there exist two agents A and A’ with differ-
ent views, V(h(1)) # V(h())), then by Proposition 4,
VIO=D)) #£ V3@~ (n())). Proposition 3 implies
ai(A) # ay()), and consequently ap(A) # an(A'). Thus,
assume in the following that the views from the initial posi-
tions of all agents are equal. In view of condition EC there
exists a non-uniform palindrome. Hence, there exist two
agents A, A’ and a trail 7, such that T = T, R(h(1r), T)
leads from £ (X) to a node u that is the initial position of
an agent A”, and R(h()'), T) leads from A(A) to a node
u’ that is not the initial position of any agent. Let x and x’
be the nodes of V3"=D k(1)) and V3"~D (1)), respec-
tively, at the end of T from the roots. Note that x corre-
sponds to u and x’ corresponds to u’. By Lemma 10(ii), A
noted A” on T in phase 1 and, by Lemma 8, A" does not
note any agent on 7 during the entire execution of its algo-
rithm. Hence, f*(x) = 1 and fk/(x’) = 0 after the exe-
cution of Procedure Update-Label at the end of phase
1. Since the views V3@=D (1)) and V3D () are
equal, we have ex(2) = (V"D (W))), £}, f7) and
ax(X) = EOPDRON)). A D, where [ # £
Hence, az(A) # ax (V). ]

The role of the next lemma is to explain indirect learning
of initial positions of other agents. If two agents A and A" have
equal labels, then they mutually situate their initial positions
using a third agent A" with a different label as an intermediary.
Such an agent exists by Lemma 11. Agents A and A" can
correctly fill their initial positions to depth 2(n — 1) in their
views due to the fact that the intermediary A" has their initial
positions to depth 3(n — 1).

Lemma 12 Let A and X' be two agents such that a,()) is
complete with respect to ), p € {1,2,3}. If M is any agent
such that ap(\") # ap(R), then apy1 (M) is semi-complete
with respect to ).

Proof Since o, (") # a,(X) we obtain, by the defini-
tion of P", that (ap(1”), ap(2), T) = PI' for some i €
{1,...,|P"|}, where T is such a trail that the route R” =
R(h()"), T) contains at mostn— 1 edges and d(R") = h(}A).
We analyze the execution of Function Update-Label by
A" at the end of phase p. By Lemma 7, A” confirms T or A

Fig. 5 a V3=D(()); b V2@=D(h(1")); A" learns all nodes corre-
sponding to i()’) to the depth 2(n — 1) in its view, on the basis of
V3= (h ()

confirms T as a result of their meeting prior to the comple-
tion of phase p by 1”, i.e., prior to the execution of Function
Update-Label we consider. The agent A” learns this fact
in line 5 of Function Update-Label. Then, the condition
inline 7 of Function Update-Label is satisfied by assump-
tion, and A" verifies this condition by checking whether the
length of T does not exceed 2(n — 1). Consequently, A" finds
in line 9 of Function Update-Label a transition ¢ that
maps the node at the end of 7 in V3~V (1 (1)) to the root
of V3"=D(n(1)), because d(R”) = h(}). Since R” is of
length at mostn — 1, A" sets f*" (y) = 1 (in the ‘for’ loop in
lines 10—11 of Function Update-Label) for each node y
at depth at most 2(n — 1) in V3®*~D (h()”)) corresponding to
h()\). The latter is due to the fact that « p(A) is complete with
respect to A’. This proves that «,4.1(1”) is semi-complete
with respect to A'.

See Fig. 5, where the root and some nodes that corre-
spond to the initial position of A’ have been marked on
V3=D(p (1)), and we show a transition that allows to deter-
mine all nodes in the view of A” to the depth 2(n — 1) corre-
sponding to h(1). O

In view of the next lemma, upon completion of phase 3 an
agent has correctly situated all nodes corresponding to initial
positions of all agents to depth 2(n — 1) in its view.

Lemma 13 Let A be any agent. Then, a4 (L) is semi-complete
with respect to each agent ).

Proof If a3()) # az()/), then by Lemma 10(i), ag(A) is
complete with respect to A/, and therefore it is semi-complete
with respect to A’. Hence, suppose that a3(1) = a3(1'),
which implies oz (1) = az(A’). Hence, Lemma 11 implies
that there exists an agent A" such that ay(A”) # az()). Due
to Lemma 10(i), 3 (1”) is complete with respect to A’. Note
that ap (1) # ap(A”) implies a3(A) # a3z(A”). Lemma 12
completes the proof. O
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Our final lemma says that any agent can correctly recon-
struct complete identifiers of all other agents. This is due
to the fact that every agent has filled initial positions of all
agents to depth 2(n — 1) in its view.

