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Leader-following Consensus Control of a Distributed Linea
Multi-agent System using a Sliding Mode Strategy*

Ye zZhand, Ning Zhad, Dongya Zhab, Xinggang Yas and Sarah K. Spurgedn

Abstract— A distributed leader-following consensus control network is connected. The double integrator model [21]-[23
framework is proposed for a linear system. The linear system typically is considered to be a dynamic mechanical system,
is first transformed into a regular form. Then a linear sliding where the states are position and velocity. Corresponding

mode is designed to provide high robustness, and the corre- distributed trol f ks b d
sponding consensus protocol is proposed in a fully distribied IStributed consensus control frameworks based on more

fashion. When matched disturbances are present, it can be general linear system representations are now being devel-
demonstrated that the system states reach the sliding mode i oped. To motivate such developments consider distributed

finite time and consensus can be achieved asymptotically u§f  systems within the chemical process control industry. Here
Lyapunov .theory and thg invariant set theorem. Slmglatlon different sub-systems can have different dynamics, so it
results validate the effectiveness of the proposed algohin. . . o .

is necessary to design a framework for distributed linear

|. INTRODUCTION systems which can represent more general classes of systems

Today is the inf i d loiting full ilabl In [24], distributed tracking control is considered for il
inf 0 a){. IS the mkorma lon eraAan exploiting Tully 3\./‘1'% ta(gent systems with linear dynamics using two discontinuous
information IS & key concem. AS a consequence, diStrobute (gtrollers with static and adaptive coupling gains. In][25

t h b tudied and developed. | distrib ¢
systems have been studied and developed. In a distr UR‘E leader-follower consensus tracking problem is explore
Or linear multi-agent systems with unknown external dis-

system, there are several agents forming a network whi
allows agentls t_(;h(_exchange m_formatlo”n n (l)lrdder to aChlﬁvt%rbances; in this case a state observer and disturbance
a given goal. IS process Is usually called cooperativi, o e are deployed in the scheme. In the above literature
control. Typical collective behaviors resulting from suchdistributed consensus for general linear systems is astefles
cooperative control include synchronization [1]-[3], f#lec

. ) but design issues remain. Specifically, the consensus-proto
ing [4]-[6], swartmllngf[7(}_—[?]_bar1ddconslefnsus [t10]-[12]. The ois typically require the Laplacian matrix to have nonezer
consensus control ot distributed mutti-agent systems 15 genvalues. Calculating these eigenvalues results irmayhe
topic that has received much attention in the literature. In

| irol f how th " c?mputational load, particularly for large scale netwoedsd
general, consensus control Tocuses on Now the agents CoMe @ ¢, weights of the communication graph should be
agreement on certain quantities using their own infornmatio

together with information received from their neighboursknOWn to every agent [26].

2 : ; " Uncertainty always exists in practical systems due to
Distributed consensus control can be widely used in Ior'acmfmmodeled dynamics, parameter variations and external dis

for d|verset apE“C"ﬂons |tr)1ctlud||ng .cont;-oSI of ;nonont[lg.](’jturbances [27]. In [28], nonlinear multi-agent systems are
ngs?r networ s [ gj rto'bot %annlng [15] an tszn?r:égrtl onsidered where it is required that each follower node
[16]. In research on distributed consensus control, theystu has lower triangular structure and the developed contisuou

gf Ie_ad(ter—followl?r? consensusfcor_](tjr_ol IS O.f g_:eatts%r;rim control cannot expressed in system states and consensus
orinstance, in the process of guiding missiles to hit adrg error, which maybe difficult to implement in reality. Any

the target is taken as the leader, Wher_ea_s _the _mlssnes_tadhnocontml strategy should have high robustness to counteract
as the followers, track the target until it is hit. In this way

leader-followi . hieved [17 this uncertainty whilst still being straightforward to itep
eader-iollowing consensus IS achieve [ ) ] ment. Sliding mode control is well known to possess these
From the viewpoint of the current literature, leader

tollowing distributed irol iy f ‘characteristics [29]-[31]. There are a few papers consider
otiowing distributed consensus control mainly focuses o a sliding mode approach to the distributed consensus

. . [‘9 blem. The distributed finite-time consensus problem for
systems. Early work on the single integrator model [18H[Zosecond-order multi-agent systems is investigated based on

cons_idered system states such as voltage or output PO egral sliding mode protocols in [32]. In [33], distrilmad
and it was concluded that consensus can be reached if § &der-following consensus for fractional-order muteat

*This work is supported by the National Natural Science Fiation SyStems is studied using sliding mode control. In [34],istid

(NNSF) of China under Grant 61973315 and 61473312. mode control is designed for second order multi-agent syste
1Ye Zhang, Ning Zhao and Dongya Zhao are with Department ohGhe

. . 19yd . ot where the uncertainty is not considered, and the nonlinear

ical Equipment and Control Engineering, China UniversifyPatroleum, . . . . L.

