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Abstract

This paper investigates the ability of the largest producer in an electricity market
to manipulate both the electricity and emission allowances markets to its advantage. A
Stackelberg game to analyze this situation is constructed in which the largest firm plays
the role of the leader, while the medium-sized firms are treated as Cournot followers
with price-taking fringes that behave competitively in both markets. Since there is
no explicit representation of the best-reply function for each follower, this Stackelberg
game is formulated as a large-scale mathematical program with equilibrium constraints.
The best-reply functions are implicitly represented by a set of nonlinear complementar-
ity conditions. Analysis of the computed solution for the Pennsylvania - New Jersey
- Maryland electricity market shows that the leader can gain substantial profits by
withholding allowances and driving up NOx allowance costs for rival producers. The
allowances price is higher than the corresponding price in the Nash-Cournot case, al-
though the electricity prices are essentially the same.

1 Introduction

Market power is defined as the ability of players in a market – producers and consumers,
for example – to unilaterally or collectively maintain prices above the competitive level.
The exercise of market power can result in price distortions, production inefficiencies, and
a redistribution of income among consumers and producers. The electricity market is es-
pecially vulnerable to the exercise of market power by the producers for three reasons.
First, short-term demands for electricity are very inelastic, largely because consumers are
shielded from fluctuations in real-time prices. Second, network limitations lead to market
separation if transmission lines are congested. Third, supply curves steepen when output is
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near capacity, implying that the marginal cost increases drastically in segments where the
electricity price is determined during peak periods.

Pollution control regulation can significantly increase production costs in electricity
markets. The NOx allowances program in the eastern United States, for example, is a cap-
and-trade program administered by the U.S. Environmental Protection Agency (USEPA).
The amount of NOx released into the atmosphere under this program is controlled by dis-
tributing allowances to the producers that must be redeemed to cover actual emissions.
These allowances can be traded in a secondary market or banked for future use. The theo-
retical efficiency of cap-and-trade programs is well documented in the economics literature.
Under certain assumptions, the absence of market power, for example, the programs achieve
predetermined emission reductions at least cost [24, 25, 29]. However, market power can
interfere with the promised efficiency, yielding higher costs for both emission control and
commodity production. An example of such market power would be the ability of producers
to use allowances as a vehicle to affect the costs of rivals. The consequences of exercising
market power can be complicated because of the interaction between the electricity and
allowances markets. Empirical analysis of the 2000–01 California power crisis, for exam-
ple, suggests that in addition to demand growth, a shortage of hydropower, and excessive
reliance on spot markets, some price increases were caused by a large producer that inten-
tionally consumed more allowances than necessary, raising the costs for rival producers that
were short of allowances [15].

Sartzetakis investigated the incentive for a producer to raise the costs of its rivals by
withholding allowances in a simple market model [26]. The conclusion reached was that
competition in the commodity market can be weakened. In a more recent analysis of a
large-scale market with thousands of variables, Chen and Hobbs [2] used a heuristic solu-
tion algorithm to explore the profitability of a dominant producer that expands generation,
overconsumes allowances, and suppresses the output of the other producers, where the pro-
ducers were assumed to follow a Cournot strategy in the energy market. The analysis failed
to identify the optimal joint emissions and electricity strategy for the dominant producer,
possibly underestimating the magnitude of its market power. In this paper, we formu-
late a Stackelberg game to investigate the consequences of exercising market power in an
electricity market with a secondary emissions market.

The Stackelberg game was first proposed in 1934, and the formulation is especially
appropriate for studying a game with a sequential move or a leader-follower relationship.
Examples can be found in [10, 11, 30]. The standard backward induction procedure to solve
such games initially fixes the decisions made by the leader in the first stage and then derives
the best response of each follower. The optimal decisions for the leader are then found by
solving an optimization problem with constraints for the derived response of the followers.
For applications with capacity constraints, the optimality conditions for the followers must
be written as a system of complementarity conditions, leading to a mathematical program
with equilibrium constraints (MPEC).

A number of practical Stackelberg problems, including discrete transit planning and fa-
cility location and production, have been modeled as MPECs [18]. Since the feasible region
is nonconvex, a guaranteed global solution cannot be found by standard algorithms even
if the objective function is strongly convex. Moreover, solving MPECs is difficult because
any smooth reformulation of the complementarity constraints violates the Mangasarian-

2



Fromovitz constraint qualification, a key ingredient for stability. Nevertheless, recent devel-
opments indicate that the sequential quadratic programming approach can compute local
stationary points to MPECs when using a smooth reformulation of the complementarity
constraints with only mild assumptions [7, 8, 16, 17]. These developments suggest that an
MPEC can be a numerically tractable tool to solve large-scale Stackelberg games. This
approach is taken here.

Specifically, we construct a Stackelberg game for the Pennsylvania - New Jersey - Mary-
land Interconnection (PJM) electricity market. This model differs from other oligopolis-
tic models in the following ways. First, interaction between the emissions and electricity
markets is explicitly represented in the model. In particular, the allowances price is en-
dogenously determined, as opposed to being an exogenous quantity as in other models.
Second, the model is developed from the bottom up and is based on detailed engineering
data for a power system with 14 nodes, 18 arcs, and 5 periods. The data incorporated
in the model includes heat rates, emission rates, fuel costs, location, and ownership for
each generator. This approach allows for a more realistic estimation of the market power
associated with the location of a generator in the network. Moreover, the power flow in
the network is represented by a linearized direct-current (DC) load flow model in which
the Kirchhoff current and voltage laws account for quadratic transmission losses. Although
some small alternating-current oligopolistic models have been formulated with transmis-
sion losses, quadratic transmission losses have not been previously considered in large-scale
oligopolistic models.

