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Leading-power contributions to B\p,r transition form factors
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We calculate theB→p,r transition form factors in the framework of perturbative QCD to leading powers
of 1/MB , MB being theB meson mass. We explain the basic principle by discussing the pion electromagnetic
form factor. It is shown that the logarithmic and linear singularities occurring at small momentum fractions of
light meson distribution amplitudes do not exist in a self-consistent perturbative analysis, which includesk'

and threshold resummations.
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I. INTRODUCTION

Branching ratios ofB meson two-body nonleptonic de
cays have been measured by the CLEOIII, BELLE, and
bar Collaborations@1–4#. CP violations in these modes ma
be observed in the near future. Cognizant of this point,
have presented some theoretical anticipations for theB
→Kp @5#, pp, pr @6#, andKK @7# decays in the perturbativ
QCD ~PQCD! framework. In particular, 5–15 %CP viola-
tion is expected in theB→Kp decays. TheB→p,r transi-
tion form factors are the integral part of two-body nonle
tonic decay amplitudes. In this paper, we shall attemp
convince readers that these form factors in the large re
region of light mesons are calculable in PQCD. This is wh
our approach starts to differ from other approaches to ex
sive B meson decays.

According to the PQCD factorization theorem, a for
factor is written as the convolution of a hard amplitude w
initial-state and final-state hadron distribution amplitud
f(x), wherex is the momentum fraction associated with o
of the partons. It has been pointed out that perturba
evaluation of the pion form factor suffers nonperturbat
enhancement from the end-point region with a moment
fraction x→0 @8#. If this is true, the hard amplitude is cha
acterized by a low scale, such that expansion in terms
large coupling constantas is not reliable. More serious end
point ~logarithmic! singularities have been observed in t
twist-2 ~leading-twist! contribution to theB→p transition
form factor @9,10#. The singularities even become linear
twist 3 ~next-to-leading twist! @11#. Because of these singu
larities, it was claimed that theB→p form factor is domi-
nated by soft dynamics and not calculable in PQCD@12#. We
shall argue that this conclusion is false. We shall show tha
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the end points, where the above singularities occur,
double logarithmsas ln2 x should be resummed in order t
justify perturbative expansion. The result, called thresh
resummation@13,14#, leads to strong Sudakov suppression
x→0 @15#. Therefore, the end-point singularities do not ex
in a self-consistent PQCD analysis.

In this work, we shall investigate contributions to theB
→p andB→r transition form factors from twist-2 and from
two-parton twist-3 distribution amplitudes, and we will argu
that both contributions are of leading power in 1/MB , MB

being theB meson mass. There exist many other higher-tw
sources inB meson decays, whose contributions are inde
down by a power of 1/MB . These sources include theB

meson andb quark mass differenceL̄5MB2mb , the light
quark massesmu , md , andms , and the light pseudoscala
meson massesMp andMK . Those from three-parton distri
bution amplitudes are further suppressed by the coup
constantas . Two-parton twist-4 distribution amplitudes d
not contribute to the heavy-to-light form factors@16#. All
these subleading contributions will be neglected in the c
rent formalism.

In Sec. II, we illustrate the PQCD formalism by studyin
the pion electromagnetic form factor. We review the reas
ing why one might conclude that the form factor is not c
culable, and explain why these objections are not justified
QCD.

In Secs. III and IV, we derive theB meson transition form
factors. It will be shown that the twist-3 contributions, whic
seem to be proportional tom0 /MB or M r /MB , do not van-
ish in the MB→` limit. Here m0 and M r are the chiral
symmetry breaking scale andr meson mass, respectivel
We record our results of the form factors at large recoil:
B→p form factor F1;0.3 and theB→r form factor A0
;0.4.