Qingdao, Chinadyzhao@ipc. edu. cn term is required to satisfy linear growth condition. Furthe
2Xinggang Yan is with the School of Engineering & Digital Arts distributed tracking problem for the first order system &oal

University of Kent, United Kingdonx. yan@ent . ac. uk considered using second order sliding mode technique [35].

3Sarah K. Spurgeon is with the Department of Electronic arettEital Thi il ider the distributed bl
Engineering, University College London, Torrington Platendon WC1E IS paper will consider tne distributed consensus problem

7JE, UKs. spur geon@cl . ac. uk for linear systems from the viewpoint of sliding mode



control. A typical linear sliding surface is selected toigge  be applied to the agents with different system matrices by
consensus asymptotically for linear systems. The slidinglightly modify.
motion is usually divided into two phases. In the reachind\sssumption 1.The pair(A,B) is controllable in (1).
phase, the system states are driven to the sliding surface The system (1) can be transformed into a suitable regular
and after that, the system states converge to the equilibriform by a state transformatiom, which can be obtained
point asymptotically. The contribution of this paper is asising the method in the Appendix.
follows: a special regular form is proposed, which makes N T B S S )
the consensus sliding surface design feasible. Then a fully 4= ' [ 41 %2 }
distributed leader-following control framework is devedul Hence the following dynamics can be obtained:
in terms of the sliding mode control principle. Finally, the :, _ :
. . Z (t) = AlZZiZ (t) (3)

system consensus is analyzed by using the Lyapunov method 22 (1) = Ap1zin (1) + Apazip (1) + Boli (1) + & (1)
and the invariant set theorem.

The rest of this paper is arranged as follows. In Section IWhere za (t) € R™™, z(t) € R, ui(t) € R™, & (t) € RT,
some preliminaries and the problem formulation are state@12 € RMMXM, Agy € R™(M), Agp € R™ ™, B, € R™ ™ is
In Section Il and IV, the sliding mode surface and thé*onsingular. _
sliding mode control are designed respectively. In Secdon Assumption 2. (t) € R™ denotes the matched disturbances

simulation results and corresponding analysis are predentand uncertainties and satisfies the following condition:

Finally, the conclusions are drawn in Section VI. HE'H <B (4)
II. PRELIMINARIES AND PROBLEM where 3 > 0 is a constant.
FORMULATION Assumption 3.The leader’'s control input is assumed to

Graph theory will be used to illustrate the communicatioR® Pounded, and there exi.sl@(t) = U1 (z11,212,t) driving
among agents. Let¥ = (¥,&,4/) denote an undirected 21(t) =81 (t), 212(t) = & (1) in system (3), wheré (t) and
graph of orderN consistin’g 'of a set of verticey’ — 02(t) are functions of time. That is to say, the states of the
TR )}, a set of undirected edge8 C ¥ x ¥, and leader, which can be controlled by the control input itself,

a weighted adjacency matri = (&jj)y.- An undirected will not be influenced by the followers.

- - g . Assumption 4.The undirected graph is connected.
edge &ij in the undirected grapky is denoted by a pair : X
of unordered verticeév;,v;), which indicatess andv; can Lemma 1[37]. Consider (1), the following statements are

communicate with each other. The weights=aji=1 in the Zgu_'lyr?éengirm B) is controllable
weighted adjacency matrip¢ if and only if the edggvi,v;) (b) The fontroilability e :.[ 5 | AB | | A ip }
exists, andyj = aji=0 otherwise. Define; = 0 wheni = j. ¢

has rankn (full row rank).
Thenx (n+m) matrix [ Al —A B | has full row rank
every eigenvalug, of A.