The remainder of this paper is organized as follows. Section 2 provides a brief back-
ground regarding the PJM power market and the USEPA NOx budget program. Section 3
presents the mathematical formulation of the Stackelberg game as an MPEC. Section 4
describes a two-phase strategy used to solve the resulting large-scale MPEC. Section 5 ana-
lyzes the solutions found for the model. Section 6 summarizes our work and briefly discusses
future research.

2 Background

The PJM began operating as an independent system operator (ISO) in 1998. It runs
day-ahead, hourly-ahead, and spot energy markets with an hourly load that ranged from
20,000 MW to 49,000 MW in 2000. Nuclear and coal plants served this base load, accounting
for 57.9% of the total generation capacity. The capacity shares of oil, gas, and hydro plants
were 20.8%, 18%, and 3.3%, respectively. Six large generating companies each own between
6% and 19% of the generating capacity.

The market is moderately concentrated, with an average hourly Hirschman-Herfindahl
Index (HHI) of 0.154 [23]. The HHI is the sum of the squared market shares. A market with
an HHI over 0.18 is considered concentrated by U.S. antitrust authorities [31]. Although
the PJM market monitor reports that prices have generally been near competitive levels,
some market power has apparently been experienced in the installed capacity market. Fur-
thermore, other studies indicate that the market concentration is high enough to present a
risk of market power being exercised [13, 20].

The PJM transmission network used in the model is spatially represented by 14 nodes,
each representing one power control area or portion thereof, and 18 transmission lines.
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Figure 1: Network Topology of Model

The network topology is shown in Figure 1. The highest average load among the nodes
is 5,300 MW for Public Service Electric and Gas Company (PSEG), and the lowest is
1,310 MW for Atlantic Electric Company (AE). Net imports from other regions averaged
800 MW during the ozone season of 2000. For simplicity, imports are fixed in the model.
Power transmission among the nodes in the network is represented by a DC load flow with
quadratic transmission losses.

The Ozone Transport Commission (OTC) NOx budget program introduced in 1999 is
in effect from May 1 to September 30 of every year. The goal of this program is to reduce
summer NOx emissions throughout the region in order to help the northeastern states
attain the National Ambient Air Quality Standard for ground-level ozone. The program
has evolved to encompass a larger geographic scope, from an initial nine states to nineteen
states in 2004 [4]. The mandated NOx reductions took effect in two phases. The first phase
began May 1, 1999, when the program required affected facilities to cut total emission to
219,000 tons, less than half of the 1990 baseline emission of 490,000 tons. The emissions
cap was tightened to 143,000 tons in 2003 for the second phase, a reduction of 70%.

The OTC NOx program is a cap-and-trade program. Every electric generating unit
with a rated capacity higher than 25 MW and large industrial process boilers and refineries
are subject to this program. The tradable NOx emission allowances are initially allocated
to affected facility owners according to their historical seasonal heat inputs multiplied by a
target NOx emission rate. The participants in the program show compliance by redeeming
enough allowances to cover their emissions. The allowance owners can sell excess allowances
or bank them for future use. A total of 470 individual sources affiliated with 112 distinct
organizations were in the program in 1999. Approximately 90% of NOx emissions covered
by the program are from power generators. More than 70% of generator summer capacity
for the PJM market comes under the NOx budget program, including 422 generators. Non-
power sources of NOx emission are not included in the model because of their small size
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Table 1: Sets and Indices

f, g ∈ F Generating firm
F c(or F p) ⊂ F Set of Cournot (or pricing-taking) firms, F c ∩ F p = ∅

fs ∈ F Stackelberg leader firm, fs ∩ F c = ∅, fs ∩ F p = ∅, fs ∪ F c ∪ F p = F

h ∈ H Generating unit
h ∈ HOTC Generating unit subject to NOx cap
H(i, f) ⊂ H Set of units at node i owned by firm f

HOTC(i, f) ⊂ H Set of units at node i owned by firm f subject to NOx cap
i, j ∈ I Nodes in the network
j ∈ J(i) Node j adjacent to node i (directly connected via a single arc)
k ∈ K Loop for Kirchhoff voltage law in linearized DC model
t ∈ T Period
(i, j) ∈ v(k) Set of arcs associated with loop k. These are ordered: for

instance, if loop k = 1 connects nodes 3 → 7 → 4 → 3 in
that order, then v(k = 1) ! {(3, 7); (7, 4); (4, 3)}.

and because the power industry is the focus of this paper.
The power generators are also subject to the national Clean Air Act SO2 cap-and-trade

program. Because the national market is so large, these costs are treated exogenously by
including a SO2 allowances price of $140/ton in the production costs.

Even though the NOx budget program covers a region larger than the PJM market,
the use and sales of allowances are modeled only within the PJM market. Therefore, the
results may overstate the extent to which market power can be exercised in the NOx market
because the model disregards trading outside the PJM market. Furthermore, concentration
in the NOx market may also be overstated. However, the results illustrate the potential
interactions between electricity and allowances markets in the presence of market power.

3 Model Statement

The PJM electricity market model builds on the transmission-constrained Cournot models
of Hobbs [14] and Chen and Hobbs [2]. These models are generalized to allow for Stack-
elberg leader-follower relationships. The sets and indices, parameters, and variables used
in the model are given in Tables 1–3, respectively. Parameters and sets are denoted by
capital letters, and variables and multipliers are denoted by lower-case letters throughout.
Complementarity is indicated by a ⊥ sign between two quantities; 0 ≤ x ⊥ y ≥ 0 means
that x ≥ 0, y ≥ 0, and xT y = 0.

