
Leader Election in Anonymous Radio Networks:

Model Checking Energy Consumption

Haidi Yue⋆ and Joost-Pieter Katoen

Software Modeling & Verification Group
RWTH Aachen University
D-52056 Aachen, Germany
Phone:+49 421 80 21202
Fax: +49 241 80 222 17

{haidi.yue|katoen}@cs.rwth-aachen.de

Abstract. Leader election has been studied intensively in recent years.
In this paper, we present an analysis of a randomized leader election
using probabilistic model checking with PRISM. We first investigate the
quantitative properties of the original protocol such as the expected num-
ber of election rounds. Then we modify the protocol so that it consumes
less energy and process with larger energy amount has higher probabil-
ity to be elected. The modified protocol is modeled as Markov Decision
Process, which allow us to compute minimum and maximum values, in-
terpreting the best- and worst-case performance of the protocol under
any scenarios.

Keywords: leader election, power/performance modeling, stochastic models,
statistical Analysis, radio networks

1 Introduction

Leader election is a fundamental problem in distributed computing, it was first
proposed by Le Lann [12], who also gave the first solution. The problem consists
of designating a particular process as the “organizer” of some task distributed
among a group of processes. It requires that all processes in the network have the
same local algorithm. The processes communicate through message exchange and
at the end of the computation, the algorithm reaches a terminal configuration
with exactly one process in a special state “leader”, while all other processes are
in the non-leader state. The process in the leader state is called the leader and
other processes are aware of who gets the leadership.

A large range of leader election protocols exists. They can be either asyn-
chronous or synchronous, anonymous or with unique identities, and the network
topology can either be ring, tree, or complete graph. The complexity of these
protocols can be measured either by the number of messages exchanged or by the

⋆ The author is currently visiting professor Yusheng Ji’s Lab in National Institute of
Informatics, Tokyo, 101-8430 Japan.

time necessary to elect a leader. For more information we refer to [21]. From the
point of view of energy efficiency, energy consumption can also be a criterion for
protocol complexity, especially for wireless networks where energy consumption
is an important issue. In this paper, we study the randomized leader election
protocol [2] for synchronous anonymous radio networks, where each process is
equipped with a single transceiver, and the network topology is not specified
since all stations communicate via a unique channel.

We focus our study on energy consumption and use probabilistic model
checking for the analysis. Probabilistic model checking is a formal verification
technique for the modeling and analysis of systems with stochastic behavior. It
has been widely applied in the design and analysis of randomized algorithms,
communication and security protocols, biological systems and many others. In
contract to simulation based approaches, probabilistic model checking searches
exhaustively the whole state space of the systems, provides an exact, rather than
approximated quantitative results. As an inevitable pay-off, probabilistic model
checking has the limitation of system complexity. The frequently used proba-
bilistic model checkers include PRISM [25], MRMC [24, 11] and VESTA [26]. In
this paper, we model the protocol in terms of reactive modules and analyze it
using PRISM.

PRISM is a probabilistic model checker developed at the University of Birm-
ingham and Oxford. It provides support for three types of probabilistic models:
DTMCs, CTMCs and MDPs, plus extensions of these models with costs and re-
wards. Models are described in the PRISM modeling languages, a simple, state
based language, and properties are specified in a logic incorporates LTL, PCTL,
CSL, etc. PRISM comprises the symbolic data structures and algorithms, based
on Binary Decision Diagrams(BDDs) [4] and Multi-Terminal Binary Decision
Diagrams (MTBDDs) [5]. These allow compact representation and efficient ma-
nipulation of large, structured model. For example, in [6], systems with over
1030 states have been verified. Further more, PRISM also features a discrete-
event simulation engine, generating approximate results through Monte Carlo
methods and sampling.

This paper starts with a description and analysis of the protocol in [2], then
considers its energy consumptions, and finally proposes two amendments to op-
timize its energy aspects. In summary, the main contributions of this paper are:
(1) We consider different channel failure scenarios and calculate the failure prob-
ability for unreliable channels; (2) Since energy usage is a big issue in the field of
wireless networks, we improved the original protocol so that it consumes much
less energy to elect leader than before. (3) We further propose an adaption of
the protocol to increase the likelihood of elect a leader with maximal remaining
energy.

The paper is organized as follows. We first introduce the original protocol
and analyze it in the Section 2. A generalized version of the original protocol is
discussed in Section 3. In Section 4, we introduce and discuss our modification
of the original protocol. We conclude with a discussion in Section 6.