A path is a sequence of connected edges in a graph, an

graph is connected if there is a path between every pair a‘i

vertlces_ [36]. _ . . Theorem 1.Under Assumption 4, the system (1) is control-
Consider a distributed multi-agent system with one Iead%ble if and only ifAg in (3) is full row rank

and N—1 followers. The leader is labeled as 1, and the, - o\ o ge sgen thatank [ A/l — A B} —n for

followers are labeled as 2 - ,N. The leader has no incoming system (1) by Assumption 1 and Lemma 1. Because of the

Lpfoana;Uon fr(;:n TOII%WerS’éJl:FJ ]Ehﬁre eX'St_S lntgrci)rul:rae special structure of system (3) and using the fact Bais
ion between the leader and thth follower, a;; = aj1 =1, nonsingular, it follows that

wherej=2,--- N.

Remark 1.1t should be noted that the case that=aj; =1 rank[ Al —A B | =rank Al —A 0
will be only used in the consensus proof, and the leader is —Aa1 Al —Ax B
never influenced by followers. =rank[ Al Az |+m

1, and G, denoten-dimensional column vectors with all (5)
the entries being 1 and 0 respectively, @denotes am xn  which indicates that
square matrix with all entries being 0. rank[ Al—A B ]=nsrank[ Al A | =n—m (6)

The dynamics of the agents have the following form:
Due to the controllability properties of system (1), it

Xi = A% +B (Ui +d) (1) can be obtained thatank|[ Al —A B | =n< rankQc =

, rank[ B| AB | --- | A"!B ] =n, then for system (2):
wherei =1,--- N, x; € R" andu; € R™ denote the state and

the control input of théth agent respectively; € R™ denotes rank[ Al Agz } =N—-mM<

the matched disturbances and uncertaintfes R™" and rankQc

B € R™™ are system matrices. ——
In this paper, it is assumed that all the agents have the™ rank{ A1z | Onmyx(n-mAaz | -+ ‘ Otn—m)x (n-mA12

same system matrixA,B) but with different disturbances. =n—m

It should be pointed out that the developed results can (7)



According to (7),A12 is row full rank. That is to say, the where et A ( elanfm)T = z1(t) — z11 (1), e,b(t) A
system (1) is controllable if and only &35 is row full rank
in system (3). Them —m< m because of\;, € RM-mMxm, ( qu) =Z2(t) —z12(t).
Definition 1 [25]. The leader-following consensus in the Based on the definition of the error in (12),(t) can be
distributed multi-agent system (3) is said to be achievérif re.expressed as
any initial conditions{jmm t)—x(t)]|=0,i=1,2,--- ,N.

Remark 2.In Definition 1, i = 1 always qualifies as a
speual_case. This is consistently assumed in this papessinl Z(t) = CZ a ( )+A12 (eJ (t) - e,a(t))) (13)
otherwise stated.

Definition 2. sgn(e) : R — R is a sign function that
defined as sgfy) = [sgn(y1) ,sgn(y2),...,sgn(yk)]", where
y=[Y1,¥2,--, Yk - A Lyapunov candidate function is chosen as
Lemma 2[38]. Consider the autonomous system- T (x)
with f continuous, and le¥ (x) be a scalar function with N N

_ . ) L\ 1 n-m ref—e 1N T
continuous first partial derivatives. Assume thatx) — oo / caijydy+ > (elb) & (19
as||x|| — o, andV (x) < 0 over the whole state space. L#t 2 221 1K=1 2 izz
be the set of all points wheké(x) =0, and.# be the largest
invariant set inZ. Then all solutions globally asymptotically
converge ta/Z ast — oo. Note thata;; = aj;, then the derivative o¥ (x) is
Lemma 3[39]. If aj,ap,---,an > 0 and 0< p < q, then

( n q 1/q n b 1/p
_za,-> §<_zq> : L 1N N a <o\
i=1 i=1 V= E Z Cajj ((ﬁ(—e?k) (qa;(_e?k) +%(Qb) qb
Ill. SLIDING MODE SURFACE DESIGN el .
- . - . - - . _ 1 N N n—m
The switching function is defined in the following form: = Eiéj:l 2 ((elk— Jk) &+ ( Jk—e,k) )

z

N
—Czlaij (zi2(t) = z2(1) + AL (2 () =z (1)) +
=
(8)

wherec > 0 influences the convergence rate and the ampli- —
tudes of the states and the control input. The corresponding
sliding surface is

T . )
{(Z-Zrlv"'vz-lillvz-Zer"'vz-l(IZ) |3:07V|:27"'7N} (9) i

N
@,
N——
—1
@

=z

aj(qak— g)&+y (€)'