The leader in the Stackelberg game, usually the largest producer, maximizes its profit
subject to capacity constraints and subject to the condition that the followers act optimally
given the strategy chosen by the leader. In this way, the Stackelberg game can be viewed as
a general bilevel optimization problem. If the lower-level optimization problems are convex
and satisfy a constraint qualification, then the optimization problems can be replaced by
their first-order optimality conditions. This substitution leads to an MPEC.

The remainder of this section is organized as follows. We first develop a collection of
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Table 2: Parameters

B t Block width of load duration curve in period t (hours/year)
C fih Marginal cost for unit h of firm f at node i ($/MWh)
E fih Emission rate for unit h of firm f at node i (tons/MWh)
Lij Resistant loss coefficient associated with arc (i,j)
Nf Number of allowances initially owned by generating firm f (tons/year)
P0

it Vertical intercept of demand curve at node i in period t ($/MWh)
Q0

it Horizontal intercept of demand curve at node i in period t (MW)
Rij Reactance associated with arc (i,j)
T ij Thermal limit of transmission arc (i,j) (MW)
X fih Derated production capacity of plant h of firm f at node i (MW)

optimization problems and market-clearing conditions for a Nash-Cournot game for the
electricity market with a fixed amount of NOx emissions allowances withheld. We then
give the Stackelberg game as an MPEC and derive important theoretical properties of this
MPEC.

3.1 The Nash-Cournot Game

The Nash-Cournot game has four types of players: generating firms that decide the amount
of power produced; an independent service operator that decides how the power is routed
through the transmission network; an arbitrager that exploits price inconsistencies to make
a profit; and markets that determine the power price, allowances price, and transmission
charges. The power price is a function of the quantity consumed and is derived from the
inverse demand curve:

pE
it = P 0

it −
P 0

it

Q0
it

oit ∀i, t.

A sales balance must be maintained at each node in each period, so the energy sold by the
producers and arbitragers equals the energy purchased by the ISO and consumers:

∑

f

sfit + ait = qit + oit ∀i, t. (1)

Therefore, oit can be eliminated to yield the inverse demand curve used in the model:

pE
it = P 0

it −
P 0

it

Q0
it

(

∑

g

sgit − qit + ait

)

∀i, t. (2)

We next describe the optimization problems solved by each player and the first-order
optimality conditions. The variables in parentheses to the right of each constraint are the
dual multipliers used when constructing the first-order conditions.

3.1.1 Power Generators

Each generating firm maximizes its individual profit, revenue minus costs, by choosing sales
sfit and output levels xfiht in each period subject to capacity and energy balance constraints.
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Table 3: Variables

ait Power purchased (-) or sold (+) by arbitrager at node i in period t (MW)
nW Number of allowances withheld and either consumed or sold by leader (tons)
oit Power consumed by consumers at node i in period t (MW)
pE

it Power price at node i in period t ($/MWh)
pH

t Power price at arbitrary hub (node PENEC) ($/MWh)
pN NOx allowances price ($/ton)
qit Power purchased by ISO at node i in period t to make up resistant losses (MW)
sfit Power sold by firm f at node i in period t (MW)
tijt Power flow from node i to node j in period t (MW)
wit Wheeling charges for delivering power from hub to node i ($/MWh)
xfiht Power output by unit h of firm f at node i in period t (MW)
yit Power delivered from hub to node i in period t (MW)
ρfiht Dual variable associated with capacity constraints for generators
θft Dual variable associated with energy sale/generation balance
γit Dual variable associated with Kirchhoff current law
τkt Dual variable associated with Kirchhoff voltage law
δt Dual variable associated with net flow balance
λkt Dual variable associated with upper limit on power flow

The generators are divided into two groups: first, Cournot players that can influence the
power prices and, indirectly, the NOx allowances prices and, second, the price-taking fringe
players that view the power prices as exogenous quantities. The large producers in the model
are designated as Cournot players, while the small producers are price-taking players.

Each Cournot generator f ∈ F c solves the following optimization problem:

max
sfit≥0, xfiht≥0



















∑

i,t

Bt

(

P 0
it −

P 0
it

Q0
it

(

∑

g
sgit − qit + ait

)

− wit

)

sfit

−
∑

i,h∈H(i,f),t
Bt (Cfih − wit) xfiht

− pN

(

∑

i,h∈HOTC(i,f),t

BtEfihxfiht − Nf

)



















subject to
∑

i

Btsfit =
∑

i,h∈H(i,f)
Btxfiht ∀t (θft)

xfiht ≤ Xfih ∀i, h ∈ H(i, f), t (ρfiht),

(3)

where the allowances price pN , the sales levels s−f for the other generators, and the trans-
mission charges wit are treated as exogenous quantities by firm f .

The revenue per megawatt-hour for providing electricity to consumers at node i is

P 0
it −

P 0
it

Q0
it

(

∑

g

sgit − qit + ait

)

− wit. (4)
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This quantity includes the price the customers are willing to pay for the energy supplied
minus the transmission charges paid to the ISO for sending the energy from the hub to
the customers. A price-taking firm replaces (4) with pE

it − wit. That is, the prices pE
it are

exogenously determined by (2) for the price-taking fringe. The cost of producing electricity
per megawatt-hour for unit i is Cfit−wit, where −wit is the price charged by the ISO to send
the power from the generator to the hub. The number of tradable allowances purchased
(positive) or sold (negative) over the compliance period is

∑

i,h∈HOTC(i,f),t

BtEfihxfiht − Nf .