Meson distribution amplitudes are defined and the Su
kov factor from threshold resummation is derived in the A
pendixes.
©2001 The American Physical Society07-1
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II. PQCD APPROACH TO FORM FACTORS

The suggestion that a hadronic form factor is calculable
PQCD was first made in Refs.@17–21#. The rough idea is
summarized as follows. One expands the bound-state w
function for a pion in terms of Fock states containing o
shell partons~quarks or gluons! @17#,

CM5c~qq̄!1c~qq̄g!1c~qq̄gg!1c~qq̄qq̄!1c~qq̄qq̄g!

1¯ . ~1!

Define a soft functionCM(L) at a typical hadronic scaleL
as the initial wave function,

CM~L!5cL~qq̄!1cL~qq̄g!1cL~qq̄gg!1cL~qq̄qq̄!

1cL~qq̄qq̄g!1¯ . ~2!

The wave functionCM can be related toCM(L) via

CM5CM~L!1GLKCM~L!, ~3!

whereK is an irreducible kernel andGL is the Green func-
tion involving only hard-loop momenta.

The pion electromagnetic form factorFp(Q2) is then ex-
pressed as a convolution integral,

Fp~Q2!5E dx1 dx2 d2k1' d2k2'cL~P1 ,x1 ,kW1'!

3TH~P1 ,x1 ,kW1' ;P11q,x2 ,kW2'!

3cL~P11q,x2 ,kW2'!1¯ , ~4!

with P1 being the momentum of the initial-state pion,q the
large momentum transfer, andQ252q2. Here we have writ-
ten the parton momenta associated with the initial state
final state ask15(x1Q/2,kW1' ,x1Q/2) andk25(x2Q/2,kW2' ,
2x2Q/2), respectively, in the notationpm5(p0,p1,p2,p3),
and made explicit the dependence of the two-parton w
function cL(qq̄)[cL(P1 ,x1 ,kW1') on P1 and k1 . The first
term in Eq.~4! contains leading contributions, and ellips
represent those from higher Fock states, which are down
powers of 1/Q2 in the light-cone gauge and by powers ofas .
The leading diagrams are displayed in Fig. 1. It can
shown that the large momentum transferQ2 flows through
the hard amplitudeTH , and that all nonperturbative dynam
ics goes into wave functions. One can therefore computeTH
perturbatively.

However, it was pointed out that the above argument
a crucial problem@8#: the diagrams in Fig. 1 may b
infrared-divergent, because an important contribution to
form factor comes from the region where the exchanged

FIG. 1. Leading-order contribution toFp(Q2).
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ons are soft. PQCD is therefore not applicable. Below
shall examine this difficulty in more detail. According to E
~4!, the first diagram in Fig. 1 gives

^p~P2!uJm~0!up~P1!&

5g2CFNcE dx1 dx2 d2k1' d2k2'

3
dz2d2z'

~2p!3

dy1d2y'

~2p!3

3e2 ik2•y^p~P2!ud̄g~y!ub~0!u0&

3eik1•z^0uūa~0!dd~z!up~P1!&THm
gb;ad , ~5!

with the color factorCF5 4
3 , the number of colorsNc53,

and the hard amplitude

THm
gb;ad5@gs#gd

1

~k22k1!2 Fgs
k” 22P” 1

~P12k2!2 gmGab

. ~6!

Write (k22k1)2;2x1x2Q22ukW1'2kW2'u2. If we ignore
ukW1'2kW2'u2, it has been shown that the integral in Eq.~5! is
dominated by contributions from the end-point regions w
x1 ,x2→0. If the pion wave function does not vanish atx
→0, the integral will be even infrared-divergent. If we som
how regulate the infrared singularity by an appropria
choice of the wave function, the running coupling consta
as(x1x2Q2) evaluated at the hard gluon momentumx1x2Q2

is still too large to make sense out of the perturbative exp
sion.

