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Abstract A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure
of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this
article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified
airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics.
This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows
with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince
significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion
of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP
value for an airfoil–Reynolds number combination may be calibrated using CFD or experiment for just one
motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the
LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV
formation or trigger the same as per aerodynamic requirements.

Keywords LESP · LEV · Vortex dynamics · Unsteady aerodynamics · Low Reynolds number · Flow
separation

List of symbols

α Angle between the airfoil and inertial horizontal
α̇ Pitch rate
ḣ Plunge rate
η Variation of camber along airfoil
γ Chordwise distribution of bound vorticity on airfoil
Γb Bound circulation of airfoil at time t

Γtevm Strength of mth wake/trailing-edge vortex
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ω Angular frequency
φ Velocity potential
φB Velocity potential from bound circulation
φtev Velocity potential from trailing-edge vorticity (wake circulation)
θ Variable of transformation of chordwise distance
A0, A1, A2 . . . Fourier coefficients
Bxyz Body frame
c Airfoil chord
Cf Skin friction coefficient
Cp Pressure coefficient
h Plunge displacement in the inertial Z direction
K = α̇c/2U Reduced frequency (ramp)
k = ωc/2U Reduced frequency (sinusoidal)
LESP Leading-edge suction parameter
LESPcrit Critical value of LESP corresponding to LEV initiation
O XY Z Inertial frame
Re Reynolds number
t Time
t∗ Nondimensional time = tU/c

U Freestream velocity
W Local downwash
xp Pivot location on the airfoil from 0 to c

1 Introduction

Low-Reynolds-number flows at low speeds and small scales, despite being incompressible and nonthermody-
namic, are rife with complexity owing to the effects of viscosity and flow separation [49]. Much research on
this topic in the twenty-first century has been driven by interest in micro-air vehicle (MAV) design, a problem
at the interface between low Re fluid mechanics and flight vehicle engineering [48,49]. The design problem
in this regime has been driven by seeking bio-inspiration from insects which employ flapping flight at high
dimensionless rates of motion (reduced frequencies) to achieve remarkable flying prowess. It has been shown
that the single most important aerodynamic phenomenon largely responsible for the success of flapping flight
at low Reynolds numbers is the leading-edge vortex (LEV) [16,21,22,65]. The conditions under which such
LEVs develop on rounded-leading-edge airfoils form the subject of this study and are investigated with a
large set of unsteady test cases using experiments, computations, and theoretical methods. Two-dimensional
problems without additional complexity involving spanwise flow and wingtip vortices are considered here and
serve as a starting point for more complex investigations.

LEV formation is initiated by reversed flow at the airfoil surface in the vicinity of the leading edge, followed
by the formation of a free shear layer. The free shear layer then builds up into a vortex, which traverses the
airfoil chord and convects into the wake [40]. Research contributions on LEV formation have largely arisen
from the rotorcraft community and the more recent low-Re/MAV community.

Dynamic stall encountered in helicopters has prompted the rotorcraft research community to study the onset
and effects of LEVs [41,44]. Dynamic stall refers to unsteady separation and stall phenomenon on airfoils that
execute time-dependent motion, in which the effective angle of attack exceeds the static stall angle [43,45].
These flows are characterized by a delayed onset of flow separation/stall, followed by the shedding of a vortex
from the leading edge of the airfoil which traverses the airfoil chord [40, chap. 9]. Although this vortex enhances
the lift when it stays over the surface of the airfoil, it also creates large nose-down pitching moments and flow
separation over the entire airfoil when it convects off the trailing edge. Hence dynamic stall can lead to violent
vibrations and dangerously high airloads, resulting in material fatigue and structural failure. A good review
of experimental and numerical approaches toward understanding and predicting dynamic stall in given by
Carr [7] and Carr et al. [8]. Dynamics stall in rotorcraft is necessarily associated with relatively low reduced
frequencies of motion (typically k = ωc/2U < 0.5).

Research on low Re unsteady aerodynamics of interest to insect flight and MAV design, typically focuses
on higher reduced frequencies of motion than those relevant to rotorcraft flight. Here, the LEVs that enable
high lift and highly maneuverable flight are seen to form with insignificant flow separation over the rest of the
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airfoil surface. In this category, McGowan et al. [46] and Ol et al. [50] have analyzed the forces and flowfields
for unsteady motions with LEVs over a broad parameter space using both experimental and computational
methods. High-fidelity simulations of moving and flexible airfoils to characterize unsteady phenomena at
low Reynolds numbers have been performed by Visbal et al. [70]. Garmann and Visbal [25] and Granlund
et al. [29] have investigated vortex structures on pitching flat plates in detail through computational and
experimental methods, respectively. Pitt and Babinsky [55], Baik et al [3], and Rival et al. [61] have studied
the effects of leading edge vortices using experimental techniques. Widmann and Tropea [75] have recently
used experiments to investigate mechanisms responsible for the formation and detachment of LEVs. Other
recent contributions characterizing 3D vortical structures on unsteady plates using high-fidelity simulations
and experiments include those by Visbal et al. [72], Devoria and Ringuette [15], Carr et al. [9], Jones and
Babinsky [32,33], Panah et al. [53], and Bos et al. [5].

Aside from experimental and computational methods, low-order models based on theoretical formulations
also provide unique insight into the underlying physics in unsteady vortex-dominated flows. Since closed-
form solutions from theory are incapable of capturing nonlinear effects, they may be suitably augmented with
numerical procedures to expand their range of applicability. Wang and Eldredge [74], Hemati et al. [30], Taha
et al. [67], and Brunton et al. [6] have developed such phenomenologically augmented theoretical methods.
These, and the model developed in this research, are largely founded on the results from early pioneering
theoretical and experimental research in unsteady aerodynamics including Theodorsen [69], Wagner [73],
Pinkerton [54], Jones [35], and Woods [76], reviewed in Sears [63]. The class of phenomenologically augmented
inviscid/theoretical methods allows one to study in more depth the influence of various individual parameters
on the unsteady flow physics.

A new theoretical method based on the unsteady thin-airfoil theory developed by Katz and Plotkin [38],
accounting for large amplitudes of motion and nonplanar wakes was developed by the Ramesh et al. [57] and
applied to a ramp-hold-return pitching maneuver. The results from this model were compared against those
from Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) and experimental (water tunnel)
methods. By accounting for the effects of nonplanar wakes, large amplitudes, and high rates of motion, the
results from the model of Ramesh et al. matched those from CFD and experiment reasonably well as long as
the flow at the leading edge was attached. In LEV-dominated regions of the flow, however, the comparison with
CFD and experiment was poor. It was hence shown that low-order modeling in the low Re unsteady regime
can only be successful if a model for LEV formation and shedding is considered. Following this, Ramesh et
al. developed the leading-edge suction parameter (LESP), a time-varying parameter, easily determined using
unsteady airfoil theories, that provides a measure of the suction force developed at the airfoil leading edge.
They demonstrated that for flows around a given airfoil operating at a given Reynolds number, LEV shedding
is always initiated at a critical value of the LESP [59] and is independent of motion kinematics, provided
that LEV formation is not preceded by significant trailing-edge separation. Additionally, Ramesh et al. [58]
developed a novel low-order numerical solver, called LDVM, for 2D low Re unsteady flows, using the LESP
to predict and modulate LEV shedding. In the LDVM, when the instantaneous value of LESP exceeds a pre-
determined critical value, LEV shedding is modeled by shedding a discrete vortex at each time step of the
numerical method. The strength of the discrete vortex is determined so as to keep the LESP at the critical value
during the LEV shedding. In this research, we focus less on the low-order modeling aspects and more on the
conditions under which LEV formation is initiated. Therefore, the low-order method used in the current work
is an inviscid unsteady thin-airfoil theory with no discrete vortex shedding from the leading edge. We study
the LESP concept in more detail using a large set of experimental and CFD studies involving LEV formation,
spanning a broad range of relevant parameters, with an aim toward establishing the envelope of applicability
of the LESP criterion and also to isolate the effect of various parameters on LEV formation.