2

Related work. model checking and PRISM has been used in [7, 8] to verify
and simply leader election protocol for anonymous ring networks. The HAVi
Leader Election Protocol is modeled and analyzed in [18]. PRISM has also
been used to verify a wide range of different wireless protocols, for example
the CSMA/CD protocol [13] and a gossip-based protocol [14]. See the PRISM
publication repository [25] for more detailed and future examples. Other appli-
cation of formal methods for leader election protocol can be found in [17, 3].

To our knowledge, our paper is the first one about model checking leader
election protocol for wireless networks with unknown network size, rather than
for a fixed topology such as a ring. Furthermore, we evaluate the protocol by
focusing on the energy consumption until a leader has been elected.

2 Leader election for fixed network size

In this section, we first introduce the randomized leader election protocol of [2],
then model and analyze it with PRISM.

2.1 Protocol introduction

We consider the randomized leader election protocol introduced in [2] which
is designed for radio networks, in which every station is equipped with only
one transceiver, so that a station cannot perform transmitting and listening
operations at the same time. This means that a station can not detect collisions
while transmitting. The assumptions made by this protocol are:

1. The stations are identical and cannot be distinguished by serial or manufac-
turing number.

2. Time is slotted and all stations have a local clock that are synchronized.
3. The network has no collision detection capabilities.
4. The single channel which is available to all stations is reliable. This means

that messages are not lost, cannot be reordered, and are not duplicated.

We say the status of the channel is SINGLE if only one station is transmitting
in the current time slot. Otherwise, if no station is transmitting or more than
one stations are transmitting in the same time slot, the channel is recognized as
NOISE. We denote by S the set of all stations and assume |S| = N > 2. Two
scenarios are distinguished: (1) The network size N is known by all stations or
(2) an upper bound of N is known by all stations.

We first consider the case when the number N of stations in the network
is known in advance. Protocol Leader-Election(N) elects a leader with known
N and consists of two phases: a partition phase and an election phase. In the
partition phase, the set of stations will be randomly partitioned into 3 disjoint
sets A, B and S-A-B. A leader will be elected in the election phase if the partition
formed in the partition phase satisfies |A| = |B| = 1. Otherwise, a new election
round will be initiated. The detailed election scheme is outlined below.

3

Leader-Election(N):

Partition phase :
step 1 : Every station tosses a fair coin and belongs to A

with probability 1
N
.

step 2 : Every station that is not in A tosses a fair coin
and belongs to B with probability 1

N−1 .
step 3 : Stations that belongs neither to A nor to B after

step 2 are in S-A.
Election phase :

slot 1 : Every station in A broadcasts on the channel. Sta-
tions in S-A monitor the channel.

slot 2 : If the channel was SINGLE in slot 1, every station
in B broadcasts on the channel and processes in S-B
monitor the channel.

slot 3 : If the channel was SINGLE in slot 2, every station
in A broadcasts on the channel and announces itself as
the leader, stations in S-A-B monitor the channel and
get informed that a leader is elected.

We model the above protocol as a discrete-time Markov Chain (DTMC) and
analyze it using the probabilistic model checker PRISM. A DTMC is a transition
system which labels each transition with a probability such that the sum over
all the outgoing transitions for each state equals one. The behavior of DTMC is
fully probabilistic. Hence, we can define a probability space over infinite paths
through the model and quantitative analyze the likelihood that a particular event
occurring. For a more detailed discussion we refer to [1].

In the setting of probabilistic model checking, the properties of a system
are typically expressed in temporal logic, such as PCTL [9]. For example, the
following formula:

P =? [F6k “error”]

represents the probability that an error state is reached within k steps. When
the states or transitions are labeled with some rewards or costs, TDMCs can also
be used to reason about a wide range of quantitative measures, such as “passed
election rounds”, or “energy consumed”. For example:

R{“rounds”} =? [F “terminated”]

represents the expected number of rounds until termination.
In the following, we represent the model checking results of the above proto-

col.