In addition to nonnegativity constraints, the total power generation and sales have to bal-
ance in each period, and the output level for each generator can be no more than the derated
capacity.

Lemma 3.1 The optimization problem (3) solved by each generator has the following prop-
erties:

1. If producer f is a price taker, then the optimization problem has a linear objective
function in the decision variables and linear constraints.

2. If producer f is a Cournot player and P 0
it, Q0

it and Bt are positive, then the optimiza-
tion problem has a concave quadratic objective function in the decision variables and
linear constraints.

Proof. Property 1 follows from the fact that (4) is replaced by exogenous pE
it −wit for price

takers.
Property 2 follows from writing the first term in the objective function as

∑

i,t



P 0
itsfit −

P 0
it

Q0
it



s2
fit +





∑

g $=f

sgit − qit + ait



 sfit



 − witsfit



 Bt,

which is a concave quadratic function in sfit for positive P 0
it, Q0

it and Bt. "

Lemma 3.1 implies that the first-order optimality conditions for (3) are necessary and
sufficient. These conditions are simplified to produce the equilibrium constraints for each
generator as follows. The first condition states that power is generated only if the marginal
revenue equals marginal cost:

0 ≤ sfit ⊥ −pE
it +

P 0
it

Q0
it
sijt + wit + θft ≥ 0 ∀f ∈ F c, i, t

0 ≤ sfit ⊥ −pE
it + wit + θft ≥ 0 ∀f ∈ F p, i, t.

(5)

The first-order conditions associated with xfiht take the form

0 ≤ xfiht ⊥ Cfih − wit + pNEfih − θft + ρfiht ≥ 0 ∀f ,= fs, i, h ∈ HOTC(i, f), t
0 ≤ xfiht ⊥ Cfih − wit − θft + ρfiht ≥ 0 ∀f ,= fs, i, h ,∈ HOTC(i, f), t.

(6)
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The next constraint states that power generation and sales must balance. The constraint
can be written equivalently as

∑

i,h∈H(i,f)
xfiht =

∑

i

sfit ∀f ,= fs, t (7)

because Bt > 0 for each t. The final constraint is that generation must not exceed capacity:

0 ≤ ρfiht ⊥ −xfiht + Xfih ≥ 0 ∀f ,= fs, i, h ∈ H(i, f), t. (8)

3.1.2 Independent System Operator

The independent system operator determines the flows in the network to maximize the value
received by the users of the network. Because transmission losses represent a significant
cost to the overall system, the ISO chooses services that maximize the value provided minus
the cost to make up power for losses:

max
yit, qit≥0, tijt≥0

∑

i,t

Bt

(

wityit − pE
itqit

)

subject to yit +
∑

j∈J(i)

(

tijt − tjit + Ljit
2
jit

)

≤ qit ∀i, t (γit)

∑

(i,j)∈v(k)
Rij(tijt − tjit) = 0 ∀k, (i, j) ∈ v(k), t (τkt)

tijt ≤ Tij ∀i, j ∈ J(i), t (λijt)
∑

i

yit = 0 ∀t (δt),

(9)

where the transmission price wit and the energy price pE
it are exogenous quantities from

the point of view of the ISO. The analogues to the Kirchhoff current and voltage laws are
explicitly expressed in the first two constraints (see Scheweppe et al. [28], Appendix A), as
opposed to using power transfer and distribution factors in the no-loss case [2]. The third
constraint accounts for capacities on the transmission lines. The final constraint states that
the total amount of power delivered by the hub (yit positive) equals the amount of power
received by the hub (yit negative).

Lemma 3.2 For nonnegative Lij, the optimization problem (9) has a linear objective func-
tion and convex constraints.

Proof. The only nonlinear expression in the optimization problem is the term
∑

j∈J(i)

Ljit
2
jit

in the Kirchhoff current law. Since this expression is convex for nonnegative Lji, it follows
that the constraints form a convex set. "

The first-order conditions for (9) are sufficient by Lemma 3.2. After simplification, these
conditions for the power transferred from the hub to node i and the power purchased from
node i are

−Btwit + γit + δt = 0 ∀i, t

0 ≤ qit ⊥ Btp
E
it − γit ≥ 0 ∀i, t.

(10)
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The conditions for the transmission variables state that if flow is positive, then the difference
between the power prices at two connected nodes adjusted for losses, equals the sum of the
relevant dual variables:

0 ≤ tijt ⊥ γit + (2Lijtijt − 1) γjt

+
∑

k|(i,j)∈v(k)
Rijτkt −

∑

k|(j,i)∈v(k)
Rjiτkt + λijt ≥ 0 ∀i, j ∈ J(i), t. (11)

The notation k|(i, j) ∈ v(k) indicates the set of loops in which arc (i, j) is a member.
The next constraints are the linearized DC analogue to the Kirchhoff current and voltage

laws:
0 ≤ γit ⊥ qit − yit −

∑

j∈J(i)

(

tijt − tjit + Ljit
2
jit

)

≥ 0 ∀i, t

∑

(i,j)∈v(k) Rij(tjit − tijt) = 0 ∀k, t.
(12)

Capacity constraints are imposed with the condition

0 ≤ λijt ⊥ −tijt + Tij ≥ 0 ∀i, j ∈ J(i), t. (13)

The final constraint is the conservation of the power received and delivered:

−
∑

i

yit = 0 ∀t. (14)

3.1.3 Arbitrager

The arbitrager exploits price differentials among different nodes to buy power from low-
price nodes and sell it at high-price nodes to make a profit. This player is assumed to have
perfect knowledge of the equilibrium power prices. An exogenous arbitrager formulation is
adopted in which an aggregated price-taking agent represents the multiple arbitragers in
the market [22]. Therefore, the arbitrager solves the optimization problem

max
ait

∑

i,t

Bt(pE
it − wit)ait

subject to
∑

i

Btait = 0 ∀t (pH
t ),

(15)

where the transmission price wit and the energy price pE
it are exogenous quantities.