Lemmal4 Let A = {(I;,Th),...,,,T,)} be the set
computed in Procedure Choose-Leader executed by an
agent A. Then, for every agent )\, there exists an index
i € {1,...,a} such that I; is the complete identifier of X'
and R(h(X), T;) leads from h()) to h()) in G.

Proof Let as(X) = EV3""D(h(), £, ..., f1) be the
label of A obtained at the end of phase 3. Initially A is
set to be empty in line 1 of Procedure Choose-Leader.
Consider the nodes v and x and the function f’ from
line 3 of Procedure Choose-Leader. By Lemma 8§, v
is an initial position of an agent A”, because f'(x) =
1. Thus, in view of Lemma 13, (¢(V"*"'(v)), f') is the
complete identifier of A”. Due to lines 4-6 of Procedure
Choose-Leader, (V" (v)), f),T) € A for some
trail T such thatd (R(h()), T)) = v = h()”). By Lemma 13,
for any agent A/, there is a node in V"~ (h()) corresponding
to h(A’). This implies that, for any agent A’, the set A con-
tains (at the end of the ‘for’ loop in lines 2—7 of Procedure

Choose-Leader) a pair (I;, T;),i € {1, ..., a}, such that
I; is the complete identifier of A" and R(h (1), T;) leads from
h(X) to h(A) in G. O

Theorem 2 If the condition EC is satisfied for an initial
configuration, then Algorithm Leader-Election cor-
rectly elects a leader regardless of the actions of the
adversary.

Proof Let A* be the agent whose complete identifier 7* is
lexicographically smallest among the complete identifiers of
all agents. By condition EC (more precisely by its part saying
that all enhanced views are different) and by Corollary 1,
agent 1* is unique.

Each agent A computes a4(A) as a result of the execu-
tion of Algorithm Leader-Election. By Lemma 14, A
computes (in lines 1-7 of Procedure Choose-Leader), for
each agent A/, the complete identifier of A" and a trail T such
that the route R(h(A), T) leads from A()L) to h(A) in G.
By Corollary 1, the complete identifiers uniquely distinguish
the agents. Using the lexicographic order < on the set of all
complete identifiers, the agent A finds in line 8 of Procedure
Choose-Leader the complete identifier / = V" Yw), )
such that (I, T) € A and I < I’ for each I’ such that
(I',T") € A for some trail T’. By definition, I = I*. Then,
A decides in line 9 of Procedure Choose-Leader that the
agent with the initial position d(R(h(X), T)) is the leader.
This is agent A*. O

Theorem 2, together with Proposition 1 implies our main
result which is Theorem 1 from Sect. 3.
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6 Conclusion

We characterized all initial configurations of agents for which
leader election is possible and we constructed a universal
algorithm electing a leader for all such configurations, assum-
ing that agents know an upper bound on the size of the graph.
We observed that the latter assumption cannot be removed.
In this paper we focused on the feasibility of leader election
under a very harsh scenario in which the adversary controls
the speed and the way in which agents move along their
chosen routes. This adversarial scenario captures the totally
asynchronous nature of mobile agents.

While we gave a complete solution to the problem of fea-
sibility of leader election, we did not try to optimize the
efficiency of the algorithm, e.g., in terms of its cost, i.e.,
of the total or of the maximum number of edge traversals
performed by the mobile agents. In fact, any kind of such
optimization appears to be quite challenging. It is clear that
in order to elect a leader agents have to meet. Already the
much simpler problem of optimizing the cost of meeting of
two agents in our asynchronous model is open, both when
agents have different labels [18] and when they are anony-
mous, as in our present scenario [28]. In particular, in the
latter paper the authors asked if rendezvous of two agents
can be accomplished (whenever it is feasible) at a cost poly-
nomial in the size of the graph. Recently, an asynchronous
rendezvous algorithm for labeled agents, working at a cost
polynomial in the size of the graph and in the length of the
shorter label, has been obtained in [22].

Leader election can be used to subsequently accomplish
other tasks in networks, e.g., gathering all agents in one node.
In our context this can be done as follows. As soon as an
agent elects itself as leader, it goes back to its initial posi-
tion. Every other agent, after electing a leader, goes to the
initial position of the leader. (Recall that at the time of elect-
ing a leader each agent knows a path from its initial position
to the initial position of the leader, and each agent remem-
bers a path to its own initial position at all times.) In this
way all agents will eventually gather at the initial position
of the leader. Since the leader, at the time of electing itself,
knows that it has seen all agents and that it distinguished all
distinct agents, it may have counted them. The leader waits
until all agents come to join it and declares that gathering is
completed.
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