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Abstract We investigate the problem of electing a leader in a sparse but well-connected
synchronous dynamic network in which up to a fraction of the nodes chosen adversarially can
leave/join the network per time step. At this churn rate, all nodes in the network can be replaced
by new nodes in a constant number of rounds. Moreover, the adversary can shield a fraction
of the nodes (which may include the leader) by repeatedly churning their neighborhood and,
thus, hindering, their communication with the rest of the network. However, empirical studies
in peer-to-peer networks have shown that a significant fraction of the nodes are usually stable
and well connected. It is, therefore, natural to take advantage of such stability to establish a
leader that can maintain good communication with the rest of the nodes. Because the dynamics
could change eventually, it is also essential to reelect a new leader whenever the current leader
either has left the network or is not well-connected with rest of the nodes. In such reelections,
care must be taken to avoid premature and spurious leader election resulting in more than one
leader being present in the network at the same time.
We assume a broadcast-based communication model in which each node can send up to
O(log3 n) bits per round and is unaware of its receivers a priori. We present a randomized
algorithm that can, in O(log n) rounds, detect and reach consensus about the health of the
leader (i.e., whether it is able to maintain good communication with rest of the network). In
the event that the network decides that the leader’s ability to communicate is unhealthy, a new
leader is reelected in a further O(log2 n) rounds. Our running times hold with high probability
provided a sufficiently large fraction of the nodes remain stable during the reelection process.
Furthermore, we are guaranteed with high probability that there is at most one leader at any
time.

1. INTRODUCTION

Building distributed networks that can behave in a united manner despite the presence
of a large number of nodes, many of which could be faulty, is a fundamental goal in
distributed computing research. At the heart of this research agenda are two important
symmetry-breaking problems: (i) agreement [27, 23] and (ii) leader election [14, 1, 28]. In
the (binary) agreement problem, each node in the network proposes a bit that is either 0 or
1, and they must all agree on either 0 or 1 under the condition that the agreed bit value must
have been proposed by at least one node. This problem captures the essence of ensuring a
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unified behavior despite multiple proposed courses of action. In many contexts, however,
we would like a sustained unified behavior for which our best option is to “elect” a single
leader node and authorize that leader to make the required choices. Needless to say, both
leader election and agreement have a history spanning several decades and have played a
crucial role in the development of distributed computing.

Although there have been several works on leader election in faulty settings [1, 17],
there are very few investigations [8, 9, 3] of the leader election problem in settings where the
network is dynamically evolving. Traditional leader election algorithms and their techniques
don’t seem to work in dynamic networks. But with dynamic networks (see [21] and
references therein) gaining a great deal of importance in today’s context, especially with
the advent of mobile sensor networks, peer-to-peer networks, etc., it is important for us
to design algorithms for fundamental problems such as agreement and leader election that
can work well in dynamic networks. In an attempt to fill this gap, we study the problem of
electing, maintaining,1 and, when needed, reelecting a leader in highly dynamic networks.

Our focus, motivated by applications in peer-to-peer networks, is on sparse dynamic
networks that can experience very high churn. In particular, we adopt the model first
presented in [6] in which, at every time step, up to a linear fraction of the nodes in the
network can be churned out and a fresh linear fraction can enter the network. Under such
high churn, the entire set of nodes in the network can be replaced by fresh nodes within a
constant number of rounds. Clearly, we cannot hope to elect and maintain a leader under
such heavy churn. However, a detailed empirical study of real-world networks [29] indicates
that although peer-to-peer networks experience heavy churn, that churn is restricted to a
subset of the nodes, and a significant fraction of the nodes are, in fact, stable for reasonably
long periods of time. Therefore, the focus of our work is to understand how we can elect
and maintain a leader whenever the network exhibits a minimal amount of stability. In
particular, if there is a small fraction of nodes that are present in the network for a sustained
period of time, we show that we can, in fact, elect and maintain a leader.

1.1. Our Contribution

We model our dynamic network as a sparse evolving sequence of graphs that ex-
perience heavy churn. (We formally define our model in Section 2.1.) The motivation for
our model comes from unstructured peer-to-peer (P2P) networks that nodes can join and
leave at will. Typically, each peer in a P2P network connects to a bounded number of other
nodes. Even though the communication graphs are sparse, we assume that they are well
connected in the sense that they are expanders. Such expander graph topologies are used
widely in modeling static networks [13, 18, 19, 20, 30], our work, along with other recent
works [6, 5, 4], showcases the benefit of assuming good expansion in dynamic settings.

In order to ensure that our algorithm is robust, we allow an oblivious adversary
to design our dynamic network. The oblivious adversary is aware of the leader election
protocol, but it is unaware of the randomness that the protocol may use. In sparse networks,
the adversary can easily isolate some nodes by repeatedly churning their neighborhood; the
isolated nodes may not be able to communicate with other nodes. Later, at some opportune

1We crucially include the notion of maintenance along with leader election because in highly
dynamic networks, in addition to the traditional notion of leader election, there is also a need to
maintain the leader. In particular, we might need to check the availability of the leader and, if needed,
initiate a new leader election.
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time, it can choose to allow the nodes to freely communicate. Such adversarial strategies
can potentially cause confusion in the network. It is important, therefore, to design the
leader election protocol in such a way that it is robust against any strategy the adversary
might employ.