2.2 Scalability

If the channel is reliable and the network size N is known exactly, Leader-
Election(N) provides a quite good scalability. Given a fixed N > 1, the proba-

4

bility pN of |A|=|B|=1 after partition can be calculated by [2]:

pN =

(

N

1

)

1

N
(1−

1

N
)N−1

(

N − 1

1

)

1

N − 1
(1−

1

N − 1
)N−2

= (1−
1

N
)N−1(1−

1

N − 1
)N−2

>
1

e2
(1)

Fig. 1. good scalability

Since the election phase is deterministic, to calculate the probability of suc-
cessful election, it is sufficient to model the partition phase as a simple DTMC
with only two states: from the initial state, with probability pN , it goes to the
second state(i.e. an unique leader is elected), otherwise, with probability 1−pN ,
it stays in the initial state. Figure 1 shows the probability of successful election
of a leader (the y-axis) within r rounds (the x-axis), for different number N of
stations. As we can see, even for network with large N (i.e. N = 1250), the
probability of successful election converges almost as fast as for network with
small size. This shows that the protocol has a good scalability.

Suppose the first r executions of Leader-Election(N) failed to elect a leader.
Since each attempt is independent, the probability of this occurring is at most
(1 − pN)r < e−r·pN . It follows that with probability exceeding 1 − e−r·pN , the
protocol elects a leader within at most r rounds. For f satisfying f = e−r·pN ,
the protocol terminates, with probability exceeding 1− f in − 1

p
N

ln f rounds.

5

Lemma 1. Let X be a discrete random variable taking a value at most T (F)
with probability at most F , where T is a non-decreasing function, then, E(X) 6
∫ 1

0
T (F)dF .

Thus, the expected number of election rounds to terminate is bounded by

∫ 1

0

−
1

pN
ln f df =

1

pN
< e2 < 8,

which means that with increasing N , the protocol can on average elect a leader
within 8 election rounds.

2.3 Unreliable channel

The protocol [2] assumes that the communication channel is reliable, however, in
the real world, this is mostly not the case. For instance, during the sending of one
station, some background noise may screen out the channel. As a consequence,
although the channel is supposed to be SINGLE, other stations still evaluate it
as NOISE. Or, it can also happen that more than one station is sending but due
to unexpected weather, the signal power attenuates immensely, and only one
station can access the channel and the channel becomes SINGLE.

Following the above considerations, we introduce two kinds of channel fail-
ures:

1. SINGLE to NOISE : There is only one station sending to the channel, how-
ever other stations that are monitoring consider the channel to be NOISE.

2. NOISE to SINGLE : There are at least two stations broadcasting to the
channel, but other stations which are monitoring the channel receive infor-
mation from only one station that is sending and consider the channel to be
SINGLE.

In fact, the above two scenarios are the same in the sense that we define
channel failure as: the number of stations that successful broadcasting to the
channel is smaller than the number of stations that attempt to broadcast to the
channel. I.e., if the channel is NOISE due to nobody is sending at that moment,
it can not happen that other stations observe the channel as SINGLE.

Assume that per election round, a channel failure occurs at most once, either
in slot 1, slot 2 or slot 3. We model this in PRISM by introducing a rate pc
indicating that the channel works correctly with probability pc. When pc = 1,
the channel is reliable. If pc < 1, a channel failure can occur with probability
1−pc in slot i (i ∈ {1, 2, 3}) either be the reason of SINGLE to NOISE or NOISE
to SINGLE.

When a channel failure occurs, although the protocol terminates on average
with almost the same number of election rounds, it could terminate incorrectly,
i.e., more than one leader is elected. Let π be the probability of correct termina-
tion, Table 1 shows the model checking results for π with pc = 0.95 and N = 10,
under different failure types and different slots.

6

X
X
X
X
X

X
X
X
XX

failure type
slots

1 2 3

SINGLE to NOISE 1.0 1.0 0.9547
NOISE to SINGLE 0.9672 1.0 1.0

Table 1. correctness result with unreli-
able channel

If follows from Table 1 that when
SINGLE to NOISE occurs, if it oc-
curs in the first or the second slot,
the protocol can still terminate cor-
rectly. However, if it occurs in the
third slot, with some probability,
more than one leader is elected. In-
deed, this happens when |A| = |B| =
1, then in the third slot, since the
channel was SINGLE in the last two slots, the unique station in A understands
itself as leader and announces this to other stations. If now SINGLE to NOISE
failure arises, other stations, especially the single station in B, will consider
|B| 6= 1 and start a new election round and eventually elect another station as
leader. This kind of event happens in each round with probability pN (1− pc).