It has been known for several decades, especially among the dynamic stall community, that onset of
separation at the leading edge is governed by the criticality of flow properties at the leading edge. Evans
and Mort [23] showed that leading-edge separation is directly related to the strong adverse pressure gradient
generated at the leading edge. Beddoes [4] has shown an equivalent correspondence between leading-edge
flow separation and flow velocity at the leading edge. Jones and Platzer[34] have studied the onset of laminar
separation at the leading edge for a pitching NACA 0012 airfoil as an indication of the initiation of dynamic
stall. They showed that the angle of attack at which the laminar separation first occurs increases with pitch
rate. This result was shown to be in qualitative agreement with experiments of Chandrasekhara et al.[11]. More
interestingly, at the angle of attack corresponding to the first occurrence of laminar separation at the leading
edge, the leading-edge flows (pressure distributions, pressure gradient distributions, and locations of stagnation
and laminar separation points) were found to be invariant with pitch rate [19]. The LESP criterion was inspired
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by these results, with an objective to predict LEV formation using a flow quantity from inviscid theory and
serve as a theoretical parameter to modulate leading-edge vortex shedding in low Re unsteady flows.

In Sect. 2, the large-angle unsteady thin-airfoil theory used to derive the LESP is briefly reviewed, and the
LESP hypothesis is presented. Section 3 presents the computational and experimental methods used in this
work. In Sect. 4, the test cases chosen for the experimental and numerical campaign in this paper are listed and
discussed, and the results presented. The regimes where the LESP criterion holds valid are identified, and the
reasoning is presented. The relative significance and influence of various parameters on the initiation of LEV
formation are studied. Furthermore, using the observation that LEV formation occurs only when the LESP
reaches the critical value, it is shown that the motion kinematics can be designed to either avoid or intentionally
trigger LEV formation by tailoring the LESP variation.

2 Theoretical approach

This section describes the theoretical methods employed in this research and the LESP hypothesis. The inter-
ested reader may refer to references [57] and [58] for greater detail.

2.1 Large-angle unsteady thin-airfoil theory

The large-angle unsteady thin airfoil builds on the time-stepping approach given by Katz and Plotkin [38].
It aims to eliminate the traditional small-angle assumptions in thin-airfoil theory which are invalid in high
amplitude, high frequency or vortex-dominated flows, such as those considered in this research. In Fig. 1a,
the inertial frame is given by O XY Z and the body frame, attached to the moving airfoil, by Bxyz. At time
t = 0, the two frames coincide, and at time t > 0, the body frame moves toward the left of the page along any
prescribed time-varying path (given by pitch and plunge motions). At each time-step, a discrete trailing-edge
vortex is shed from the trailing edge.

Analogous to classical thin-airfoil theory, the vorticity distribution over the airfoil, γ (x), is taken to be a
Fourier series,

γ (θ, t) = 2U

[

A0(t)
1 + cos θ

sin θ
+

∞
∑

n=1

An(t) sin(nθ)

]

(1)

where θ is a variable of transformation related to the chordwise coordinate x as,

x =
c

2
(1 − cos θ) (2)

in which A0(t), A1(t), . . . , An(t) are the time-dependent Fourier coefficients, c is the airfoil chord, and U

is the component of the airfoil’s velocity in the negative X direction. The Kutta condition (zero vorticity at
the trailing-edge) is enforced implicitly through the form of the Fourier series. The Fourier coefficients are
determined as a function of the instantaneous downwash on the airfoil by enforcing the boundary condition
that the flow must remain tangential to the airfoil surface.

A0(t) = −
1

π

∫ π

0

W (x, t)

U
dθ (3)

(a) (b)

Fig. 1 a Illustration of the time-stepping method in large-angle unsteady thin-airfoil theory, b Airfoil velocities (positive as
shown) and pivot location
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An(t) =
2

π

∫ π

0

W (x, t)

U
cos nθdθ (4)

The downwash on the airfoil surface, W (x, t), is calculated from components of motion kinematics,
depicted in Fig. 1b, and induced velocities from vortices in the flowfield.

W (x, t) ≡
∂φB

∂z
=

∂η

∂x

(

U cos α + ḣ sin α +
∂φtev

∂x

)

− U sin α − α̇(x − ac)

+ ḣ cos α −
∂φtev

∂z

(5)

where φB and φtev are the velocity potentials associated with bound and trailing-edge vorticity, η(x) is the
camber distribution on the airfoil, ∂φtev

∂x
and ∂φtev

∂z
are velocities induced tangential and normal to the chord by

trailing edge discrete vortices. The motion parameters include the plunge velocity in the Z direction, ḣ, and
the pitch angle of the chord with respect to the X direction, α. Trailing-edge vortices are shed at every time
step as mentioned earlier, and their strengths are calculated iteratively such that Kelvin’s circulation condition
is enforced.

ΓB(t) +
Ntev
∑

m=1

Γtevm = 0 (6)

where ΓB is the bound circulation calculated by integrating the chordwise distribution of bound vorticity over
the airfoil chord:

ΓB = Ucπ

[

A0(t) +
A1(t)

2

]

(7)

2.1.1 Leading-edge suction parameter (LESP)

In thin-airfoil theory, the airfoil thickness and hence the leading-edge radius is zero. This requires the flow to
turn 180◦ around the leading edge (Fig. 2), giving rise to a theoretically infinite flow velocity at the leading
edge, VLE, of a thin airfoil. From Garrick [26] and von Kármán and Burgers [36], we have that the form of this
theoretically infinite velocity is given by,

VLE(t) = lim
x→LE

S
√

x
(8)

where S is a measure of the suction at the leading edge and is given by,

S = lim
x→LE

1

2
γ (x, t)

√
x (9)

Since γ (x, t) is infinite in order of 1/
√

x at the leading edge, the value of S is finite. Evaluating using the
current formulation,

Fig. 2 Depiction of flow around a thin airfoil’s leading edge
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S =
√

cU A0(t) (10)

Because the LESP is a nondimensional measure of the suction at the leading edge, S, for given values of
c and U , we may simply equate it to the A0 value as,

LESP(t) = A0(t) (11)

As discussed in Katz [37], real airfoils have rounded leading edges which can support some suction even
when the stagnation point is away from the leading edge. The amount of suction that can be supported is
dependent on the airfoil shape and Reynolds number of operation. Since the LESP (the A0 value) is a measure
of the suction/velocity at the leading edge, it is a logical choice to develop a correlation for initiation of LEV
formation based on the LESP.

Using inviscid parameters to predict trends in viscous behavior has long been employed by the aerodynamics
research community. An example is Polhamus’ leading-edge suction analogy [56], in which the leading-edge
suction force associated with potential flow about the airfoil is simply rotated by 90◦ to predict the vortex lift on
delta wings. To clarify, the current LESP concept is not related to Polhamus’ analogy either in formulation or
in objectives. The A0 term has also been previously used to develop useful correlations in steady aerodynamic
theory. For example, the ideal lift coefficient of a laminar-flow airfoil in steady flow, which usually falls close
to the middle of the drag bucket, corresponds to the lift coefficient at which the A0 coefficient is zero [1,68];
this idea can be used to estimate the Cl -shift in the drag bucket due to a trailing-edge cruise flap [42]. Morris
and Rusak [47] have studied leading-edge stall on 2D, stationary, thin airfoils using matched asymptotic theory
and shown that leading-edge stall is related to a critical A0 value. It follows, therefore, that a critical value of
A0 would correspond to initiation of LEV formation in unsteady flow.

2.2 LESP hypothesis

The statement of the LESP hypothesis is that, for a given airfoil and Reynolds number combination, the critical
LESP, which is the LESP value corresponding to LEV initiation, is independent of motion kinematics. This
hypothesis is based, in part, on the argument that, for a rounded leading edge of an airfoil that is operating at
a given chord Reynolds number, attached flow around the leading edge is supported so long as leading-edge
suction is below a critical value. When this critical value is exceeded, the flow at the leading edge will separate,
resulting in the shedding of vorticity from the leading edge. Because the LESP is a motion-independent,
nondimensional measure of the leading-edge suction, it should be a good predictor of LEV initiation for any
motion. The major benefit of this hypothesis being true is that the critical LESP can be determined for one
motion from CFD or experiment and can then be used for prediction of LEV initiation for any other motion.