Our contribution is a leader election protocol along with a framework to maintain the
leader for such adversarially controlled sparse dynamic networks. Our algorithm guarantees
the following properties with high probability.2

1. There is at most one leader in the network at any time.
2. When the leader is present and is not isolated, most nodes will be able to hear messages

sent by the leader.
3. If the leader is either isolated for �(log n) rounds or churned out, the network will be

able to detect this anomaly and initiate reelection within O(log n) rounds.
4. Once reelection starts, it is guaranteed to terminate with the election of a new leader

within O(log2 n) rounds, provided a reasonable fraction of the nodes in the network are
stable.

We note here that deterministic binary agreement is impossible even when the churn is
restricted to a small constant number per round [6]. Because leader election would imply
binary agreement, this impossibility extends to leader election as well. Thus, we must
employ randomization to study problems under such heavy churn.

1.2. Technical Contributions

The main challenge in designing leader election algorithms for adversarially designed
sparse dynamic networks with churn is the ability of the adversary to shield and release
nodes at will. Consider the following illustrative scenario. Typically, when the leader is
well connected with rest of the network, most nodes will hear regular beep messages sent
from the leader. Suppose the leader is shielded and is unable to communicate with most
nodes in the network. The beep messages will dry out, and, at some point, the other nodes
will want to reelect a new leader. Crucially, we must note that the adversary has precise
understanding of the point in time when the nodes will choose to reelect a new leader.
So the adversary can wait untill a few rounds before that point in time and then allow
the leader to communicate beep messages freely. Because the number of rounds for such
free communication is limited (and adversarially timed), we will have to grapple with the
worst case scenario in which about half the nodes have heard beeps from the leader (at
the point in time when they have to decide whether to reelect), and the other half has not
heard beeps from the leader. This could lead to a situation wherein half the nodes elect
a new leader, while the other half retain the old leader. The adversarial strategy outlined
might seem limited to adaptive adversaries, however, it is in fact amenable even to oblivious
adversaries because it can isolate the current leader with constant probability. The rest of
the strategy can be implemented once the leader is isolated.

To overcome this adversarial strategy, we introduce a novel algorithmic technique in
which, instead of relying directly on beeps from the leader, we count the number of nodes

2Throughout this article “with high probability” (abbreviated to w.h.p) refers to probability
≥ 1 − 1

nc for any fixed c ≥ 1, and n is the number of nodes in the network at any time, which we
assume to be stable.
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that heard beeps from the leader. If this counting is accurate, then each node can make a
robust decision about the health of the leader based on a collective perception rather than
its own perception. Thankfully, there are established robust techniques [6] to count a select
subset of nodes despite heavy churn (cf. Algorithm 1).

The rest of the technical challenge is to ensure that the required properties (that our
algorithm must guarantee w.h.p) are maintained despite all possible adversarial strategies. In
order to maintain clarity, we have not focused on optimizing the constants in our asymptotic
notations.

1.3. Related Works

There are relatively few works on leader election in dynamic networks. The works
most related to our work are [8, 9, 3], in which the authors study leader election in networks
that can experience heavy churn. Their model differs from ours in the sense that their model
guarantees communication between every pair of nodes that remains in the network for
a sustained period of time. Our notion of the stability of nodes in the dynamic network
comes from the studies in [29], which show that a fraction of nodes (peers) in P2P networks
remain highly stable, while the others are under constant churn.

In [8, 9] the authors study networks with arbitrary amounts of churn and provide
an algorithm that guarantees deterministic reelection in O(nD) rounds where D is the
diameter of the network. They further show that any deterministic algorithm will require
�(nD) rounds, thus establishing tightness. Consequently, in [3], the authors focused on
randomized algorithms. Their algorithm can reelect a leader in O(D log n) rounds w.h.p.
Furthermore, they also show that this running time cannot be improved.

To the best of our knowledge, we are unaware of other works that study leader election
in sparse networks. However, there have been some recent efforts to study the agreement
problem. In [6], as mentioned earlier, the authors show that an “almost-everywhere” agree-
ment is impossible to achieve with deterministic algorithms in networks that exhibit even
a constant churn rate.

In the context of mobile ad hoc networks, [24] presents an algorithm for electing a
leader in each connected component of a network with a changing topology and proves
its correctness for the case when there is a single topology change. In [16], a leader
election protocol that elects a leader as soon as the topology becomes stable is described
for asynchronous networks with dynamically changing topologies. Several other leader
election algorithms for mobile environments are considered in [7, 24, 16, 25, 26, 31, 10].

The authors of [15] present a leader election algorithm in a model where the entire
space accessible by mobile nodes is divided into nonintersecting subspaces. When nodes
meet in a common subspace, they decide which node continues to participate in the leader
election protocol. Moreover, [15] presents a probabilistic analysis for the case in which the
movement of nodes are modeled as random walks.

Finally, we note that the notion of self-stabilization initiated by [11] is quite relevant
in our context. The goal in self-stabilization is to ensure that the state of the network
eventually becomes correct (under some specified notion of correctness) regardless of its
starting state. In fact, one can view the work by Malpani et al. [24] as a self-stabilizing
leader election protocol. To the best of our knowledge, the goal in self-stabilization is to
bring the state of the network to a correct state. Our work differs in the sense that the
underlying network is constantly changing, and our goal is to ensure that a leader is elected
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and maintained ad infinitum. For more details on self-stabilization, we refer the reader to
an excellent book [12].