M=
HM?

i

wheres is defined in (8). = cayj
Theorem 2.Under Assumption 4, if the states in (3) can i= =1
reach the sliding surface (9), then the leader-following N TN T
consensus in the distributed multi-agent system (3) can be +__ (qb) ,Zlca*i ( j_qufAlZ (e‘j‘—e,a))
asymptotically achieved. "N TJ’N
Proof. When the states reach the sliding mode, it can be _ caii (€P —
obtained that £ (qb) J-Zl a”( ! qb)
) N T 1 N N m
Zp(t) = CjZlaij (zj2(t) — Z2(t) + A2 (72 (1) — 2. (1)) ~22 J;p:lca'l (qbp_e?p) (e?p qbp)
(10) 1NN m 2
Combining the first equation in (3) and (10), it follows = 3 ZZ Z cayj (pr—e?p)
that i=2j=1p=1
Z1 (1) = Ar2zi2 (t) (1) <0

Zo() =4 (1) (15
The analysis of (15) is presented as follows:
wheredj (t) =c 2 aij (zi2(t) = z2(t) + Alx (z2 (1) — 21 (1)) () V (t) is radially unbounded oves® andeP.
The consensus problem is transformed into the followingy) Slnce the undlrected graph is connected/ i 0, then

stabilisation problem. ef,=€, p= ,m, Vi # ], that is,e® = eb. As €} =0, it

{ t) = Apel (t) 12 can be obtamed thdJ e =0.
&) =4 (t) (c) In the second equation of (12,(t) = ¢ (t), then{; (t) =



¢j (1), Vi # ]. Sincea;j = a;j, it follows that

X

N
3 3 oa (1) -0 +AL(E 0 - (1)
2y

WZ

1 N N
=32 lecau(eb O - +ab(t>—e?(t>)
N
+ AlZEZZ ca”( (t)+eP(t) )
=0
(16)
Thus ¢ = 0, and E(AIZ )TZi = 0 ac-
i=1
cordingly. Under the condition thateib

(t) becomes {(t) = CAIZEa”(e?—qa), S
=
S AT\ AT § o (ea_ —
Cizl (Al£7) Alzjzlau (e‘? ela) 0
N N T _
that—gizlj;a;j(AIZ (¢—¢)) AL (e —e) =0, which

requires Al, (qa—e?) = 0. Since Ajz is row full rank
by Theorem 1, it can be established thal, is column
full rank. BecauseA], € R™(n-m) (ea ') e R™™ and
n—m< m, consider takmgw m Ilnear independent rows
from AL, to form a new matrixA;, € R-M*(-M  then
A12 (ea Qa) = 0. Thus it can be seen thaf — & = 0.
ThereforeAl, (e?—q’j‘) = 0 results ined — € = 0, which
becomesel = €. As € =0,
g =e=0.

and it follows

it can be obtained that

N
Sj=2Zp—C z ajk(zkz— Zj2+AIZ(Zkl_ZJ'1))
k=1

N
= A21zj1 + AgoZip +C y ajk (Ze — Zj2+Alp (2 — Zj1))
=

N
—Ao1zj1 — AoozZjp +unj+ &5 — ¢ z ajk (ze — Zj2+ A,
=1

(Za —21))
:un]+fjaj :21 aN
(18)
A Lyapunov candidate function is constructed as
D=3 ()7 (19)
=5 j

Differentiating (19), combining (18) and Lemma 3 yeilds
N

Vi)=Y (s)'s
PXCUE
N )
= %(Sj)T (Unj +EJ)
=
N N - (20)
—-n; 3 (s)"son(s) + Y (5)"é)
’71;51 sgn(s; JZZSJ j

< Sik| (—=nj +Bj)
JZZ‘JK‘ j j
<OV2V

where—nj+ ;< 6 <0.

Therefore, the system states reach the sliding surface in

finite time using the control law (17) [38].

On the basis of the above analysis and Lemma 2, gemark 3.It should be noted that the control law (17) is

can be seen that liffef (t)|| =0, lim n [P (t)|| = 0. Final-

ly lim [zi1(t) —m ) =0, t'ggllZ«z( )—z2()[| =0, i =
1,2,---,N. That is, t£m||xi (t)—x1(t)]| =0, i=2--,N.

only applicable to followers, and the leaders states witl no
influenced by the followers.