The major caveat to the hypothesis is that the LESP, in the current theoretical approach, is determined using
inviscid theory (unsteady thin-airfoil theory), in which the flow over the upper surface is assumed to be attached.
Thus, in situations characterized by trailing-edge flow separation on the airfoils, this inviscid LESP is unlikely
to be a true measure of the leading-edge suction. Trailing-edge separation, here, refers to flow separation off
the upper surface of the airfoil resulting in reversed flow over the aft portion of the upper surface similar to
that seen in trailing-edge stall on airfoils. By trailing-edge separation, we do not refer to vortex shedding in
unsteady flow from the sharp trailing edge of an airfoil. To further develop this idea, consider two situations
in which a given airfoil operating at a given Reynolds number has the same LESP value. These two situations
could be time instants in two different motions at which the LESP is the same. If one situation corresponds
to negligible trailing-edge flow separation and the other has significant extent of flow separation, then the
leading-edge suction in the two situations will not be the same even though the inviscid LESP values are the
same. Thus, it is clear that the LESP hypothesis is likely to be true only as long as the LEV initiation is not
preceded by significant trailing-edge separation, a situation that is observed for high values of nondimensional
pitch rate. For low nondimensional pitch rates, such as those commonly associated with helicopter dynamic
stall, the current LESP hypothesis is unlikely to be applicable. More specifically, the critical value of LESP
derived from high-rate motions is unlikely to correctly predict LEV initiation for low-rate motions.

The objective of the current research is to use a large range of motion kinematics for a given airfoil and
Reynolds number to test the LESP hypothesis, and assess the bounds of validity using several motions including
some that evince trailing-edge flow separation prior to LEV formation.
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3 Computational and experimental methods

The CFD calculations were performed using NCSU’s REACTMB-INS code, which solves the time-dependent
incompressible Navier–Stokes equations using a finite-volume method. The governing equations are written
in arbitrary Lagrangian/Eulerian (ALE) form, which enables the motion of a body-fitted computational mesh
in accord with prescribed rate laws. An implicit, dual time-stepping artificial compressibility method is used
for time advancement, with sub-iterations performed each physical time-step to adjust the flow to the new
position of the body and to converge the continuity equation. Spatial discretization of the inviscid fluxes uses a
low-diffusion flux-splitting method valid in the incompressible limit [10]. The Spalart–Allmaras model [66],
as implemented by Edwards and Chandra [18], is used for turbulence closure. The cases studied, however, are
at low Reynolds numbers, and turbulence model effects are generally confined to the wake. The computations
were performed on a 2-D body-fitted mesh containing 92,400 cells. REACTMB-INS has been used for a wide
variety of CFD problems, including unsteady aerodynamics [52,57], two-phase flows [10], human-induced
contaminant transport [12,13], and moving-body flows [14].

The experiments were performed at the U.S. Air Force Research Laboratory’s Horizontal Free-surface
Water Tunnel, which is fitted with a three-degree-of-freedom electric motion rig enabling independent control
of pitch, plunge and surge (streamwise-aligned translation). More detail on the rig operation is given in refs. [50]
and [28], while the facility is discussed in ref. [51]. The flowfield is visualized by planar laser fluorescence. A
high concentration of Rhodamine 6G in water is injected at the leading and trailing edges at 3/4-span locations
by a positive-displacement pump at a prescribed volumetric infusion rate, via a 0.5-mm-diameter internal rigid
line, as documented by Ol et al. [50]. The dye is illuminated by an Nd:YLF 527 nm pulsed laser sheet of 1.5 mm
thickness at 50 Hz, and images are recorded with a PCO DiMax high-speed camera through a Nikon PC-E
45 mm micro-lens. An orange Wratten #21 filter removes the incident and reflected laser light since the dye
fluorescence wavelength is 566 nm. Force data are recorded from an ATI Nano-25 IP68 6-component integral
load cell, oriented with its cylindrical axis normal to the pitch–plunge–surge plane. Experimental force data
are ensemble-averaged over ten repetitions of the motion.

4 Study of LEV initiation in low-Reynolds-number flows

Trends in LEV initiation for various motion kinematics and the validity of the LESP hypothesis are analyzed
in this section using data sets from CFD and experiments. An SD7003 airfoil at a Reynolds number of 20,000
is used for all cases, and a parameter space encompassing a range of values for various kinematic terms is
chosen as described in Sect. 4.1.

4.1 Definition of motion kinematics

Combinations of pitch and plunge maneuvers are considered for the parametric study. Both these motions are
generated with a modified version of the Eldredge function which produces a ramp motion with smoothed
corner [20,31] maneuvers. The pitch histories are given by:

α = αstart +
Kα

as

[

cosh(as(t
∗ − t∗1 ))

cosh(as(t∗ − t∗2 ))

]

+
αamp

2
(12)

where as is the smoothing parameter from Granlund et al. [29] defined as:

as =
π2 Kα

2αamp(1 − σ)
(13)

and

t∗2 = t∗1 +
αamp

2Kα

(14)

In these equations, t∗1 denotes the time at start of ramp and t∗2 denotes the time at end of ramp. In all
simulations in this paper, t∗1 is taken as 5.0 to generate a steady starting solution and hence minimize the effect
of starting vortices on the solution. The parameter σ is a nondimensional measure of smoothing and is equal to
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Table 1 Base parameter set used to study LEV initiation in low-Reynolds-number flow

Parameter Symbol Value

Reynolds number Re 20,000
Start time of ramp t∗1 5.0
Smoothing parameter σ 0.8
Initial pitch angle αstart(

◦) 0
Pitch amplitude αamp(

◦) 30
Pitch rate Kα = α̇c

2U
0.20

Pivot location xp/c 0.25
Plunge amplitude (h/c)amp 0.0

Plunge rate Kh = ḣ
2U

0.0

Table 2 Parameter variations used to study LEV initiation in low-Reynolds-number flow (baseline values are in bold)

Case study number Variable parameter Values

1 Pivot location (xp/c) 0.0, 0.25, 0.75
2 Pitch rate (Kα) 0.01, 0.03, 0.05, 0.1, 0.2, 0.4
3 Initial pitch angle (αstart) 10, 5, 0, −5, −10, −15
4 Pitch–plunge combination αamp = 30, Kα = 0.1, (h/c)amp = −0.1, Kh = 0.0191

0.8 in all kinematics considered here. Kα is the reduced frequency of pitch. The term αstart is used to generate
kinematics where the ramp starts from a nonzero value.

The plunge kinematics are constructed with the same equations, by replacing α with h/c, Kα with Kh and
αamp with (h/c)amp. (h/c)start is not used (always 0). As the plunge motion is in combination with pitch in
this study, the reduced frequency for plunge is chosen such that the pitch and plunge ramps occupy the same
nondimensional time (Kh = Kα ∗ (h/c)amp/αamp). Hence, Eqs. 13 and 14 are not altered. The variation in
plunge is given by,

h

c
=

Kα(h/c)amp

asαamp

[

cosh(as(t
∗ − t∗1 ))

cosh(as(t∗ − t∗2 ))

]

+
(h/c)amp

2
(15)

A typical pitch-only ramp motion, starting at αstart = 0, with pitch amplitude αamp = 30◦, reduced
frequency Kα = 0.2 and pivoted at quarter chord is considered as a baseline for the parametric study. The
detailed definition of this case is given in Table 1.

The parameter space for case studies 1–3 is constructed by considering variations in pitch-axis location,
pitch reduced frequency and pitch start angles with respect to the baseline case. In case study 4, a pitch–plunge
combination is compared to the baseline case. In keeping with the bounds of the experimental apparatus with
respect to plunge maneuvers, the Kα for the pitch–plunge combination was chosen to be 0.1 rather than the
baseline value of 0.2. As mentioned previously, the Kh is calculated such that the pitch and plunge ramps
occupy the same nondimensional time (Kh = Kα ∗ (h/c)amp/αamp). The kinematics for the four case studies
are listed in Table 2.