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1. Modeling Dynamic Networks

Given a synchronous dynamic network G (as introduced in [6]), we want to elect
a leader in spite of churn. Time is divided into discrete intervals of equal length called
rounds, which are numbered integrally in sequence starting from 1. We model G as a
sequence of connected undirected graphs (G1,G2,G3 . . . ), where each Gr = (V r,Er ) is
the communication graph in round r . The set V r is the set of all nodes present in round
r , and an edge e = (u, v) ∈ Er represents the ability of nodes u and v to communicate
with each other. Each node has an ID. We assume that no two nodes present in the same
round have the same ID. This sequence of graphs is generated by an oblivious adversary
that is aware of the details of the protocol, but is unaware of the actual values of the random
bits. The rules that the adversary must observe will be spelled out shortly. In a round, a
node communicates with each neighbor by broadcasting at most one message of length
O(log3 n) bits.

Throughout this article, we assume that the nodes have a common clock and are
therefore aware of the current round number. To keep the algorithm and analysis simple,
we assume that all nodes are aware of the size of the network n.

To facilitate the leader election context, each node u is equipped with a special
variable called leaderu, which points to ⊥ if u doesn’t have a leader or stores the ID of
u’s current leader. A typical round r consists of the following steps.

1. The oblivious adversary updates the network communication graph to Gr .
2. Nodes perform local computation.
3. Nodes broadcast messages to their neighbors in Gr .
4. Finally, nodes receive messages sent by their neighbors.

We make the following assumptions about the kind of changes that our dynamic
network can undergo. Note in particular that the oblivious adversary is required to ensure
that these assumptions are followed.

1. Stable network size: ∀r , |V r | = n. At every round r , the adversary must ensure that
the number of nodes in the network is maintained at n. Furthermore, we assume that
the value of n is common knowledge among the nodes in the network. (Although this
assumption makes our exposition cleaner, this is not a rigid requirement. Our algorithm
can be adapted to work as long as the number of nodes is within a bounded range
[(1− δ)n, (1+ δ)n], for a suitably small δ > 0.)

2. Churn: We say that a node u is churned out in round r if, u ∈ V r−1 but u /∈ V r . For
every r ≥ 1, |V r \ V r+1| = |V r+1 \ V r | ≤ L = εn, where L is the churn limit and
ε > 0 is a fixed constant.

3. Bounded degree expanders: Each instantaneous graph Gr at round r in a sequence
of graphs is a bounded degree expander of vertex expansion α, i.e., ∀S ⊂ V r s.t.
|S| ≤ n

2 , |�r (S)|
|S| ≥ 1 + α, where �r (S) is the set of closed neighbors of S in V r (i.e.,
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�r (S) = {u|u ∈ S} ∪ {u ∈ V r |∃v ∈ S such that (u, v) ∈ Er}) and α ∈ (0, 1] is a fixed
constant.

Our goal is to formulate a leader election problem such that whenever the network
experiences some stability, the network is able to elect a leader. In order to formalize the
notion of stability we consider, we begin with some basic characteristics of the type of
dynamic networks we consider.

2.2. Characteristics of Dynamic Networks and Known Algorithms

When a node u wants to flood a message m, it creates a pair (m, 〈condition〉)
and repeatedly broadcasts the pair to its neighbors while the 〈condition〉 is sat-
isfied. Each recipient in turn repeatedly broadcasts the pair again as long as the
〈condition〉 is satisfied.3 For example, if a node wants to send a beep message start-
ing from round r for a period of O(log n) rounds to all its other nodes, it can flood
(beep, 〈while round number ≤ r +O(log n)〉). We now need to understand the extent
to which the message is flooded, for which we need the notion of the influence set of u,
which is closely related to Lamport’s causality [22]. Formally, the influence set of a node
u starting from round r to r ′ ≥ r (denoted Influencer (u, r ′)) is defined recursively as
follows:

Influencer (u, r) = �r ({u})
Influencer (u, r ′) = �r ′(Influencer (u, r ′ − 1) ∩ V r ′ ), when r ′ > r. (1)

Informally, the influence set of u starting from round r to r ′ is the set of vertices in V r ′

that received (at some round in [r, r ′]) a message flooded from u starting at round r . Note
that u is not required to be in Influencer (u, r ′) for r ′ > r because the Influencer (u, r ′)
may be nonempty even after u is churned out. The influence set can also be defined for a
set U of nodes as follows:

Influencer (U, r ′) =
⋃

u∈U
Influencer (u, r ′). (2)

The dynamic distance between u and v starting at round r (denoted DDr (u → v)) is
the smallest δ ≥ 0, such that v ∈ Influencer (u, r + δ). We define the churn expansion
ratio as β = ε(1 + α)/α. As in [6], we assume that β is sufficiently small; in our case an
upper bound of 1/20 is sufficient. The following lemmas guarantee that the influence set
of a sufficiently large set U grows very quickly, and furthermore, such large sets cannot be
contained.

Lemma 2.1. (cf. [6]). Consider any set U ⊆ V r−1 such that |U | ≥ βn. There is a constant
δ independent of n, but dependent on ε and α such that |Influencer (U, r + δ)| ≥ n− βn.