V. SIMULATION AND ANALYSIS

Under Assumption 4, when the states in (3) reach the slid- consider a distributed multi-agent system with 4 agents,
ing surface (9), the leader-following consensus is aclieveyhose topology connection is shown as Fig.1. Hereepre-

asymptotically.

IV. SLIDING MODE CONTROL DESIGN

Let the sliding mode control law be
Uj (t) = B, * (Uegj (t) + Unj (t))

N
Uegj (1) =C  aji (22— Z2+Al2 (20— 2j1))
K=1

(17)
—Az1Zj1 — AxozZj2
Unj (t) = —njsgn(s;)
wherej=2,--- ,N, k=1,---,N, n; > B;.

adjacency matrix can be obtained.as=

sents the leadelr)0 represent the followers. The weighted

0 100

o o
=~ O
(o NN
(oMo

(2)
3 @

Fig. 1. The topology connection with 4 agents

Theorem 3.Under Assumptions 2, 3 and 4, the sliding mode
control law (17) can drive the system states in (3) onto the The dynamics [40] of each agent is given by
sliding surface (9) in finite time. 2 10 10 2 16
Proof. Substitute the second equation of (3) into (8), then x = 1 4 5 |x+]| 05 25 |u
the sliding function can be represented as follows: -2 -8 -9 -1 -7

(21)



The corresponding dynamics in the regular form

can be obtained by the state transformatidn =

3 5 2

-1 05 05

0o -2 -1

. 0 1 0 0 0

2 _ 5T 1 [Z‘l(t)}r 0 2 |ut)

ZiZ(t) 2|l -4 -3 ZiZ(t) 1 3

(22) ’

where the states of the leader are shown as follows: when TR T
0<t<50 z1(t) =t, z12(t) = ; , and whent > !

50, z11(t) = 50, 12 (t) — [ 0 ] The initial states of the

3

followers are z1(0) = 2, z»(0) = 1 ] 731(0) = 1,

220 = [ 9] 200 = -1 2000 = [ { ], ua(0) -

3

1 2
(] =2,3,4). Disturbancesl; = 0.5sin(t) are applied to the

system whert > 75.

The simulation results are shown in Figs.2-5.

Expected trajectory
0r —_—1,

-——-z

31

Fig. 2. The tracking trajectorie;

Expected trajectory

ZZZ

Fig. 3. The tracking trajectories

10 20 30 40 50 60 70 80 90 100

Fig. 5. The sliding modes;

the control input, which are bounded. Fig.5 shows the gidin
variable, which illustrates that the state errors first apph
the sliding surface and then asymptotically converge to zer
along it.

VI. CONCLUSIONS

In this paper leader-following consensus is achieved for a
linear multi-agent system. A consensus protocol is progpose
based on the linear sliding mode strategy. The system states
first reach the sliding surface and consensus is achieved
asymptotically. In future work, the directed topology dnap
will be introduced, and mismatched disturbances and uncer-
tainties will also be considered.

APPENDIX

According to [38] and [40], letB = [by,by,... by,
and assume thatn linear independent column
vectors of the controllabilty matrix Q. are
by, Aby,... ,Aulflbl; by, Ab,, ... ,AUZilbz; ... b, ADby, .. AY -1
b, wherevi+uUs+...+0u =n.

A%~1p, can be represented as the linear combination of
{bl,Abl, e ,AUlflbl; by, Ab,, ... ,Auzflbz; ... b, Aby, ..,
A%}, wherek=1,2,...,1 with | <m.

Based on the linear combination given above, the corre-

Figs.2-3 show the tracking performance. It can be seen theRonding bases are derived as follows.

the followers can track the expected trajectory, so thatdea

v—1 k=1 Vi

following consensus is achieved. The system exhibits good A% lp — i Al + . 23
robustness when the disturbances are present. Fig.4 shows J;) . i; leyk“ . @



whereay; and y;; are the characteristic polynomial coeffi-[17]
cients.
Define the corresponding basis as

&1 2 Aukflbk + Gk,uk,lAkazbk + ...+ O by
B 2 AV 2h, + Otk oy — 1A% 30+ ...+ Ol

(24)

Then the state transformation matflx can be obtained

as:

(1]

(2]

(31

(4

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

(23]

[14]

[15]

[16]

T =le1,€1,...,81,.. ] (25

n
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