For all kinematics, the time instants and corresponding pitch angles at which LEV formation is initiated are
determined using experiments and CFD, and the LESP values at these pitch angles are determined from theory.
Skin friction coefficient data from CFD are used to quantitatively identify the initiation of LEV formation.
Experimental data are used to mutually validate the CFD and qualitatively study the initiation of LEV formation
for all kinematics. The identification of LEV initiation using skin friction data are illustrated with the baseline
case in Sect. 4.2. The results from the four parametric studies are then presented in Sect. 4.3 with specific
emphasis on the pitch angle for LEV initiation with the objective of establishing the envelope of validity
of the LESP hypothesis. Section 4.4 presents the results from all four case studies in combination. Finally,
Sect. 4.5 discusses two design cases in which plunge motions are added to the baseline pitch motion to alter
the occurrence of LEV formation.

4.2 Identification of LEV initiation from CFD data

The procedure used in this research for identifying the initiation of LEV formation from CFD skin friction
information is illustrated here with the baseline case listed in Sect. 4.1. Figure 3 shows the LESP and pitch
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Fig. 4 Baseline case: Vorticity plots from CFD (first row), flow visualization from experiment (second row), upper surface Cf
(third row) and upper and lower surface Cp (fourth row) plots from CFD. The four columns (a–d) correspond to the time instants
marked in Fig. 3. a α = 7.8◦ b α = 14.7◦ c α = 21.7◦ d α = 30.0◦

angle variation against time for this case. In this figure, and in all figures with a time axis in this paper, the
x-axis shows t∗ − t∗1 so that the ramps begin at 0 on this axis. We emphasize that, in this figure and all the
other LESP variations in this paper, the LESP is calculated using the inviscid unsteady thin-airfoil theory.
Unlike in the LDVM low-order method [56], there is no discrete vortex shedding to model the LEV shedding.
The current LESP prediction is, therefore, valid only until the onset of LEV shedding even though the LESP
variations are plotted for the entire motion. For the current purposes of studying the factors leading to initiation
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(a) (b) (c) (d)

Fig. 5 Baseline case: Skin friction coefficients at four intermediary points between the onset of reversed flow and the initiation
of LEV formation, i.e., between time instants (b) and (c) in Fig. 4. a α = 16.0◦ b α = 17.4◦ c α = 18.8◦ d α = 20.2◦

of LEV formation, however, this inviscid LESP is the appropriate. Four time instants (a)–(d) are marked on
this plot to help describe the process used in quantitatively identifying LEV initiation from CFD data.

Figure 4 presents results from experiments and CFD for the baseline case at four instants during the motion.
The upper surface skin friction (Cf ) distributions from CFD (on the third row of the figure) are examined at
various time instants of the motion to identify several key steps that lead to the formation of the LEV. The
flow features leading to LEV formation have been discussed by several authors [2,17,27,71]. The four time
instants at (a)–(d), also marked in Fig. 3, are used to highlight the following flow features:

(a) Attached flow Before the initiation of the LEV formation, the flow is attached at the leading edge. The
attached boundary layer is thin and the Cf is positive.

(b) Onset of reversed flow LEV formation is first preceded by the formation of a small region of reversed flow
near the leading edge of the airfoil, signaled by appearance of counterclockwise vorticity near the surface
and a small region of negative Cf .

(c) Initiation of LEV formation Next, a small region of clockwise vorticity starts to develop at the surface
within the region of counterclockwise vorticity seen in (b). This manifests as a spike in the negative Cf
distribution that reaches up to zero and subsequently becomes a region of positive Cf within the region
of negative Cf distribution. This flow feature signals the formation of the shear layer in which there is an
eruption of surface flow into the mainstream. As in previous work [58,60], the instant when the spike in
the negative Cf region first reaches the zero value is taken as the time corresponding to initiation of LEV
formation. In Fig. 5, the Cf distributions are presented at four intermediate points between time instants
(b) and (c). These show the process where a spike develops within the region of negative Cf , reaching
up to zero and subsequently crossing it at instant (c). This Cf condition is used as a quantitative way to
consistently identify the time instant of LEV initiation. We note that the eruption of vorticity from the
leading edge is visible in the vorticity (CFD) and flow visualization (experiment) plots at this instant.

(d) Formation and feeding of the LEV The eruption of surface flow, initiated in (c), results in a plume of
clockwise vorticity flowing into the mainstream. During these time instants, there are several spikes in the
Cf distribution corresponding to positive-Cf regions embedded within a larger negative-Cf region.

In the following parametric studies, we refer to the LEV initiation condition of the baseline case as the
critical condition against which we assess LEV initiation for all other cases. The LESP at the instant of LEV
initiation for the baseline case is hence the critical LESP value (=0.25) as illustrated in Fig. 3.

4.3 Parametric studies of LEV initiation

4.3.1 Case study 1: Effect of pivot location

In this study, the effect of pitch-axis location on LEV initiation in unsteady maneuvers is examined. In addition
to the baseline case (quarter chord pivot), two cases with modified pivot locations (leading-edge and three-
quarter-chord) are considered. The pitch angle during the ramp maneuver at which LEV formation is initiated
(as determined using the procedure described in Sect. 4.2) is plotted for all three cases in Fig. 6. As the pivot
location is varied along the chord from leading to trailing edge, the pitch angle at LEV initiation is seen to
increase. This behavior is due to the effect of increased motion-induced “downwash” at the leading edge as
the pivot is moved aftward, a trend known from earlier works [46,57]. Clearly, there is no obvious relation
between initiation of LEV formation and the values of the pitch angle at that time instant. In Fig. 7, the time
variation of LESP for the three kinematics from unsteady thin-airfoil theory are co-plotted with the instants of
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Fig. 6 Case study 1, effect of pivot location: pitch angle variation with time and pitch angles corresponding to LEV initiation.
Baseline value is bold

Fig. 7 Case study 1, effect of pivot location: LESP variation with time and LESP values corresponding to LEV initiation. Baseline
value is bold

LEV formation marked. It is seen that the initiation of upper surface LEV formation occurs at a near-constant
LESP value.

More insight into the LEV formation and shedding process is gained by analyzing the experimental and
numerical results together. Flow visualization plots from experiment, vorticity plots from CFD, pressure
coefficient (upper and lower surfaces) and skin friction coefficient (upper surface) distributions from CFD at
the instants of LEV initiation for the three cases are shown in Fig. 8. At the time of LEV initiation, we see that
the Cp and Cf distributions for the three cases are qualitatively similar. The vorticity and flow visualization
plots show that the flow is attached over most of the airfoil for all three cases, as is expected for the high-
reduced-frequency case (K = 0.2). This explains the LESP hypothesis holding valid in this case study, as the
theory is derived on the basis of an attached flow assumption.

The same plots from CFD and experiment, at some time after the initiation of LEV formation, are shown
in Fig. 9. The time instant is chosen as that when the inviscid LESP value is greater than LESPcrit by a value
of 0.05. The LESP is a measure of the velocity at the leading edge and also the velocity at the start of the
shear layer emanating from the leading edge. Now, the flux of vorticity into the free shear layer (LEV) may be
related to the shear-layer edge velocity by the relation derived by Sears [63] which was also experimentally
observed by Fage and Johansen [24],

dΓsh

dt
=

1

2
U 2

sh (16)
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Fig. 8 Case study 1, effect of pivot location, at the instants of LEV initiation: left to right—flow visualization from experiment,
vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD

This relation has also been used to model vortex shedding from edges in discrete vortex methods such as
those by Sarpkaya [62] and Katz [37]. The instants when the LESP is greater than LESPcrit by a certain constant
value thus should correspond to times when approximately equal vorticity has been shed into the LEVs in all
cases. Strictly, the LESP curves in Fig. 7 are only valid until the instant of LEV initiation, as LEV shedding
which occurs after this instant is not modeled. Still, �LESP = 0.05 is chosen as an approximate measure of
when all cases would be at the same stage of vortex development, irrespective of motion parameters. Figure 9
shows that the LEV structures and Cp distributions are similar for the three cases with different pitch-axis
locations. Further, all three cases show the presence of a concentrated LEV with no noticeable flow separation
over the rest of the airfoil.