3In explaining algorithms via pseudocode in this article, we will only state the initial flooding
with the appropriate conditioning that controls the extent to which the message is flooded. The
repeated flooding (based on the condition) will not be explicitly stated, but rather implicitly assumed.
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Lemma 2.2. (cf. [6]) Let U be any subset of V r , r ≥ 1, such that |U | ≥ βn. There is at
least one u∗ ∈ U such that for some �′ ∈ O(log n), |Influencer (u∗, r +�′)| > n− βn.

Corollary 2.3. Let S be the set of nodes in V r such that for any s ∈ S, |Influencer (s, r+
�′)| < βn. The cardinality of S is less than βn.

In this article, we design algorithms that run in cycles of � ∈ O(�′) = O(log n)
rounds. This cycle period � is chosen to be sufficiently large. For concreteness, we set
� = 2�′.

2.3. Support Estimation

Using the notions described so far, we can describe a distributed randomized algorithm
to estimate the size of a set of nodes that satisfy some condition [6] (see Algorithm 1 for
the formal pseudocode). We will repeatedly use this algorithm in our work. For simplicity
in presenting the support estimation algorithm, we assume that the algorithm is initiated in
round 1 on G1 = (V 1, E1). Suppose R nodes in V 1 are colored red. We call R the support
of the red nodes. We need most nodes in the network to be able to estimate R to within a
small error.

Algorithm 1 Algorithm to estimate the support R of red nodes when R ≥ n/2
The following pseudocode is executed at every node u.
P ∈ 	(log n) controls the precision of our estimate. Its exact value is worked out in
the proof of Theorem 2.4.

At round 1:
1: Draw P random numbers s1, s2, . . . , si , . . . , sP , each from the exponential random

distribution with rate 1.
{Each si is chosen with a precision that ensures that the smallest possible positive value
is at most 1

n	(1) ; Note that 	(log n) bits suffice.}
2: For each si , create a message mu(i) containing si and a terminating condition: has

encountered a message mv(i) with a smaller random number.
{Notice that a node u will flood exactly one message at each index i—in particular the
smallest random number encountered by node u with message index i}

3: For each i, initiate flooding of message mu(i).

For the next t = 	(log n) rounds:
4: Continue flooding messages, respecting their termination conditions.

{It is easy to see that the number of bits transmitted per round through a link is at most
O(log2 n).}

At the end of the 	(log n) rounds:
5: For each i, the node u holds a message mv(i). Let s̄u(i) be the random number contained

in mv(i).
6: s̄u←

∑
i s̄u(i)
P

.
7: Node u outputs 1/s̄u as its estimate of R. {Now that the estimation is completed, all

messages can be terminated.}
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Theorem 2.4. (from [6]). Consider an oblivious adversary and let γ be a an arbitrary
fixed constant ≥ 1. Let R̄ = max(R, n −R). By executing Algorithm 1 to estimate both
R and n − R, we can estimate R̄ to within [(1 − δ)R̄, (1 + δ)R̄] for any δ > 2β with
probability at least 1− n−γ .

2.4. Shielding in Dynamic Networks

We are now ready to introduce the notion of shielding. Informally, the term shielding
captures an adversary’s ability to hinder communication between a node u and most other
nodes in the network. There are two ways that communication can be hindered. On the one
hand, the adversary can “mute” u by limiting its influence set to be very small for a suffi-
ciently long period of time. On the other hand, the adversary can hinder communication by
disallowing most nodes to send messages to u (thus isolating them), again, for a sufficiently
long period of time.

We formally define the notion of shielding using the notion of influence sets. We say
that a node u is shielded from round r to r+P , for some P ≥ � (cf. Lemma 2.2) if at least
one of the following conditions holds.

Muted. Influencet (u, t +�) < βn for every t ∈ [r, r + P −�]. (Note that Lemma 2.1
ensures that once the influence set exceeds βn, it will soon reach n−βn. Furthermore,
it is not difficult to see that it will never decrease below n− βn.)

Isolated. For every t ∈ [r, r+P−�], there is a set X ⊆ V t of size at least n−βn nodes such
that u /∈ Influencet (X, t+�). From Lemma 2.2, |Influencet (X, t+�)| ≥ n−βn,
and therefore, u is in a small (less than βn sized) set of nodes that are not in
Influencet (X, t +�).

A node that is shielded for a sufficiently long P ∈ �(log n) rounds is simply said
to be shielded. A node that is not shielded is called an unshielded node. A leader that is
present in the network and unshielded is said to be a healthy leader. Otherwise, it is said
to be unhealthy. (We sometimes use the term health of the leader to refer to its status of
health.)

2.5. Problem Definition

Our goal is to design a leader election protocol that works despite network dynamism.
Ideally, we would like to ensure that there is a unique leader in the network at all times.
Unfortunately, the adversary, though oblivious, can ensure that the leader is churned out in
1/ε rounds. Alternatively, with constant probability the adversary can shield the leader for
arbitrary lengths of time. Intuitively, this shielding can happen due to the repeated churning
of a cut set. Thus, we require a leader election protocol that is able to self-diagnose the
health of the leader and, if necessary, reelect a new leader. In this sense, we require a
self-healing leader election protocol that runs ad infinitum.