Lemma 3.3 The optimization problem (15) is a linear program.

After simplification, the optimality conditions for this problem state that the difference
in power price between node i and the hub is the wheeling charge of delivering power from
the hub to node i:

−pE
it + wit + pH

t = 0 ∀i, t, (16)

and the condition that the power bought equals the power sold:

−
∑

i

ait = 0 ∀t. (17)
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Table 4: Summary of Stackelberg Game MPEC Model

Type Description Equation
Objective Leader Problem (21)
Constraints Energy Prices (2)

Follower Generators (5)–(8)
Follower ISO (10)–(13)
Follower Arbitrager (16)–(17)
Market Clearing (18)–(19)
Hub Prices (20)

3.1.4 Market-Clearing Conditions

The model includes two sets of market-clearing conditions. The first is a power balance
condition at each node stating that the power delivered by the ISO to a node equals the
physical consumption, including losses, minus the generation:

yit = qit + oit −
∑

f,i,h∈H(i,f)
xfiht ∀i, t.

Using (1), we can restate this equation as follows: the physical power delivered to a node
by the ISO equals the sales by the firms and arbitragers minus generation,

yit =
∑

f

sfit + ait −
∑

f,i,h∈H(i,f)
xfiht ∀i, t. (18)

The second set is a complementarity condition for the NOx allowances prices. If the demand
for allowances equals the available supply, then the price can be positive; otherwise, the price
is zero:

0 ≤ pN ⊥
∑

f

Nf −
∑

f,i,h∈HOTC(i,f),t

BtxfihtEfih − nW ≥ 0 ∀i, t, (19)

where nW is an exogenous quantity for the amount of allowances withheld from the emissions
market by the Stackelberg leader.

3.1.5 Model Degeneracy

The Nash-Cournot model obtained by combining all the optimality conditions, market clear-
ing conditions, and energy price constraints is degenerate because (7), (17), and (18) imply
that (14) is always satisfied at any feasible point. Hence, constraint (14) is dropped from
the model, and one additional condition is added to set the power price at the hub node,
PENEC:

pH
t = pE

PENEC,t ∀t. (20)

The Nash-Cournot game then consists of the conditions (2), (5)–(8), (10)–(13), and
(16)–(20). This model has the same number of variables as equations and complementarity
conditions.

11



3.2 The Stackelberg Model

The Stackelberg leader maximizes profit, revenue minus costs, from its participation in
the power and NOx allowances markets by selecting an output level and the number of
allowances to withhold given the responses of the followers:

max
sfit≥0, xfiht≥0, nW≥0

















∑

i,t

Bt

(

pE
it − wit

)

sfit

−
∑

i,h∈H(i,f),t
Bt (Cfih − wit)xfiht

− pN

(

∑

i,h∈HOTC(i,f),t

BtEfihxfiht − Nf + nW

)

















subject to
∑

i,h∈H(i,f)
xfiht =

∑

i

sfit ∀t

xfiht ≤ Xfih ∀i, h ∈ H(i, f), t,

(21)

along with the solution of the Nash-Cournot game for the rest of the market, including
constraints for the price of energy (2); the responses of the generators (5)–(8), independent
service operator (10)–(13), and arbitrager (16)–(17); the market clearing conditions (18)–
(19); and the price constraint for the hub (20). This MPEC model is summarized in Table 4.
From Lemmas 3.1–3.3, the following important result is obtained.

Theorem 3.4 At any feasible point of the MPEC defined in Table 4, the response of each
follower is a global optimum to its optimization problem.

Proof. The proof follows from the convexity of the optimization problems solved by each
of the followers. Therefore, the first-order optimality conditions are sufficient for each of
the followers. "

The resulting large-scale MPEC was implemented in the AMPL modeling language [9],
which provides access to a variety of solvers and has facilities for exchanging information
between solvers. The model has approximately 20,000 variables and 10,000 constraints, is
highly nonlinear, and is relatively unstructured, with many different types of complemen-
tarity constraints. The complete AMPL model is available at http://www.mcs.anl.gov/

~tmunson/models/electric-mpec.zip.

4 Solution Methodology

The generic MPEC is to compute a solution to the optimization problem

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0
0 ≤ x1 ⊥ x2 ≥ 0,

(22)

where x = (x0, x1, x2) is a decomposition of the problem variables and slacks. This problem
is reformulated as a nonlinear program by converting the complementarity condition into a
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nonlinear inequality. The reformulation leads to the optimization problem

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0
xT

1 x2 ≤ 0
x1, x2 ≥ 0.