We note here that the results from this case study confirm the well-known result that the pitch angle at LEV
initiation increases as the pitch axis is moved aft on the airfoil (seen in Fig. 6). This result can be elegantly
derived using the LESP theory. Using Eqs. 4 and 5, and assuming a flat plate, small angle deflections, no
plunge and no wake influence,

LESP = A0 = α + 2Kα

(

1

2
−

xp

c

)

(17)

Using the hypothesis that the LESP at LEV initiation is equal to LESPcrit for all cases with the same airfoil
and Reynolds number, the angles of attack at LEV initiation for various pitch axes (with the same pitch rate)
may be related as,

LESPcrit = αcrit1 + 2Kα

(
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2
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xp1

c

)

= αcrit2 + 2Kα
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1

2
−

xp2

c

)

(18)

Substituting for values of pitch-axis locations yields the result that the pitch angle at LEV initiation increases
as pitch axis is moved aft. The LESP can essentially be regarded as a more general effective angle of attack
which also accounts for wake-induced velocities and which holds true even without the assumptions of flat
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Fig. 9 Case study 1, effect of pivot location, at �LESP = 0.05 after the instants of LEV initiation: left to right—flow visualization
from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD

plate, small angle deflections, no plunge, and no wake influence. Similar relations between pitch angles at
LEV initiation can be derived for varying pitch rates and other parameters.

4.3.2 Case study 2: Effect of pitch rate

In this case study, the effect of pitch rate on LEV formation in unsteady maneuvers is investigated. In addition
to the baseline case (K = 0.2), five cases with modified pitch rates (K = 0.01, 0.03, 0.05, 0.1 and 0.4) are
considered.

The pitch angles during the ramp motion at which LEV formation is initiated (as determined using the
procedure described in Sect. 4.2) for the six cases are plotted in Fig. 10. The pitch angle at LEV initiation is
seen to increase with increasing pitch rate. High-pitch rates hence serve to keep the flow attached to the airfoil,
which is well known from dynamic stall research (e.g., Ref. [39]). In Fig. 11, the time variation of LESP for
the six kinematics from unsteady thin-airfoil theory is co-plotted with the instants of LEV formation marked.
In this case, we do not observe a near-constant critical LESP value, but a trend where critical LESP increases
with increasing pitch rate. This result is analyzed in detail by studying flow features from experiments and
CFD in the remainder of this section.

Flow visualization plots from experiment, vorticity plots from CFD, pressure-coefficient (upper and lower
surfaces) and skin friction coefficient (upper surface) distributions from CFD at the instants of LEV initiation
for the six cases are shown in Fig. 12. The first three cases with pitch rates of 0.01, 0.03 and 0.05, respectively,
are seen to exhibit significant boundary-layer thickening and flow separation on the aft half of the upper surface
of the airfoil surface at the time of LEV initiation. We do not expect the LESP hypothesis to hold true for these
cases, as the underlying unsteady thin-airfoil theory assumes attached flow over the whole airfoil and is hence
not valid. If trailing-edge separation were modeled in the calculation of LESP, the hypothesis may hold true
even for the slow pitch rate cases, although this needs to be confirmed with further study. The Cp distributions
for the six cases show a clear trend, with higher pitch rates resulting in a greater values of suction at the leading
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Fig. 10 Case study 2, effect of pitch rate: pitch angle variation with time and pitch angles corresponding to LEV initiation.
Baseline value is bold

Fig. 11 Case study 2, effect of pitch rate: LESP variation with time and LESP values corresponding to LEV initiation. Baseline
value is bold

edge of the airfoil. The Cf distributions and the Cf -spike which is used to identify LEV initiation also show
clear trends with the spike moving aft on the airfoil and getting broader/diffused with decreasing pitch rate. The
reduced level of trailing-edge flow separation with increasing pitch rate has been well documented in dynamic
stall studies, and can also be observed in Fig. 12. As trailing-edge separation is not modeled in the current
method, this helps explain the absence of a near-constant critical LESP for kinematics with varying pitch rates.
Nevertheless, as will be demonstrated in Sect. 4.4, this concept may still be employed with reasonable level
of accuracy for high-pitch-rate kinematics.

The same plots from CFD and experiment, at some time after the initiation of LEV formation, are shown in
Fig. 13. The time instant, as done in case study 1, is chosen as that when the inviscid LESP value is greater than
LESPcrit by a value of 0.05. The LEV structures for the six cases exhibit a trend of being more concentrated
with increasing pitch rate. For the first case with K = 0.01, the pitch rate is so slow that the airfoil is “nearly
steady” and displays a bluff-body-type flow. The second and third cases show distinct LEVs, along with the
presence of flow separation over the rest of the airfoil. The final three cases each have a concentrated LEV
with no significant separation over the rest of the airfoil surface. For these cases, it is shown in Sect. 4.4 that
the LESP may still be used to predict LEV initiation.

4.3.3 Case study 3: Effect of initial pitch angle

In case study 3, the influence of boundary-layer development and flow separation on LEV initiation is inves-
tigated by starting the pitch ramps from nonzero values. In addition to the baseline case (which starts from a
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Fig. 12 Case study 2, effect of pitch rate, at the instants of LEV initiation: left to right—flow visualization from experiment,
vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD
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Fig. 13 Case study 2, effect of pitch rate, at �LESP = 0.05 after the instants of LEV initiation: left to right—flow visualization
from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD
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Fig. 14 Case study 3, effect of initial pitch angle: pitch angle variation with time and pitch angles corresponding to LEV initiation.
Baseline value is bold

Fig. 15 Case study 3, effect of initial pitch angle: LESP variation with time and LESP values corresponding to LEV initiation.
Baseline value is bold

pitch angle of 0), five cases starting with starting pitch angles of 10◦, 5◦, −5◦, −10◦ and −15◦ are used. We
note that 10◦ is close to the static stall angle of the SD7003 airfoil (≈11◦ [64]). The pitch angle histories for
these cases and the angles at which LEV formation is initiated are plotted for all six cases in Fig. 14.

In all cases, a steady boundary layer is established at the starting pitch angle before the ramp is initiated. The
results show some variation in the pitch angles at which LEV formation is initiated for these cases. There is an
apparent trend of delayed LEV initiation for all but the αstart = −15 case, which starts with large pressure-side
separation. Figure 15 displays the time variation of LESP as determined from theory for the six cases. For
cases starting with nonzero pitch angles, the LESP values are seen to be close to the baseline value.

Flow visualization plots from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf
(upper surface) distributions from CFD at the instants of LEV initiation for cases study 3 are shown in Fig. 16.
For the cases with start angles of −5◦, −10◦, and −15◦, flow visualization images for both upper and lower
surfaces are shown because these cases have significant lower surface separation. The first two cases (starting
at 10◦ and 5◦) exhibit flow separation on the airfoil upper surface at the time of LEV initiation, while the final
three cases (starting at −5◦, −10◦ and −15◦) exhibit separated flow on the lower surface.
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Fig. 16 Case study 3, effect of initial pitch angle, at the instants of LEV initiation: left to right—flow visualization from experiment,
vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD
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Fig. 17 Case study 3, effect of initial pitch angle, at �LESP = 0.05 after the instants of LEV initiation: left to right—flow
visualization from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from
CFD
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Fig. 18 Case study 4, baseline versus pitch–plunge combination: pitch angle/plunge amplitude variation with time and pitch
angles corresponding to LEV initiation. Baseline value is bold

The same plots from CFD and experiment, at an instant after the initiation of LEV formation when the
inviscid LESP value is greater than LESPcrit by a value of 0.05, are shown in Fig. 17. All the cases exhibit a
concentrated vortex, with the first two also showing significant trailing-edge separation. The LESP hypothesis
is however seen to hold for all cases (Fig. 15) in contrast to the slow ramp cases in Sect. 4.3.2 which also had
significant trailing-edge separation. Hence, the presence of separated shear layers/thick boundary layers as an
initial condition does not appear to affect LEV initiation as much as the effect that the dynamic flow separation
on the airfoil surface had at low pitch rates.