Formally, any leader election algorithm developed should satisfy the following con-
ditions w.h.p. for some suitable constants c1 and c2 > c1.

Agreement. At any round r , leaderu �= ⊥ ∧ leaderv �= ⊥ → leaderu = leaderv

∀u, v ∈ V r . Although this condition might sound trivial, one must note that a careless
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leader election protocol might, for example, end up with two leaders: (i) a shielded old
leader and (ii) a newly elected leader. The agreement condition forbids this situation.

Stability. This condition is designed to prevent frivolous leader reelections. Intuitively, if
a node u changes its leader variable, then either u itself is shielded (and therefore
does not have reliable information about the health of the leader) or the leader has
become unhealthy. More formally, if at any round r , leaderu = v and at round r+1,
leaderu �= v then either
� node u or node v was shielded for a period of at least c1 log n rounds contained

within rounds r −O(log n) and r , or
� node v was churned out from the network between rounds r −O(log n) and r .

Timely reelection. The intention behind this condition is to ensure that an unhealthy leader
does not remain a leader for too long. More precisely, if a leader is shielded for a
period of c2 log n rounds, then, (i) the current leader must reset its leader variable to
⊥ and (ii) a new leader must be elected. (We allow the possibility that the old leader
is again reelected as the new leader, provided it has reached a healthy state again.)

Bounded reelection time T . Let r be a time such that either (i) the leader is churned out
or (ii) the leader is shielded from round r for at least c2 log n rounds. We say that
our algorithm has bounded reelection time T if, under the condition that a reasonable
number (say, n/2 for convenience) of nodes in the network are stable for a period of
time T , i.e., |⋂r ′∈[r,r+T ] V

r ′ | ≥ n/2, a new leader must have been elected sometime
between [r + 1, r + T ].

Leader Awareness. Suppose a node v sets leaderv = v in round r and remains the
leader until round r ′. Then, for every r ′′ ∈ [r, r ′], nodes in Influencer (v, r ′′) must
have set their leader variable to v by the end of round r ′′. This condition can be easily
maintained (as we do) via beep messages sent from the leader—a notion closely
related to the notion of “power supply” introduced in [2].

Validity. If some node u elects another node v as its leader in round r , then v must have
been the leader in some round in [r −O(log n), r].

3. RANDOMIZED ALGORITHM FOR DYNAMIC LEADER ELECTION

Now, we present a randomized algorithm for solving dynamic leader election on the
model described in the previous section. We also prove that our algorithm is correct and
terminates w.h.p. in O(log2 n) rounds. The goal of any algorithm solving this problem is to
elect and sustain the leader as long as it can and have most nodes in the network be aware
of the leader’s presence. Although this might be quite straightforward in many settings,
our adversarially designed sparse network model with high levels of churn poses some
unique challenges. The main difficulty stems from the adversary’s ability to shield a set
of up to βn nodes. Furthermore, the adversary can choose to release (i.e., unshield) the
shielded nodes at any point in time that suits its purpose. For example, the adversary may
lay down the network topology in such a way that the leader might be physically present
in the network but might get muted in such a way that most nodes in the network (at least
n−βn nodes to be precise) are unable to hear any messages/beeps from the leader, making
it ineffective or partially effective. One way an adversary can realize such topology is by
churning out leader’s current neighbors in every round. Suppose the nodes try to detect
such muting of the leader and attempt to reelect a new leader. Just when the nodes are
about to start the reelection process, the adversary can release the leader and, due to the
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well-connected nature of the network, about half the nodes might have heard the beep
messages. Should those nodes that heard the beep message proceed with the reelection?
Answering this question in a unified manner is crucial to ensure that the network has a
leader that is elected in agreement with most nodes in the network.

A crucial centerpiece of our algorithm is a regular beep message sent out by the
leader. We assume throughout this study that the following code is executed at every time
step. The regular beeps sent out at every time step ensures that most nodes in the network

Algorithm 2 Beeps from the leader
1: The leader (if present) initiates the flooding of a beep message with the current time stamp.
2: Every other node floods the most recently initiated beep message provided it was initiated in the

last � rounds.
3: Furthermore, whenever a node u hears a beep from a node v and leaderu �= v, it sets leaderu ←

v.

(i.e., at least n−βn nodes) are aware of the leader’s presence when the leader is unshielded.
The following lemma follows quite easily.

Lemma 3.1. The ad infinitum execution of Algorithm 2 in every round (deterministically)
ensures (i) leader awareness and (ii) validity as required in the problem definition.

When a node u does not hear beep messages for a period of � rounds, there are
two (not necessarily exclusive) possibilities. Either, (i) the leader may have been muted (or
churned out, which has the same effect as being muted), or, (ii) the node u might have been
isolated. The node u must then, in concert with rest of the nodes, decide if a reelection is
required; this is addressed in the next section.

3.1. The Framework

We now present the leader election framework (Cf. Algorithm 3) that is expected
to run in the background and keep a check on the health of the leader. The framework
is responsible for invoking the leader election protocol when the current leader is either
churned out or shielded. Note that in this distributed context, it is important for the entire
network to reach an agreement on reelecting a new leader. A naı̈ve use of the existing
agreement algorithm [6] will require 	(log2 n) rounds. The important downside to using
the existing agreement algorithm is that the leader must be shielded for �(log2 n) rounds
before the network can start taking countermeasures. To circumvent this downside, we
present a protocol that checks the health of the leader and, when the leader is shielded (or
churned out) for a period of 	(log n) rounds, ensures that most nodes in the network agree
to perform a reelection.