Another scenario of incorrect termination appears when failure NOISE to
SINGLE in the first slot occurs. This occurs when |A| > 1 and |B| = 1. A
NOISE to SINGLE failure in the first slot results in a wrong decision of the
unique station in B, it hence broadcasts to the channel that slot 1 was SINGLE.
Now all stations in A consider themselves as leader, whereas all other stations
receive nothing in the third slot and start a new election round.

3 Leader election for networks of unknown size

The protocol introduced above is considered for networks with known total num-
ber of stations N , [2] also discusses the case if only the upper bound u of N is
available. In this case, the following protocol Leader-Election(21, 22, ..., 2⌈logu⌉)
will be executed, which is a generalization of Leader-Election(N).

Leader-Election(21, 22, ..., 2⌈logu⌉)
for i = 21 to 2⌈logu⌉ do

run Leader-Election(i)
terminate if leader is elected

od

[2] does not mention what happens if no leader is elected after Leader-
Election(2⌈logu⌉) is performed. Although this occurs with a very low probability,
we need to specify in our model which action should be undertaken if it is
encountered. Hence we assume that once Leader-Election(2⌈logu⌉) is executed
and no leader is elected yet, i will be set back to 2 and the algorithm Leader-
Election(21, 22, ..., 2⌈logu⌉) starts again.

Let n = ⌈log u⌉ be the smallest number exceeding u which is a power of 2.
Figure 2 shows the probability of elect a leader (y-axis) at each round (x-axis)
in a network with N = 12 stations.

The red curve indicates the case when the network size is known. The blue
one presents the case if we assume n = 16, and the green one shows the case

7

Fig. 2. Impact of knowledge of n.

when n = 64. As we can see, once we do not know the exact number N , the
probability of elect a leader at the same round descends significantly, and it takes
longer to elect a leader, since the blue and green curves converges slower than
the red one. Because the energy consumption per election round is the same, it
follows that for networks with unknown network size, leader election consumes
in general more energy to elect leader. However, the difference between the two
bounds n = 16 and n = 64 is not huge, i.e., if we do not know the exact number
of N , a coarse estimation performs almost the same as a more accurate one.

Let p(n,N) be the probability of |A| = |B| = 1 after the partitioning phase,
with N > 1 the exactly number of stations and n > 1 the number used to form
the partition.

p(n,N) =

(

N

1

)

·
1

n
· (1−

1

n
)N−1 ·

(

N − 1

1

)

·
1

n− 1
· (1−

1

n− 1
)N−2

Obviously, when n = N , p(n,N) is equal to equation (1). Figure 3 shows
the value of p(n,N) (y-axis) with n = 5, 15, 80 and N ∈ {2, ..100}. For fixed N ,
p(n,N) has its maximal value if N = n, and for N = n = 2, p(n,N) has the
maximal value 1

2 (not shown in figure). This means that if we do not know the
exact number N of stations in the network, and use another number n 6= N to
form the partition, then the probability of |A| = |B| = 1 can be much smaller
than p(n,N), and more election rounds are needed. In the worst case, if N > 2
and we start leader election by executing Leader-Election(21),..., then for sure
no leader will be elected in the first election round, because p(2, N) = 0.

8

n=5

n=15

n=80

Fig. 3. Probability of |A| = |B| = 1 with different n and N .

4 Energy consumption

4.1 Energy inefficiency of the protocol

P
P

P
P
P

P
PP

Slot
Partition

A B S-A-B

slot 1 send monitor monitor
slot 2 monitor send monitor
slot 3 send monitor monitor

Table 2. action table

Each station has two activities that
take energy: transmitting or mon-
itoring. From the point of view of
energy consumption, the protocol
introduced above is not really en-
ergy efficient, in the sense that it
exists superfluous monitoring ac-
tions that consume energy. Con-
sider Table 2: in all time slots, all
stations are either monitoring or
transmitting. However, the moni-
toring action of stations in S-A-B in the first and second slot does not con-
tribute to the election procedure at all. Without these actions, the probability
of successfully electing a leader will not be changed.

4.2 Energy improvement

It follows that in the election phase, it is not necessary for stations in S-A-B
to monitor the channel all the time. This suggests to modify the protocol by
letting the stations in S-A-B idle during the first two slots and only monitor in
the third slot to eventually receive the information from A. This neither affects
the correctness of the protocol nor changes the probability of successful election
in each round.

9

To model energy consumption, we assume a send action consumes J units
of energy, a monitor action consumes α1J , an idle slot consumes α2J and the
switching on and off of a transceiver costs α3J energy units. Usually, especially
for sensor networks, the factor α1 ranges from 1.0 − 1.5 and factor α2 is a
thousand times smaller than 1 [20, 16, 19].