4.3.4 Case study 4: Pitch–plunge combination

In this study, we aim to assess whether the LESP hypothesis (LEV initiation occurring at the same critical
value of LESP) applies not only to various pitching maneuvers, but also to any arbitrary unsteady maneuver.
In addition to the baseline case, a pitch–plunge combination is considered. The latter has a pitch amplitude of
30◦, plunge amplitude/chord of −0.1, and reduced frequency (in pitch) of 0.1 as given in Table 2. The pitch
angle histories for the two cases and the angles at which LEV formation is initiated are plotted in Fig. 18.

Figure 19 displays the time variation of LESP as determined from theory for the two cases, and the LESP
values at the instant of LEV initiation as determined from CFD (Sect. 4.2). LEV initiation in both cases is seen
to occur at the same LESP value.

As done in the earlier case studies, flow visualization from experiment, vorticity plots from CFD, Cp, and
Cf distributions from CFD at the instants of LEV initiation for the two cases are shown in Fig. 20. Despite
LEV initiation occurring at different angles of attack, the Cf distributions for the two cases are similar at the
instant of LEV initiation, which also corresponds to the same critical value of LESP as seen in Fig. 19.

The same plots from CFD and experiment for the two cases, at a time after initiation of LEV formation
when the inviscid LESP value is greater than LESPcrit by a value of 0.05, are shown in Fig. 21. The vortex
development for the two cases is seen to be quite different owing to the different types of motion and the
different reduced frequencies. While the baseline case exhibits a small concentrated vortex, the pitch–plunge
combination evinces a more diffused LEV accompanied by trailing-edge flow separation.

4.4 Assessment of the LESP hypothesis

The results from all the parametric studies are compiled here with the aim of assessing the LESP hypothesis. Two
approaches are used to assess the effectiveness of the hypothesis. In the first approach, the theoretical predictions
of pitch angles corresponding to LEV formation for all motions are compared against the corresponding CFD
predictions. For the theoretical predictions, a single value of LESPcrit corresponding to LEV formation for
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Fig. 19 Case study 4, baseline versus pitch–plunge combination: LESP variation with time and LESP values corresponding to
LEV initiation. Baseline value is bold

Fig. 20 Case study 4, baseline versus pitch–plunge combination, at the instants of LEV initiation: left to right—flow visualization
from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface) distributions from CFD

the baseline case is used as the critical value for all motions. For any motion, the pitch angle at which the
instantaneous LESP equals this baseline LESPcrit is taken as the theoretical prediction for initiation of LEV
formation for that motion. On the other hand, the CFD prediction for this pitch angle is determined using the
procedure described in Sect. 4.2. In the second approach, the LESP values corresponding to CFD-predicted time
instants of LEV formation for the motions are plotted against the four parameters used in the parametric study.

Figure 22 shows the results of the first approach, with the theoretical predictions on the vertical axis plotted
against the CFD predictions on the horizontal axis. Lines indicating deviations of ±1◦ and ±2.5◦ from a perfect
correlation are included for comparison. It is seen that, with the exceptions of the three slow-pitch-rate cases
from case study 2 (K = 0.01, 0.03 and 0.05), the predictions from CFD and theory are within an error margin
of ±1◦ for most cases, and within ±2.5◦ for all cases. As discussed in case study 2, the three slow-pitch-rate
cases are the ones in which there is significant trailing-edge separation preceding LEV formation. This assess-
ment shows that, so long as LEV formation is not preceded by significant trailing-edge separation, theoretical
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Fig. 21 Case study 4, baseline versus pitch–plunge combination, at �LESP = 0.05 after the instants of LEV initiation: left
to right—flow visualization from experiment, vorticity plots from CFD, Cp (upper and lower surfaces) and Cf (upper surface)
distributions from CFD

Fig. 22 Pitch angle at the instant of LEV initiation : x-axis shows predictions from CFD and y-axis shows prediction from theory
using LESPcrit = 0.25. The three red symbols indicate outliers (color figure online)
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Fig. 23 LESP values at the instant of LEV initiation (as determined from CFD), compiled for all cases considered. Baseline value
is bold. The three red symbols indicate outliers (color figure online)

prediction of LEV formation using a single representative value of LESPcrit agrees well with CFD predictions
for a wide range of motion parameters, verifying the LESP hypothesis.

Figure 23 shows the variations of LESP values at the CFD-predicted time instants of LEV initiation for all
the cases with the four parameters: pivot location, pitch rate, start angle, and plunge amplitude. Also shown
are the LESPcrit value of 0.25 for the baseline case and the band of values that correspond to the ±2.5◦ error
margin in Fig. 22. It is seen that the LESP variations for case studies 1, 3, and 4 do not have clear patterns and
the LESP values for LEV initiation are all close to that for the baseline case and within the error band. For
case study 2, we see that the LESP value for LEV initiation increases with increasing pitch rate. One possible
reason for this behavior is the progressive decrease in the trailing-edge separation with increasing pitch rate
at the time instant of LEV initiation. On the whole, it is seen that with the exception of the three outliers, the
LESP values at LEV initiation for all cases lie within 14% of the critical value for the baseline case. In the
next section, the use of LESP as a low-order tool for manipulating LEV formation is demonstrated.

4.5 Design of motion kinematics to trigger/suppress LEV formation

In the preceding sections, we showed that the initiation of LEV formation at the leading edge is related to the
LESP exceeding a certain critical value. The critical LESP value is a function of the airfoil shape and Reynolds
number of operation. Once pre-determined using experimental or computational methods, the critical LESP
value corresponds to onset of LEV formation, irrespective of motion kinematics. Hence LEV occurrence may
be controlled by suitably altering the motion kinematics such that the LESP critical value is attained at a desired
time instant.

Consider the baseline case in Sect. 4.2, analyzed with CFD—a pitch motion with amplitude of 30◦, reduced
frequency of 0.2, and pivot about the quarter chord. For these motion kinematics, LEV formation was seen
to be initiated on the upper surface at t∗ − t∗1 = 0.95, α = 22◦. In this section, we modify the occurrence
of LESP variation by superimposing a plunge motion on the baseline case, such that LEV initiation is either
advanced or delayed as desired.

As it is well known that (negative) rate of plunge is equivalent to variation in pitch angle [46], the plunge
rate is taken to be in the form of an Eldredge-ramp function (same as pitch angle).
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ḣ
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The plunge motion to be superimposed on pitch is obtained by integrating the Eldredge-form plunge rate,
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0

ḣ

c
dt (20)

A Newton iteration is used to determine the value of (ḣ/c) such that criteria on LESP are satisfied, using
which the plunge motion is then constructed with Eqs. 19 and 20. Recalling that LEV initiation in the baseline
case occurs at t∗ − t∗1 = 0.95, plunge-combined kinematics are constructed such that LEV initiation is shifted
to (i) t∗ − t∗1 = 0.5, and (ii) t∗ − t∗1 = 1.5. The values of (ḣ/c) as determined from the Newton iteration
for these two cases (hereafter called “design cases”) are −0.5098 and 0.1933 respectively. As expected, the
LESP theory predicts a negative plunge (equivalent to positive pitch angle) to advance LEV formation and a

Fig. 24 Pitch amplitude variation with time for the baseline case, and plunge amplitude variations which are used in combination
with baseline pitch to generate the two design cases

Fig. 25 LESP variation with time for the baseline case and the two design cases. As required by the design criteria, the intersection
of instantaneous LESP with critical LESP is at t∗ − t∗1 = 0.5 and 1.5 respectively
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Fig. 26 Vorticity plots from CFD at various instants during the baseline, design1 and design2 cases

positive plunge to delay LEV formation. Figure 24 shows the baseline case (pure pitch), and the two design
cases which are constructed by combining the baseline pitch with the two plunge motions shown. Figure 25
illustrates the LESP histories for the baseline motion and two design motions. As required, the LESP values
for the design cases cross the critical value at t∗ − t∗1 = 0.5 and t∗ − t∗1 = 1.5.

CFD simulations were performed for the two design cases to validate the viability of the LESP concept
for advancing or delaying LEV formation according to specification. Figure 26 shows vorticity plots for the
baseline case and the two design cases, at several equally spaced intervals through the respective motions. The
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plots confirm that LEV formation can indeed be advanced (as in design1 to t∗ = 0.5) or delayed (as in design2
in to t∗ = 1.5) by suitably by superimposing a suitable plunge motion. Using the LESP concept and calculating
suitable superpositions, LEV formation for any arbitrary motion may be triggered at will or suppressed entirely.