The leader election framework runs in cycles of length � rounds. Each cycle starts at
a round number that is a multiple of �. Thus, the start of each cycle is common knowledge
among all nodes in the network. At the start of each cycle, the nodes currently in the
network initiate the support estimation (discussed in Section 2.2) of (i) the number of nodes
(in the current round) that received a beep message in the previous cycle, (ii) the number of
nodes (in the current round) that have set their elect bit to true, and (iii) the total number
of nodes in the network in the current round. These support estimations will take 	(log n)
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rounds to complete and, in particular, will be completed by the end of the current cycle. At
that point, the leader (if present) will check for the following conditions.

1. The number of nodes that received beep messages must not be too low. If it is too low,
say, less than 3βn, then the leader resets its own leader variable because the leader has
been muted for a period of at least �′ = 	(log n) rounds in the previous cycle. Suppose
the leader is not muted; then, the leader’s beep messages should have been received by at
least βn nodes in �′ rounds, and then, by Lemma 2.1, the beep messages are guaranteed
to reach all but at most βn nodes in a further O(1) rounds.

2. Furthermore, because we are guaranteed that the total number of nodes in the network is
n, any accurate estimate of n must be close to n. Thus, if the leader’s estimate is below
some threshold, say, below n − 3βn, then the leader, w.h.p., must have been isolated.
Therefore, it again resets its own leader variable.

The rest of the nodes must follow suit and conclude that the leader is, in fact, either shielded
or churned out and then agree on a reelection. A straightforward and seemingly correct
approach would be for each node u to check if it hears recent beep messages (initiated within
the last � rounds) and decide to start the leader election protocol if no beep messages were
heard. Unfortunately, this will not work; u might not have heard the beep messages because
the adversary might have isolated u. Counting the number of nodes that received beep
messages will provide the node with some extra information. If the number of nodes that
received beep messages (denoted by beepu in Algorithm 3) is low, then, clearly, the leader
is muted. However, a single threshold will not work because each node could estimate
a different number and the adversary can ensure that some half of the nodes will decide
to reelect while the other half concludes otherwise. We, therefore, need a mechanism to
reinforce the decision to reelect. Each node u has an elect bit that indicates whether u

believes that a reelection is imminent. If the support estimation for the number of nodes
that have set their elect bit to true exceeds a large number (say n − 3βn), then we can
conclude w.h.p. that the leader has reset and the nodes actually proceed with reelection.

Lemma 3.2. Algorithm 3 (w.h.p.) guarantees the timely reelection condition required in
the leader election problem definition.

Proof. Suppose the current leader is muted for an entire cycle. Then, at the end of the
cycle, w.h.p., at least n−βn nodes would not have heard any beep in that cycle. Therefore,
in the next cycle, at least n − βn nodes will estimate beepu to fewer than 3βn w.h.p. (cf.
line number 10 in Algorithm 3) and, therefore, will set their elect bits to true. In the next
cycle, a support estimation of the number of nodes that set their elect bits to true (cf. line
number 12 in Algorithm 3) will w.h.p. lead to (i) the leader resetting its leader variable
and (ii) most (≥ n− βn) nodes entering the reelection protocol.

Lemma 3.3. Algorithm 3 guarantees the stability condition required in the leader election
problem definition w.h.p.

The proof of Lemma 3.3. is deferred to the full version of the article due to space
limitations.
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Algorithm 3 Framework for the detection of Leader’s health
1: {We describe the steps executed by the nodes in each cycle (of duration � rounds). We assume

that a new cycle starts at every round with a round number that is a multiple of �.}
2: {The steps are described from the perspective of a single arbitrary node u in the network.}
3: {These steps are assumed to be executed throughout the life of the network, even when the leader

election protocol (in Algorithm 4) is executed.}
4: {Each node has a Boolean variable elect normally set to false. Intuitively speaking, a node

sets its elect bit to true when it gathers evidence that a reelection is necessary. When the
evidence becomes overwhelming, it sets it to true and initiates the leader election protocol (in
Algorithm 4).}

At the start of the cycle:
5: Each node u initiates support estimation for the following quantities:

1. the number of nodes (in the current round) that received a beep message in the previous cycle,
2. the number of nodes (in the current round) that have set their elect bit to true.
3. the total number of nodes in the network in the current round.

At the end of the cycle:
6: {The three support estimations should be complete. Let beepu be the number of nodes that

received beeps in the previous cycle (as estimated by u). Let elects be the number of nodes that
had set their elect bit to true in the previous cycle (again, as estimated by u). Finally, let sizeu

be the estimate of the number of nodes in the network according to u.}
7: if leaderu = u ∧ (beepu ≤ 7βn ∨ sizeu ≤ n− 3βn) then
8: {u is the leader and it is shielded.}
9: leaderu ←⊥

10: else if (beepu ≤ 3βn) then
11: The node u sets its own elect bit to true.
12: else if elects ≥ n− 3βn then
13: The node u sets its own elect bit to true.
14: leaderu ←⊥
15: Start the reelection algorithm in the next round with a round number that is a multiple of 4�.
16: else
17: The node u sets its own elect bit to false.