P
P
P

P
P
P
PP

Slot
Partition

A B S-A-B

slot 1 J α1J α1J

slot 2 α1J J α1J

slot 3 J α1J α1J

Table 3. energy consumption of
the original protocol

In the sequel, if not stated otherwise,
we consider leader election in network with
known size N . We first analyze the average
energy consumption in the original proto-
col [2]. The energy consumption of each sta-
tion in each slot is given in Table 3. Let Xi,j

be a random variable denoting the energy
consumption of station i in round j. Obvi-
ously, E[Xi,j] is equal to E[Xk,l] for k 6= i

or l 6= j and it holds:

E[Xi,j] =

(

1

N
(2J + α1J) +

1

N
(J + 2α1J) +

N − 2

N
3α1J

)

= J

(

2

N
+

1

N
α1 +

1

N
+

2

N
α1 + (3−

6

N
)α1

)

= J

(

3

N
+ (3−

3

N
)α1

)

and lim
N→∞

E[Xi,j] = 3α1J .

P
P
P
P

P
P
P

Slot
Partition

A B S-A-B

slot 1 J α1J α2J + α3J (switch off)

slot 2 α1J J α2J + α3J (switch on)

slot 3 J α1J α1J

Table 4. energy consumption of the modified protocol

Now consider the energy Table 4 of the modified protocol with idle periods.
For this protocol, the expected energy consumption E′[Xi,j] of station i in round
j is:

E′[Xi,j] =

(

1

N
(2J + α1J) +

1

N
(J + 2α1J) +

N − 2

N
(2α2J + 2α3J + α1J)

)

= J

(

(
3

N
+

3

N
α1) +

N − 2

N
(α1 + 2α2 + 2α3)

)

and lim
N→∞

E′[Xi,j] = (α1 + 2α2 + 2α3)J .

10

To get an improvement towards energy efficiency, i.e.,

lim
N→∞

E′[Xi,j] < lim
N→∞

E[Xi,j]

it should hold:

α2 + α3 < α1

which is usually the case [20, 16, 19].

Fig. 4. Standby in S-A-B

Assume J = 10 energy units. Figure 4 shows the expected energy consump-
tion (y-axis) at each election round (x-axis) until successfully a leader has been
elected, with network size N = 5, 10 or 15. Curve labeled with “original” in-
dicate the result of the original protocol and curves labeled with “improved”
presents the modified protocol with α1 = 1, α2 = α3 = 0, which are quite ideal
factors, but still, the energy difference is so huge and the factor α2, α3 in real
application is small enough to confirm that our modification is more energy effi-
cient than the original one. In general, if consider α1 = 1, α2 = α3 = 0, it holds

that lim
N→∞

E′[Xi,j]
E[Xi,j]

= 1
3 , which means that the modified protocol consumes only

one third energy as the original one.

4.3 Elect leader with higher energy

Besides introducing idle moments for station in S-A-B in the protocol, it also
makes sense if the algorithm tries to elect a leader with maximal energy level,
since the role leader is usually expected to perform some special tasks which

11

consumes extra energy. In the following, we modify the original protocol by
partitioning the stations into different energy levels and let stations in higher
energy level have a higher chance to be elected as leader.

Let M be the maximal possible energy storage available in the current
network and assume there are b energy levels. The lowest energy level is b

and the highest energy level is 1. A station s belongs to energy level l, if
M
b
(b − l) < se 6

M
b
(b − l + 1), where se > 0 is the energy status of s. The

underlying assumptions of this modification are:

– Each station has the knowledge of M . This can be realized by for example
a message from the base station.

– Each station knows its energy level and this level will not change during
the election process. This is also possible because each energy level covers a
range of energy status. Even when considering battery recharge during idle
slots [22, 10], the possibility that stations change their energy level is low.

– There are at least two stations in the energy level 1. This assumption is also
reasonable, because this is usually the energy level of the leader from the
last leader election call, and a successful leader election requires at least two
stations to participate.

The modified leader election protocol Leader-Election-High-Energy(N) works
as follows:

Station s calculates and belongs to energy level ls ∈ {1, ..., b} with
respect to its current energy status.
for i = 1 to b do

if ls > i

execute Leader-Election(N
b
i)

terminate if a leader is elected
else only wake up in the third slot.

od

If no leader is elected after b rounds, all stations starts Leader-
Election(N).