5 Conclusions

In this paper, an inviscid theoretical method which handles large amplitudes and nonplanar wakes is presented,
and used to derive the leading-edge suction parameter (LESP) which is a measure of the suction at the airfoil
leading edge. Parametric studies with experiments and CFD are used to rigorously test the LESP hypothesis,
that there is a motion-independent critical value of the LESP for a given airfoil and Reynolds number at which
LEV formation is initiated.

In conclusion, it was seen that there is a critical value of the LESP for a given airfoil and Reynolds number
at which LEV formation is initiated, except for motions with varying pitch rates that have varying degrees of
trailing-edge flow separation. The value of critical LESP is seen to be independent of kinematic parameters
such as amplitude, pivot location and type of motion (pitch/plunge). For kinematics with varying pitch rates, the
critical LESP is observed to increase with increasing pitch rates. This behavior is likely related to the different
degrees of trailing-edge boundary-layer separation for these cases which is not modeled in the current research,
although this needs to be confirmed with further investigations. Hence, the use of LESP must be restricted to
kinematics with high pitch rates (K > 0.1), well beyond those typical of dynamic stall, where the influence
of trailing-edge separation is comparatively small. In this regime, by pre-determining the critical LESP for a
given airfoil and Reynolds number, it is possible to predict whether LEVs will be formed for any given motion
kinematics. Further, the LESP may be used in a design approach to generate motion kinematics which would
either prevent LEV formation or generate LEVs as per aerodynamic requirements. The results demonstrate
that the LESP is a fundamentally important, albeit simple, theoretical parameter that governs LEV formations.
This use of this concept is not restricted to the thin-airfoil formulation presented in this paper, and may be
employed to augment any unsteady panel method or potential flow solver to predict and model LEV formation
and shedding in fast-rate kinematics.

Acknowledgements The authors wish to gratefully acknowledge the support of the U.S. Air Force Office of Scientific Research
through Grant FA 9550-13-1-0179; Program manager: Dr. Douglas Smith.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1. Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Sections. Dover, New York (1959)
2. Acharya, M., Metwally, M.H.: Unsteady pressure field and vorticity production over a pitching airfoil. AIAA J. 30(2),

403–411 (1992)
3. Baik, Y.S., Bernal, L.P., Granlund, K., Ol, M.V.: Unsteady force generation and vortex dynamics of pitching and plunging

aerofoils. J. Fluid Mech. 709(1), 37–68 (2012). doi:10.1017/jfm.2012.318
4. Beddoes, T.S.: Onset of leading edge separation effects under dynamic conditions and low Mach number. In: 34th Annual

forum of the American Helicopter Society (1978)
5. Bos, F.M., van Oudheusden, B.W., Bijl, H.: Wing performance and 3-D vortical structure formation in flapping flight. J.

Fluids Struct. 42, 130–151 (2013)
6. Brunton, S.L., Rowley, C.W., Williams, D.R.: Reduced-order unsteady aerodynamic models at low Reynolds numbers. J.

Fluid Mech. 724(1), 203–233 (2013)
7. Carr, L.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25(1), 6–17 (1988)
8. Carr, L.W., Platzer, M.F., Chandrasekhara, M.S., Ekaterinaris, J.: Experimental and computational studies of dynamic stall.

In: Cebeci, T. (ed.) Numerical and Physical Aspects of Aerodynamic Flows IV, pp. 239–256. Springer, Berlin (1990). doi:10.
1007/978-3-662-02643-4_15

9. Carr, Z.R., Chen, C., Ringuette, M.J.: Finite-span rotating wings: three-dimensional vortex formation and variations with
aspect ratio. Exp. Fluids 54(2), 1–26 (2013)

10. Cassidy, D.A., Edwards, J.R., Tian, M.: An investigation of interface-sharpening schemes for multi-phase mixture flows. J.
Comput. Phys. 228(16), 5628–5649 (2009). doi:10.1016/j.jcp.2009.02.028

11. Chandrasekhara, M.S., Ahmed, S., Carr, L.W.: Schlieren studies of compressibility effects on dynamic stall of transiently
pitching airfoils. J. Aircr. 30(2), 213–220 (1993). doi:10.2514/3.48268

(http://creativecommons.org/licenses/by/4.0/)
(http://creativecommons.org/licenses/by/4.0/)
http://dx.doi.org/10.1017/jfm.2012.318
http://dx.doi.org/10.1007/978-3-662-02643-4_15
http://dx.doi.org/10.1007/978-3-662-02643-4_15
http://dx.doi.org/10.1016/j.jcp.2009.02.028
http://dx.doi.org/10.2514/3.48268


Analysis of leading-edge vortex initiation 135

12. Choi, J.I., Edwards, J.R.: Large eddy simulation and zonal modeling of human-induced contaminant transport. Indoor Air
18(3), 233–249 (2008)

13. Choi, J.I., Edwards, J.R.: Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor
Air 22(1), 77–87 (2012)

14. Choi, J.I., Oberoi, R.C., Edwards, J.R., Rosati, J.A.: An immersed boundary method for complex incompressible flows. J.
Comput. Phys. 224(2), 757–784 (2007)

15. DeVoria, A.C., Ringuette, M.J.: Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp. Fluids
52(2), 441–462 (2012)

16. Dickinson, M.H., Gotz, K.G.: Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol.
174(1), 45–64 (1993)

17. Doligalski, T.L., Smith, C.R., Walker, J.D.A.: Vortex interactions with walls. Annu. Rev. Fluid Mech. 26(1), 573–616 (1994)
18. Edwards, J.R., Chandra, S.: Comparison of eddy viscosity—transport turbulence models for three-dimensional, shock-

separated flow fields. AIAA J. 34(4), 756–763 (1996)
19. Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33(11), 759–846 (1998)
20. Eldredge, J.D., Wang, C., Ol, M.V.: A computational study of a canonical pitch-up, pitch-down wing maneuver. In: AIAA

Paper 2009-3687 (2009)
21. Ellington, C.P.: The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Exp. Biol. 202(23), 3439–3448

(1999)
22. Ellington, C.P., van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384(1),

626–630 (1996)
23. Evans, W.T., Mort, K.W.: Analysis of computed flow parameters for a set of sudden stalls in low speed two-dimensional

flow. NACA Report TN D-85 (1959)
24. Fage, A., Johansen, F.C.: On the flow of air behind an inclined flat plate of infinite span. In: Proceedings of the Royal Society

of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 116(773), pp. 170–197 (1927)
25. Garmann, D.J., Visbal, M.R.: Numerical investigation of transitional flow over a rapidly pitching plate. Phys. Fluids 23,

094,106 (2011)
26. Garrick, I.E.: Propulsion of a flapping and oscillating airfoil. NACA Report, p. 567 (1937)
27. Ghosh Choudhuri, P., Knight, D., Visbal, M.R.: Two-dimensional unsteady leading-edge separation on a pitching airfoil.