3.2. The Leader Election Algorithm

We are now ready to describe the leader election protocol that is invoked whenever
the framework described in Algorithm 3 reaches an agreement to reelect a new leader. The
protocol is formally described in pseudocode format in Algorithm 4. This protocol works
in phases of four cycles (each requiring � rounds) called quarters, thus, each phase takes
a total of 4� rounds. Since the round numbers are assumed to be common knowledge,
we start a phase in a round number that is a multiple of 4� (cf. line number 15 of
Algorithm 3). The activities in each quarter (at a high level first) are presented along with
an ideal flow of execution. Along the way, we describe adversarial strategies designed to
derail the execution and the manner in which the algorithm ensures robustness against such
adversarial strategies.

Quarter 1 In this quarter, the nodes generate random numbers uniformly and independently
from (0, 1). The random numbers (along with ID of nodes that generated them) are flooded
with priority to smaller random numbers. The intention is for the node that generated the
smallest random number to become the leader. Note however, that the adversary can mute
close to βn nodes and release them at will. This could potentially violate the agreement
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Algorithm 4 Leader election algorithm
1: {The Algorithm operates in phases. Each phase consists of four cycles (of � rounds each) called

quarters.}
Quarter 1. (Generating and flooding random numbers)

2: At the start of the quarter, each node u generates a random number ru ∈ (0, 1) (with
sufficient number of bits to ensure uniqueness w.h.p.) and initiates a flooded message
M(u) = ((u, ru), 〈ru is the smallest random number seen so far in an M(·) message〉 ∨
〈we have reached the end of the second quarter.〉).

3: {The intention is to let most nodes know the ID of the node that generated the smallest ru.}
4: At the end of the quarter, each node u sets Winneru variable to the message with the smallest

random number that entered u. {Note that the flooding continues in the second quarter.}
Quarter 2. (Picking O(log n) random numbers for support estimation.)

5: {All steps in this quarter are initiated at the start of the quarter.}
6: At the start of the quarter, each node u chooses itself with probability log n

n
. {Note that by a simple

application of Chernoff’s bound, we can ensure that at most O(log n) nodes will be selected
w.h.p.}

7: if u chose itself then
8: Node u initiates a flooded message C(u) = (Winneru,

〈While it is still the second quarter〉).
Quarter 3. (Estimating support of various parameters.)

9: {All steps in this quarter are initiated at the start of the quarter.}
10: Initiate the support of the number of nodes that received the long beep message. {Cf. line

number 26 for source of these long beeps from the previous phase.}
11: Initiate estimation of the number of nodes in the network.
12: Let M∗ be the M(·) message with the smallest random number that flooded over u until the end

of the second quarter.
13: Let min be the ID in M∗.
14: if One of the C(·) messages received by u contains a Winner whose ID equals min then
15: Initiate support estimation procedure for the number of nodes that received M∗ as their M(·)

message with the smallest random number.
Quarter 4. (Leader Election)
16: {The following steps are executed at the start of the quarter.}
17: {w.h.p., only up to O(log n) different supports for various M(·) messages will be estimated.

Among them, let max be the ID of the M(·) message with the highest support (as estimated by
u). }

18: if the estimated number of nodes in the network is fewer than n− 3βn, then
19: leaderu ←⊥. {Node u is isolated. Cf. stability condition in the problem definition.}
20: else if the support of the long beep message is at least n− 3βn, then
21: Do nothing. {There seems to be an unmuted leader.}
22: {At most one node u generated the random number with sufficient support and that node alone

may enter the following “else if” conditional block.}
23: else if the support of max is at least n− 3βn and max = u, then
24: leaderu ← u.
25: Initiate regular flooded beep messages in every round (as required in Algorithm 2).
26: In addition, u initiates the flooding of a special long beep message with the condition

〈flood for next 3� rounds〉.

condition in our problem statement — if close to βn nodes are released close to the end of
the first quarter, then with probability close to β, the smallest random number would have
been heard by only about half the nodes. To counter this, we will employ support estimation
(in a subsequent quarter) to count, for various random numbers that were generated, the
number of nodes that think each random number is the smallest. For this purpose, each
node u has a variable Winneru, which is the smallest random number (according to u at
the end of the first quarter) along with the node that generated it.
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Naı̈vely implemented, we will require O(n) difference support estimation algorithms
to run simultaneously because we will execute one support estimation per random number.
This is unacceptable because each support estimation execution will require a message
complexity of O(log2 n) and the overall message complexity will reach an unscalable
O(n log2 n). Therefore, we need a mechanism (implemented in the second quarter) to
select a few random numbers on which we perform support estimation, while ensuring that
one of the selected random numbers will be the smallest (assuming the smallest actually
flooded to most of the network).

Quarter 2 To select a few random numbers on which we perform support estimation, we
subsample O(log n) nodes in the start of the second quarter and these subsampled nodes
flood their Winner variables. The intention is that support estimation will be performed
only on those O(log n) (w.h.p) random numbers that are contained in the flooded Winneru

messages. Notice that if the smallest random number has high support (say, at least n−3βn),
then, w.h.p., the smallest random number will be included among the O(log n) support
estimations.

Quarter 3 Herein, we perform the following estimations.