(23)

The nonlinear program (23) violates the Mangasarian-Fromovitz constraint qualification at
any feasible point for the optimization problem [27]. The failure of this constraint qualifi-
cation has important negative numerical implications: the multiplier set is unbounded, the
active constraint normals are linearly dependent, and a linearization of (23) can become in-
consistent arbitrarily close to a solution to the optimization problem [7]. However, Anitescu
[1] shows that a sequential quadratic programming method with an '1 penalty formulation
of the complementarity error xT

1 x2 converges locally. Fletcher et al. [7] prove that a se-
quential quadratic programming method converges quadratically near strongly stationary
points. This quadratic rate of convergence is also observed in practice [8].

Two sequential quadratic programming algorithms, SNOPT [12] and FILTER [6], were
applied to the reformulated nonlinear program for the PJM model. These solvers were un-
able to obtain a feasible solution and instead converged to a local minimum of the constraint
violation. This negative result motivated a two-phase solution methodology.

The first phase solves a square nonlinear complementarity problem to compute a feasible
point for the MPEC constraints. This complementarity problem is constructed from the
Stackelberg game of Section 3 by recasting the leader as a Cournot follower and fixing the
NOx withholding by setting nW = 0. The nonlinear complementarity problem is solved
by applying the PATH algorithm [3, 5], a generalized Newton method that solves a linear
complementarity problem to compute the direction.

The second phase supplies this feasible starting point to one of the nonlinear program-
ming solvers, which computes an optimal solution to the original MPEC. The reformula-
tion of the MPEC used does not lump all complementarity constraints together as in (23).
Rather, groups of complementarity constraints corresponding to the different equations are
combined. This approach improves the scaling of the model because unbounded multipliers
affect fewer variables and constraints.

No single nonlinear programming solver could solve the Stackelberg game even from
the feasible starting point provided by the feasibility phase. Instead, the solvers converged
to infeasible points and to limit points where the algorithms could not make any progress
because of numerical difficulties. These results illustrate the difficulty of the Stackelberg
game for the PJM market. The PJM market model was eventually solved by applying the
SNOPT and FILTER algorithms in sequence. SNOPT was used to obtain a solution to
the Stackelberg game starting from the initial feasible point provided by PATH for a fixed
amount of withholding. The problem was then re-solved by applying the FILTER algorithm
for variable withholding nW .
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5 Numerical Results and Economic Analysis

Four scenarios – perfect competition, Nash-Cournot oligopolistic competition, and two
Stackelberg scenarios – were constructed to quantify the impact of interactions between
the energy and allowances markets. In the perfect competition case, all players in the mar-
ket are assumed to behave competitively. In contrast, in the Nash-Cournot oligopolistic
models [2, 14], large producers with a capacity share between 6% and 19% are exercising
Cournot strategies. The Stackelberg model represents a situation in which a leader exists in
energy and emission markets and the remaining suppliers are either Cournot or price-taking
followers. The four scenarios are illustrated in Table 5.

Table 5: Scenario Assumptions

Stackelberg Competition
Generators Perfect Cournot Cournot Price-Taking
Conjecture Target Competition Competition Leader Followers Followers
Energy prices/sales Bertrand Cournot Actual Cournot Bertrand
by rivals response
Transmission Bertrand Bertrand Actual Bertrand Bertrand
prices response
Emission allowance Bertrand Bertrand Actual Bertrand Bertrand
prices response

The leader in the Stackelberg game is selected based on market share. The underlying
assumptions are that a large supplier has an advantage in retaining market-related infor-
mation and taking early action and that the markup of each supplier, the amount by which
a supplier increases its bids over its marginal cost, is monotonic in market share, with the
largest firm having the greatest incentive to manipulate prices [30]. Two different Stack-
elberg leaders were used for this study: PECO and PSEG. PECO is the generator with
the longest position in the allowances market in the perfect competition case. Therefore,
it has an incentive to drive up allowances prices by either overconsuming or withholding
allowances if allowed to do so. In contrast, the designation of PSEG as a leader serves as
a reference case to determine whether a supplier in a relatively weak position in the NOx

allowances market is profitable enough to undertake a withholding strategy. The followers
are the remaining generators, the arbitrager and the ISO. There are three smaller price-
taking followers, namely, Conectiv, Allegheny and Others, a collected entity representing
the set of all small generating firms. All other generators are intermediate in size and are
treated as Cournot players in the energy market.

All experiments on the PJM model were performed on a Linux workstation with a 2.5
GHz Intel Pentium 4 processor with a 512 KB cache. The run times and iteration counts
reported are intended only to illustrate the level of difficulty of this model. The Nash-
Cournot feasibility problem was solved by PATH in 13.2 seconds. The calculation required
a total of 25 major iterations involving the solution of a linear complementarity problem and
13 crash iterations involving the solution of a system of equations. Results for the nonlinear
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programming algorithms applied to the Stackelberg game during the optimization phase
are displayed in Table 6 for the two Stackelberg scenarios considered.

Table 6: Statistics for the Nonlinear Solvers

Solver Leader # 4 Leader # 6
SNOPT CPU time 288 s 293 s

major/minor iter. 100 / 17996 153 / 9248
final objective 9.5325 × 108 5.7812 × 108

FILTER CPU time 831 s 1364 s
major/minor iter. 12 / 5763 43 / 11585
final objective 9.5327 × 108 5.7888 × 108

The three solvers have a significant difference in cost per minor iteration, although all
three are essentially pivoting algorithms. This difference can be explained by the fact that
PATH factors or updates only a single sparse matrix per minor iteration, while SNOPT and
FILTER, in addition, update a dense factorization of the reduced Hessian matrix. Moreover,
FILTER uses a less efficient linear algebra package than does SNOPT, explaining the order
of magnitude performance difference.