Intuitively speaking, a station will participate in the election if its energy
level is greater than the round number, otherwise, it plays the role of stations
in S-A-B. Since we do not know how the energy level actually is distributed in
the network, the protocol assumes that the energy level of stations are uniformly
distributed, i.e., in election round i, it supposes that N

b
i stations take part in

the election process. In the beginning, only stations belonging to higher energy
level are allowed to participate in the election procedure. This increases the
probability of being leader for stations with higher energy storage, because they
participate in an election phase more often.

We model Leader-Election-High-Energy(N) by a Markov decision process
(MDP), which is an extension of DTMC with the ability also representing nonde-
terministic behavior. The nondeterminism is necessary to obtain different energy
level distributions. More precisely, at the beginning of an election, each station
first selects nondeterministically its energy level, then starts random partition

12

with given probability. Due to the presence of nondeterminism, for MDPs, we
can not compute the probability unless the nondeterministic choice is resolved.
Instead, the analysis of MDP models provide minimum and maximum probabil-
ity that an event occurring. In our case, we compute the minimal and maximal
expected number of election rounds to elect a leader, which represents the best
and worst results respectively, under different energy level distributions.

b max-rounds min-rounds max-prob. min-prob.
1 6.42 6.42 0.25 0.25
2 7.07 6.21 0.34 0.25
4 8.18 4.08 0.69 0.25

Table 5. Model checking result for Leader-
Election-High-Energy(N) with N = 8.

We model networks with
N = 8, b = 4 and
N = 9, b = 3, the
state space of these two
models are 613, 474, 725 and
819, 009, 820, respectively. For
MDPs, besides the state
space explosion problem, a
more deciding parameter for
verification feasibility is the
number of nodes in MTBDD
Matrix. The more nondeterministic choices there are, the larger the MTBDDs.
For instance, to verify the reachability property, the model with N = 8, b = 4
has 206, 368 MTBDD nodes whereas the model with N = 9, b = 3 has 141, 921
MTBDD nodes. Hence it takes on average for N = 8, b = 4 more than 200 sec-
onds to verify this property and for N = 9, b = 3 it takes less time. For networks
with N > 9, b > 4, PRISM failed to build a model due to the lack of mem-
ory. The maximal and minimal number of expected election rounds for N = 8,
b = 1, 2, or 4, as well as the maximal and minimal probability that an leader
from the highest energy level is elected, can be found in Table 5. The columns
“max-rounds”, “min-rounds” indicate the maximal and minimal number of ex-
pected election rounds to elect a leader, respectively. The two right most columns
“max-prob.”, “min-prob.” indicate the maximal and minimal probability that
the leader is from the highest energy level, respectively.

Obviously, when b = 1, the maximal and minimal values are the same. If b 6=
1, larger b yields a wider difference between maximum and minimum results. The
worst case (which corresponds to the result with maximal number of expected
election rounds) occurs when all stations belonging to the lowest energy level
besides the two in the assumption. In this case, there are actually only two
stations (the two we assume in the highest energy level) active in the first b− 1
election rounds, whereas the number used to form partition is unequal to 2, which
reduces the probability of |A| = |B| = 1. The worst case (which corresponds to
the result with minimal number of expected election rounds) occurs when in
each block there are exactly N

b
stations. Then in each election round i, the

number of stations that participate election is equal to the number used to form
partition, hence the probability of |A| = |B| = 1 is maximal. The reason is that
as mentioned before, the protocol assumes that the energy level is uniformly
distributed, thus it has the best performance when the nondeterministic choice
results in a uniform energy distribution.

13

5 Discussion and Conclusion

In this paper, we have presented the application of probabilistic model checking
to a leader election protocol for wireless noisy radio networks with a single
transceiver, focusing on the probability to elect a leader within a given number of
rounds, and the expected energy consumption. All verification and experiments
with PRISM were run on a 3.0GHz Pentium 4 processor with 2GB memory.

We improved the protocol by letting some stations sometimes idle. We have
shown by both model checking and mathematical analysis that this improvement
indeed reduce a large amount of energy consumption. Furthermore, we modified
the protocol by partitioning the stations into different blocks with respect to their
energy level, to increase the likelihood to elect a leader with higher remaining
energy (e.g. battery capacity). We modeled the modified protocol as MDP and
show that, if the energy status of stations are uniformly distributed, stations in
the highest energy level have very high probability to be elected as leader, and
the number of election rounds is less than the original protocol.