1. Firstly, we initiate estimation of the support of (up to O(log n) w.h.p.) chosen random
numbers.

2. We also estimate the total number of nodes in the network so that the leader can test
whether the estimation is reasonably close to n, which is the true number of nodes in
the network. If not, then the leader can, w.h.p., conclude that it is isolated and therefore
reset itself; this check is done in the fourth quarter.

3. In addition, we estimate the support of the number of nodes that have heard a special
form of beep message called long beep initiated each time a new leader is elected (in
the fourth quarter). This is to ensure that if a leader had been elected in the previous
phase and his long beep is heard in the current phase by many nodes, then a new leader
should not be elected in the current phase.

Quarter 4 The decisions made in the quarter are based on the support estimations that
were performed in the third quarter. First, if a node’s estimate of the total number of nodes
in the network is sufficiently less than n, then, it concludes that it is isolated. Therefore, to
avoid violating the agreement condition (i.e., in case a new leader is elected and the node
is unaware of it because of its isolation), it resets its leader variable. The rest of the fourth
quarter is executed by at most one node u that generated the random number whose support
(as estimated by u itself) is at least n − 3βn. (Clearly, w.h.p. there can only be one such
node because two or more random numbers cannot be estimated (albeit by different nodes)
to each have n− 3βn support.) The node u first ensures that any leader from the previous
phase (if there had been one) has been muted and would have reset itself — this check is
performed by estimating the support of the long beep messages from the previous phase.
Thus, when the node u sets its leaderu to itself, it has confirmed (w.h.p.) that there is
no other leader in the network and its own random number has had the highest support,
it sets its leaderu to itself and starts beeping. Finally, node u initiates the flooding of a
one-time long beep message for a period of 3� rounds. To see the need for the long beep
notice that there may be a lag of some O(log n) rounds from the time a leader is elected
to the time the other nodes in the network set their leader variables; sometimes this lag
might be very short and other times a bit longer. Therefore, it is possible that some nodes
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might stop the leader election protocol while others are still trying to elect a new leader.
Therefore, a newly elected leader sends out a long beep message to avoid a reelection in
the very next phase. Even if some nodes did start the reelection process, if the support of
the long beep messages is sufficiently large, no new leader will be elected.

The following two lemmas will lead to the final result stated in Theorem 3.6.

Lemma 3.4. The framework in Algorithm 3 and the leader election protocol in Algorithm 4
together guarantee the agreement condition in the problem definition w.h.p.

Proof. Notice that when at least one node decides to start the reelection process in Algo-
rithm 3, w.h.p., the leader has reset its leader variable (cf. proof of Lemma 3.3.) Therefore,
most nodes (i.e., at least n− βn nodes) will decide to start reelection protocol in the next
cycle. Because this is the only way that the network will enter the leader election protocol,
we can assume that there will be no leader in the network when the leader election protocol
starts. Subsequently, when a leader is elected, care is taken to ensure that the random num-
ber generated by the candidate leader has an estimated support of n− 3βn nodes, implying
that, w.h.p., no other random number can have a support sufficient for some other node to
elect itself leader. Once the leader is elected, it issues a long beep message to ensure that
the next leader election phase does not lead to a new leader. Unless the leader is shielded,
its beeps will be heard and the framework will take over. However, if the leader is shielded,
then it will reset its leader variable (cf. line number 9 in Algorithm 3) and a new execution
of the leader election protocol will be initiated.

Lemma 3.5. The reelection time T (defined in the bounded reelection time requirement
stated in the problem definition) is upper bounded by O(log2 n) rounds w.h.p.

Proof. In each phase of the reelection protocol, the nodes generate random numbers and
flood them with the intention of electing the node that generated the smallest random
number u∗ as the leader. Clearly u∗ is equally likely to be any node in the first round of
the phase and the oblivious adversary is unaware of its identity. Therefore, with constant
probability, u∗ is unshielded for a period of 4� rounds. It follows, therefore, that in O(log n)
phases, a leader is elected w.h.p.

Based on the list of lemmas proved, the following theorem follows.

Theorem 3.6. Algorithm 2, Algorithm 3, and Algorithm 4 together solve the leader
election problem as we have formulated and ensure that a shielded or churned out leader
can be detected in O(log n) rounds and a new leader can be elected within O(log2 n)
rounds, provided that a reasonable fraction (say n/2) nodes are stable in the network.

4. CONCLUSION AND FUTURE WORK

We have provided a leader election framework and protocol that elects and maintains
a leader in a highly dynamic network, provided a fraction of the nodes are stable. For
simplicity, we have thus far assumed that half the nodes in the network must be stable for
our result to hold. One can easily see that our results will extend without any asymptotic
penalties even if the size of the stable set of nodes is much smaller, say, at least 4βn.
Furthermore, for simplicity in exposition, we have assumed that the network has a stable
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size of n nodes in any round. We note that this is not a rigid requirement. Our algorithm
can be easily modified to work under the milder requirement that the number of nodes in
the network lie in [(1− δ)n, (1+ δ)n] for some constant δ ≥ 0.

We leave a number of questions open. In the future, we hope to consider models in
which there is far less stability. In particular, the question we leave open is whether a leader
election protocol can be designed when only one node is stable and unshielded. Finally, it
will be interesting to understand the feasibility of leader election in such highly dynamic
networks when Byzantine nodes are present.
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