AIAA J. 32(4), 673–681 (1994)
28. Granlund, K., Ol, M.V., Bernal, L.: Experiments on pitching plates : force and flowfield measurements at low Reynolds

numbers. In: AIAA Paper 2011-0872 (2011)
29. Granlund, K., Ol, M.V., Bernal, L.P.: Unsteady pitching flat plates. J. Fluid Mech. 733(1), R5 (2013)
30. Hemati, M.S., Eldredge, J.D., Speyer, J.L.: Improving vortex models via optimal control theory. J. Fluids Struct. 49, 91–111

(2014)
31. Jantzen, R.T., Taira, K., Granlund, K., Ol, M.V.: Vortex dynamics around pitching plates. Phys. Fluids 26(5), 053,606 (2014)
32. Jones, A.R., Babinsky, H.: Unsteady lift generation on rotating wings at low Reynolds numbers. J. Aircr. 47(3), 1013–1021

(2010)
33. Jones, A.R., Babinsky, H.: Reynolds number effects on leading edge vortex development on a waving wing. Exp. Fluids

51(1), 197–210 (2011)
34. Jones, K.D., Platzer, M.F.: A fast method for the prediction of dynamic stall onset on turbomachinery blades. In: ASME

Paper 97-GT-101 (1997)
35. Jones, W.P.: Aerofoil oscillations at high mean incidences. A.R.C. Report 2654 (1953)
36. von Kármán, T., Burgers, J.M.: General aerodynamic theory-perfect fluids. In: Durand, W.F. (ed.) Aerodynamic Theory: A

General Review of Progress, vol. 2. Dover Publications, Mineola (1963)
37. Katz, J.: Discrete vortex method for the non-steady separated flow over an airfoil. J. Fluid Mech. 102(1), 315–328 (1981)
38. Katz, J., Plotkin, A.: Low-Speed Aerodynamics, Cambridge Aerospace Series. Cambridge University Press, Cambridge

(2000)
39. Koochesfahani, M.M., Smiljanovski, V.: Initial acceleration effects on flow evolution around airfoils pitching to high angles

of attack. AIAA J. 31(8), 1529–1531 (1993)
40. Leishman, J.G.: Principles of Helicopter Aerodynamics, Cambridge Aerospace Series. Cambridge University Press, Cam-

bridge (2002)
41. Leishman, J.G., Beddoes, T.S.: A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34(3), 3–17 (1989)
42. McAvoy, C.W., Gopalarathnam, A.: Automated cruise flap for airfoil drag reduction over a large lift range. J. Aircr. 39(6),

981–988 (2002)
43. McCroskey, W.: The phenomenon of dynamic stall. NASA Technical Memorandum (81264) (1981)
44. McCroskey, W.J.: The Phenomenon of Dynamic Stall. NASA TM 81264 (1981)
45. McCroskey, W.J.: Unsteady Airfoils. Annu. Rev. Fluid Mech. 14, 285–311 (1982)
46. McGowan, G.Z., Granlund, K., Ol, M.V., Gopalarathnam, A., Edwards, J.R.: Investigations of lift-based pitch-plunge equiv-

alence for airfoils at low Reynolds numbers. AIAA J. 49(7), 1511–1524 (2011)
47. Morris, W.J., Rusak, Z.: Stall onset on aerofoils a low to moderately high Reynolds number flows. J. Fluid Mech. 733(1),

439–472 (2013)
48. Mueller, T.J. (ed.): Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics

and Aeronautics, vol. 195. AIAA Inc., Virginia (2001)
49. Ol, M.V.: Unsteady low Reynolds number aerodynamics for micro air vehicles (MAVS). DTIC Document AFRL-V A-WP-

TM-2007-3080 (2007)
50. Ol, M.V., Bernal, L., Kang, C.K., Shyy, W.: Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp.

Fluids 46(5), 883–901 (2009)
51. Ol, M.V., McAuliffe, B.R., Hanff, E.S., Scholz, U., Kaehler, C.: Comparison of laminar separation bubble measurements on

a low Reynolds number airfoil in three facilities. In: AIAA Paper 2005-5149 (2005)



136 K. Ramesh et al.

52. Ol, M.V., Reeder, M., Fredberg, D., McGowan, G.Z., Gopalarathnam, A., Edwards, J.R.: Computation versus experiment
for high-frequency low-Reynolds number airfoil plunge. Int. J. Micro Air Veh. 1(2), 99–119 (2009)

53. Panah, A.E., Akkala, J.M., Buchholz, J.H.J.: Vorticity transport and the leading-edge vortex of a plunging airfoil. Exp. Fluids
56(8), 1–15 (2015)

54. Pinkerton, R.B.: Calculated and measured pressure distribution over the midspan section of the NACA 4412 airfoil. NACA
Report 563 (1936)

55. Pitt Ford, C.W., Babinsky, H.: Lift and the leading-edge vortex. J. Fluid Mech. 720(1), 280–313 (2013)
56. Polhamus, E.C.: A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy. NASA TN

D-3767 (1966)
57. Ramesh, K., Gopalarathnam, A., Edwards, J.R., Ol, M.V., Granlund, K.: An unsteady airfoil theory applied to pitching

motions validated against experiment and computation. Theor. Comput. Fluid Dyn. 27(6), 843–864 (2013)
58. Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M.V., Edwards, J.R.: Discrete-vortex method with novel shedding criterion

for unsteady airfoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500–538 (2014)
59. Ramesh, K., Gopalarathnam, A., Ol, M.V., Granlund, K., Edwards, J.R.: Augmentation of inviscid airfoil theory to predict

and model 2D unsteady vortex dominated flows. AIAA Paper 2011-3578 (2011)
60. Ramesh, K., Murua, J., Gopalarathnam, A.: Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge

vortex shedding. J. Fluids Struct. 55, 84–105 (2015)
61. Rival, D., Prangemeier, T., Tropea, C.: The influence of airfoil kinematics on the formation of leading-edge vortices in

bio-inspired flight. Exp. Fluids 46(5), 823–833 (2009)
62. Sarpkaya, T.: An inviscid model of two-dimensional vortex shedding for transient and asymptotically steady separated flow

over an inclined plate. J. Fluid Mech. 68(01), 109–128 (1975)
63. Sears, W.R.: Some recent developments in airfoil theory. J. Aeronaut. Sci. 23(1), 490–499 (1956)
64. Selig, M.S., Lyon, C.A., Giguere, P., Ninham, C., Guglielmo, J.J.: Summary of Low-Speed Airfoil Data, vol. 2. SoarTech

Publications, Virginia Beach, VA (1995)
65. Shyy, W., Liu, H.: Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J. 45(12), 2817–2819 (2007)
66. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)
67. Taha, H.E., Hajj, M.R., Beran, P.S.: State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci.

Technol. 34, 1–11 (2014)
68. Theodorsen, T.: On the theory of wing sections with particular reference to the lift distribution. NASA TR 383 (1931)
69. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA Report 496 (1935)
70. Visbal, M.R., Gordnier, R.E., Galbraith, M.C.: High-fidelity simulations of moving and flexible airfoils at low Reynolds

numbers. Exp. Fluids 46(5), 903–922 (2009)
71. Visbal, M.R., Shang, J.S.: Investigation of the flow structure around a rapidly pitching airfoil. AIAA J. 27(8), 1044–1051

(1989)
72. Visbal, M.R., Yilmaz, T.O., Rockwell, D.: Three-dimensional vortex formation on a heaving low-aspect-ratio wing: compu-

tations and experiments. J. Fluids Struct. 38, 58–76 (2013)
73. Wagner, H.: Über die Entstehung des dynamischen Auftriebes von Tragflügeln. ZaMM 5(1), 17–35 (1925)
74. Wang, C., Eldredge, J.D.: Low-order phenomenological modeling of leading-edge vortex formation. Theor. Comput. Fluid

Dyn. 27(5), 577–598 (2012)
75. Widmann, A., Tropea, C.: Parameters influencing vortex growth and detachment on unsteady aerodynamic profiles. J. Fluid

Mech. 773, 432–459 (2015)
76. Woods, L.C.: The lift and moment acting on a thick aerofoil in unsteady motion. Philos. Trans. R. Soc. Lond. A Math. Phys.

Eng. Sci. 247(925), 131–162 (1954)


	Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows
	Abstract
	1 Introduction
	2 Theoretical approach
	2.1 Large-angle unsteady thin-airfoil theory
	2.1.1 Leading-edge suction parameter (LESP)

	2.2 LESP hypothesis

	3 Computational and experimental methods
	4 Study of LEV initiation in low-Reynolds-number flows
	4.1 Definition of motion kinematics
	4.2 Identification of LEV initiation from CFD data
	4.3 Parametric studies of LEV initiation
	4.3.1 Case study 1: Effect of pivot location
	4.3.2 Case study 2: Effect of pitch rate
	4.3.3 Case study 3: Effect of initial pitch angle
	4.3.4 Case study 4: Pitch–plunge combination

	4.4 Assessment of the LESP hypothesis
	4.5 Design of motion kinematics to trigger/suppress LEV formation

	5 Conclusions
	Acknowledgements
	References