For future work, we plan to incorporate the battery models in [10] for stations
in the protocol, and to model and verify a leader election protocol that can easily
accommodate topology changes [15, 23].

References

1. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

2. Jacir Luiz Bordim, Yasuaki Ito, and Koji Nakano. Randomized leader election
protocols in noisy radio networks with a single transceiver. In Parallel and Dis-
tributed Processing and Applications(ISPA), volume 4330 of LNCS, pages 246–256.
Springer-Verlag, 2006.

3. J. Brunekreef, J-P. Katoen, R. Koymans, and S. Mauw. Design and analysis of
dynamic leader election protocols in broadcast networks. In Distributed Computing
9(4), pages 157–171, 1996.

4. R. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers, C-35(8), pages 677–691, 1986.

5. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-
terminal binary decision diagrams: An efficient data structure for matrix represen-
tation. In International Workshop on Logic Synthesis (IWLS), pages 1–15, 1993.

6. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the kro-
necker representation. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 1785 of LNCS, pages 395–410. Springer, 2000.

7. W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anonymous
rings. In Automated Verification of Critical Systems (AVoCS), volume 128, pages
53–68, 2004.

8. W. Fokkink and J. Pang. Variations on Itai-Rodeh leader election for anonymous
rings and their analysis in PRISM. In Journal of Universal Computer Science,
volume 12, pages 981–1006, 2006.

9. H. Hansson and B.Jonsson. A logic for reasoning about time and reliability. In
Formal Aspect of Computing, pages 512–535, 1994.

14

10. Marijn R. Jongerden, Boudewijn R. Haverkort, Henrik Bohnenkamp, , and Joost-
Pieter Katoen. Maximizing system lifetime by battery scheduling. In International
Conference on Dependable Systems and Networks, pages 63–77, 2009.

11. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The ins and outs of the probabilistic model checker MRMC.
In Int. Conf. on the Quantitative Evaluation of Systems (QEST), pages 167–176,
2009.

12. Gerard Le Lann. Distributed systems: Towards a formal approach. In Information
Processing 77, Proc. of the IFIP Congress, pages 155–160, 1977.

13. T. Herault R. Lassaigne F. Magniette S. Messika S. Peyronnet M. Duflot, L. Fri-
bourg and C. Picaronny. Probabilistic model checking of the CSMA/CD protocol
using PRISM and APMC. In Automated Verification of Critical Systems (AVoCS),
ENTCS, volume 128, pages 195–214, 2004.

14. G. Norman M. Kwiatkowska and D. Parker. Analysis of a gossip protocol in
PRISM. In ACM SIGMETRICS Performance Evaluation Review, volume 36, pages
17–22, 2008.

15. N. Malpani, Jennifer L. Welch, and N. Vaidya. Leader election algorithms for
mobile ad hoc networks. In Discrete Algorithms and Methods for Mobile Computing
and Communications, pages 96–103. ACM, 2000.

16. Matthew J. Miller and Nitin H. Vaidya. Minimizing energy consumption in sensor
networks using a wakeup radio. In Wireless Communications and Networking
Conference (WCNC), volume 4, pages 2335–2340, 2004.

17. J. Romijn. A timed verification of the IEEE 1394 leader election protocol. In
Formal Methods in System Design 19(2), pages 165–194, 2001.

18. J. M. T. Romijn. Model checking the HAVi leader election protocol, 1999.
19. Nordic Semiconductors. nRF2401 Single-chip 2.4GHz Transceiver Data Sheet,

2002.
20. Victor Shnayder, Mark Hempstead, Borrong Chen, Geoff Werner Allen, and Matt

Welsh. Simulating the power consumption of large-scale sensor network applica-
tions. In Int. Conf. on Embedded Networked Sensor Systems, pages 188–200. ACM,
2004.

21. Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2000.

22. Doru E. Tiliute. Battery management in wireless sensor networks. In Electronics
and Electrical Engineering 4(76), pages 9–12, 2007.

23. S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader election
algorithm for mobile ad hoc networks. In Int. Conf. on Network Protocols (ICNP),
pages 350–360, 2004.

24. MRMC website. http://www.mrmc-tool.org/trac/.
25. PRISM website. http://www.prismmodelchecker.org.
26. VESTA website. http://osl.cs.uiuc.edu/~ksen/vesta2/.

15