The maximum multiplier value in the two Stackelberg scenarios is 3.2×109 and 2.9×109,
respectively. These large values indicate that the computed solution is probably not strongly
stationary because the multipliers do not appear to be bounded. The solutions are likely
B-stationary, but to test this conjecture is not practical given the size of the problem. Note
that the objective value increases from the first nonlinear programming solve with fixed
withholding to the second solve with variable withholding (Table 6).

Table 7: Summary of Comparative Statics

Perfect Nash-Cournot PECO PSEG
Competition Competition Leader Leader

Average power price [$/MWh] 31.3 39.8 39.6 39.6
Price of allowances [$/ton] 1,197 0 1,173 663.9
Allowances withheld [tons] N/A N/A 5,536 0
Importer revenue [$M] 99 130 128 129
ISO revenue [$M] 72 37 60 42
Transmission loss [106 MWh] 0.46 0.42 0.41 0.40
Consumer surplus [$M] 9,521 8,535 8,549 8,552
Social welfare [$M] 12,133 11,990 11,980 11,955

Table 7 summarizes the comparative statics of the four different scenarios. Tables 8–11
summarize the results of the four scenarios, including the overall market equilibrium and
the profile for each individual producer. Negative values in the “Allowance Traded” column
refer to allowances sold.
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In the following subsections, we contrast the Stackelberg solution with PECO as the
leader with the perfect and Nash-Cournot competition solutions. This discussion initially
concentrates on the market equilibrium and welfare analysis, equilibrium prices, consumer
and producer surplus, and the NOx trading volume. We then discuss the response of
the followers to the strategy chosen by the leader. We then compare the two Stackelberg
scenarios.

Table 8: Perfect Competition: Detailed Results

Profit Allowance Traded Total Sales Var. Gen. Cost
Supplier [$M] [tons] [106 MWh] [$M]
Conectiv 34.0 -1,436 2.0 36.7
Constellation 310.0 1,294 16.4 179.0
Mirant 133.7 0 10.7 202.1
PECO 752.9 -9,357 29.1 101.6
PPL 374.4 11,320 17.6 134.2
PSEG 451.9 3,320 18.4 126.2
Reliant 98.4 2,230 6.2 90.5
Allegheny 23.7 138 1.1 7.7
Others 262.1 -7,509 17.7 326.2
Total 2441.0 0 119.2 1,204.0

5.1 Stackelberg (PECO) versus Perfect and Nash-Cournot Competition

The consumer surplus in the Stackelberg solution is only marginally different from that
of the Cournot case (Table 7). However, the consumer surplus exhibits a 10.2% decline,
from $9,521M to $8,549M, when compared to the perfect competition scenario (Table 8).
The optimal strategy is for PECO to withhold 5,536 tons of NOx allowances, 7% of the
total allowances available in the market. By doing so, PECO is able to drive up the NOx

allowances price to $1,173/ton, almost as high as the perfect competition solution. The
power prices are maintained at the Cournot levels. Furthermore, the efficiency of the NOx

program in the Stackelberg case deteriorates as measured by the total NOx trading volume:
a drop of 38% compared with the perfect competition case. Since the leader creates more
congestion than in the Cournot competition case, the ISO collects an additional $23M in
revenue, even though the total power sold is the same as in the Cournot case. The social
welfare is slightly lower than the Cournot level. One of the unique features of this model
is the inclusion of a quadratic transmission loss. The solutions show that the transmission
loss amounts to 0.4 to 0.5 ×106 MWh in all cases, about 0.4% of generation.

Unlike the counterintuitive response of some Cournot producers in the pure Cournot
competition case, where they take advantage of the zero allowances price and expand their
output [2], all other producers contract their output by a total of 6.6× 106 MWh compared
to the perfect competition case. The reason is that, on average, the action taken by the
leader raises their production cost by $2.60 per MWh, assuming the average emission rate
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Table 9: Cournot Competition: Detailed Results

Profit Allowance Traded Total Sales Var. Gen. Cost
Supplier [$M] [tons] [106 MWh] [$M]
Conectiv 60.9 2,144 3.9 101.1
Constellation 418.8 1,451 12.9 100.6
Mirant 214.3 0 9.2 142.7
PECO 893.7 -15,108 24.6 41.2
PPL 503.4 7,511 15.5 103.6
PSEG 552.8 -1,402 15.9 69.9
Reliant 170.0 5,379 7.7 113.7
Allegheny 33.6 177 1.1 8.0
Others 440.3 -1,267 21.4 432.3
Total 3,287.6 -1,115 112.0 1,113.2

is 2.0 kg/MWh. The restriction of output by the following producers, in turn, creates an
upward pressure on power prices. PECO recognizes this opportunity and expands its sale
by 16.7% (4.1 × 106 MWh), increasing its market share from 22% in the Cournot to 26% in
the Stackelberg scenario. In comparison with the pure Cournot solution, this strategy leads
to an additional profit of $75.8M for PECO, at the cost of other producers, whose profits
fall by $120.7M. Therefore, in contrast to a pure Cournot model, the dominant role of the
leader in a Stackelberg model allows one producer to extract more rent from the market
at the expense of other producers. However, consumers benefit only very slightly, unlike
the classic Stackelberg model without an allowances market, in which commodity prices
are generally significantly lower than in the Cournot market [11, 30]. The interactions of
energy, allowances, and transmission mean that other producers who are long in allowances
do not necessarily benefit from a higher NOx price. For example, the Others price-taking
producer sells 1,720 tons more NOx allowances in the Stackelberg case than in the Cournot
solution, thereby earning an extra $2.0M from the NOx allowances market. However, the
loss associated with the contraction of generation and the higher charges for transmission
service offset the additional profits of selling allowances, resulting in a net decrease of $13M
in its profit.

5.2 Comparison of Stackelberg Scenarios

By comparing the two Stackelberg scenarios in Table 10 (PECO) and Table 11 (PSEG),
we can explore the relationship between market power potential and the net positions in
the power and NOx allowances markets. In the perfect competition scenario, PSEG is
the second largest producer in the power market and has a short position in the NOx

allowances market. In the Stackelberg scenario, the solutions show that, as a leader, its
optimal strategy is not to withhold any NOx allowances at all, unlike PECO, but to acquire
more allowances while expanding its power output. This strategy benefits it by $127.0M,
$26.1M, and $38.2M relative to the perfect, Cournot, and Stackelberg (PECO) competition
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solutions, respectively. PECO finds it optimal to sell 2.4 times more allowances at the
NOx allowances price level of $663.9/ton, with an additional gain of $4.9M from the NOx

allowances market. To sell NOx allowances, however, it produces less output in the power
market, since extra allowances are required to cover the emissions. Consequently, the output
for PECO shrinks by 4.5 × 106 MWh, and its profit drops by $81.4M.

Table 10: Stackelberg Model with PECO Leader: Detailed Results

Profit Allowance Traded Total Sales Var. Gen. Cost
Supplier [$M] [tons] [106 MWh] [$M]
Conectiv 56.9 1,686 3.6 88.6
Constellation 403.8 -296 12.3 98.6
Mirant 210.3 0.0 9.0 139.3
PECO 969.5 -4,527 28.7 94.0
PPL 457.9 5,747 14.5 101.7
PSEG 540.7 -3,457 15.1 58.2
Reliant 144.8 3,657 7.0 112.8
Allegheny 31.7 177 1.1 8.5
Others 427.3 -2,987 20.9 425.0
Total 3,242.9 0 112.2 1,126.8

In summary, as long as there is market power in the markets, the overall social welfare
is less than its counterpart in the perfect competition scenario. Because the difference in
power prices is only marginal between the Cournot and Stackelberg cases, the overall impact
on consumers is essentially the same. Thus, the effect of a firm taking a leadership role is to
reshuffle the producer surplus among the producers: that is, the leader gains at the expense
of the other producers. The comparison of two Stackelberg scenarios shows that the appeal
of withholding NOx allowances depends on the market share in the power market of the
leader and its net position in the NOx allowances markets.

6 Conclusions and Future Work

The solutions to the Stackelberg game for the PJM electricity market show that the leader
can gain substantial profits through the exercise of market power at the expense of other
producers. Whether the withholding allowances strategy is profitable depends on, among
other factors, the net position of the leader in the NOx allowances market. According to
this model, PECO may be in a position to profit from withholding allowances; however,
it is not optimal for PSEG to undertake such practices. This computational experience is
promising for policy modelers interested in investigating the complicated interactions among
imperfectly competitive markets.

The model in this paper of the PJM electricity market is subject to three simplifying
assumptions that possibly overestimate the potential of market power. First, the model
assumes there is no vertical integration in the power market and all energy transactions
take place in the spot market. The PJM power market was actually highly integrated or
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Table 11: Stackelberg Model with PSEG Leader: Detailed Results

Profit Allowance Traded Total Sales Var. Gen. Cost
Supplier [$M] [tons] [106 MWh] [$M]
Conectiv 58.0 1,686 3.6 88.6
Constellation 407.5 450 12.5 100.7
Mirant 212.4 0.0 9.1 141.5
PECO 888.1 -15,390 24.2 38.1
PPL 473.5 6,160 14.8 105.5
PSEG 578.9 4,163 18.7 132.4
Reliant 150.6 4,324 7.2 115.1
Allegheny 32.5 177 1.1 8.5
Others 430.1 -1,570 21.0 422.6
Total 3,231.6 0 112.2 1,153.2

forward contracted during 2000. According to Mansur [21], besides 30% short- or long-term
bilateral contracts, only 10% to 15% of power supply is from the spot market; 53% to 59% is
self-supplied, and the remaining 1% to 2% is imported. However, the firm-level information
about forward contract data is generally proprietary and not publicly unavailable. Clearly,
whether a supplier has an incentive to exercise market power depends on its net position
in the market. If it possesses significant excess capacity, the incentive is substantial. The
current model can be expanded to represent this situation by explicitly introducing two
additional fixed terms: forward contracts (sF

fit), where positive (negative) value of sF
fit

implies sales (purchases) of contracts, and forward contract prices (pF
fit).

The second assumption that may overestimate the market power potential in PJM is the
fixing of imported power. If the supply of imported power is price responsive, the quantity
of imported power can increase in the face of higher power prices, dampening market power.

The third assumption is that, in effect, no allowances are imported or exported from
outside PJM. Since the OTC NOx market is somewhat larger than PJM, however, this
assumption may overstate the amount of market power in the NOx market.

The current model can be enriched in various ways to be more realistic. For example,
a multiyear model that allows emission permits to be banked could be used to explore the
potential for allowance banking to enhance market power. Capacity expansion and pollution
control retrofits could also be analyzed in such a framework. However, the result is a bilevel
mixed integer nonlinear program whose solution is currently beyond any optimization solvers
and for which no theoretical foundation exists.
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