A. Feynman’s picture of a form factor

The above end-point singularity corresponds to the p
ture of the pion form factor Feynman had in mind. In th
so-called brick-wall frame, the initial-state pion with mo
mentumP15(Q/2,0,0,Q/2) is struck by a spacelike curren
of momentumq5(0,0,0,2Q), and turns around with mo
mentumP25(Q/2,0,0,2Q/2) as shown in Fig. 2. Feynma
pointed out that the major contribution to the form fact
comes from the region where one of the partons carries
full pion momentum. The remaining partons, being ve
small, do not know in which direction they are moving. Th
resulting configuration is essentially identical to the initia

FIG. 2. Feynman’s viewpoint of the dominant contribution
the pion electromagnetic form factor.
7-2
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LEADING-POWER CONTRIBUTIONS TOB→p,r . . . PHYSICAL REVIEW D 65 014007
state pion except that the momentum of the fast parto
reversed. Hence, Feynman claimed that theQ2 dependence
of the pion form factor is related to the probability of findin
a single parton carrying all the pion momentum. Feynma
picture is consistent with the statement that the form facto
dominated by the singular part of Eq.~6!. Because it is sin-
gular, we cannot compute the form factor.

We argue that Feynman’s picture of the pion form fac
is false. Consider a QED example. When an electron un
goes hard scattering, it cannot help but emit infinitely ma
photons in the direction of the electron momentum. As
consequence, the elastic scattering cross sec
d/dV(e1e2→e1e2) at finite angle vanishes at high energ
implying that the probability for the finale1e2 state being
accompanied by no photons diminishes. In other words,
final state must be accompanied by many photons. In
QCD case of the pion form factor, when a quark inside
pion gets hit by a current, the final state will contain ma
gluons unless the spectator quark is nearby to shield
color charge. When one of the quarks carries all the mom
tum, the rest of the pion cannot shield the color charge of
fast quark, and many gluons will be emitted in arbitrary
rections during the hard scattering. Thus, the final configu
tion ending up as a single pion is extremely unlikely. This
the so-called Sudakov suppression on exclusive process
kinematic end points. Therefore, the contribution from Fig
is negligible, and the end-point singularity does not exist

In the above argument, we have ignored the termukW1'

2kW2'u2 in Eq. ~5!. Small k' in momentum space corre
sponds to the large transverse distanceb of two valence
quarks. The color charge of the quark, which is struck by
current, is not shielded in this largeb region, and will emit
many gluons. The probability for having a single pion in t
final state is then vanishingly small. That is, this configu
tion cannot contribute to the form factor. Hence, the mom
tum space withk'→0, where the end-point singularity oc
curs, is also Sudakov suppressed@22#. The typical behavior
of the Sudakov factor exp@2S(x,b,P1)#, x512x1 , which is
associated with the struck quark, is shown in Fig. 3.
observe that the Sudakov factor decreases fast at largeb for
x;1 (x1;0), which corresponds precisely to the end-po
region in Eq.~6!. In conclusion, the end-point singularity
absent, and the major contribution to Fig. 1 comes from
region with hard gluon exchanges.

FIG. 3. The Sudakov factor exp@2S(x,b,P1)#. Note that its value
is very small in the regionb;bmax51/LQCD, with the QCD scale
LQCD5250 MeV.
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B. Twist-3 contributions

As derived in Appendix A, a light-cone pion distributio
amplitude is written as

^p2~P!ud̄g~y!ub~0!u0&

52
i

A2Nc
E

0

1

dx eixP•y$@g5P” #bgfp~x!1@g5#bgm0fp
p ~x!

1m0@g5~n”1n”221!#bgfp
t ~x!%, ~7!

where P5(P1,0,0') is the pion momentum, the lightlike
vector z5(0,z2,0') is the coordinate of thed quark. The
dimensionless vectorn15(1,0,0') is parallel toP, andn2

5(0,1,0') is parallel toz. Here a four-vector has been ex
pressed in terms of light-cone coordinates,

pm5S p01p3

&
,
p02p3

&
,p'D . ~8!

The distribution amplitudefp is twist-2, andfp
t and fp

p ,
proportional tom05Mp

2 /(md1mu);1.4 GeV, wheremq is
the current quark mass of the quarkq, are twist-3. The origin
of these terms can be simply understood by means of
field-current identity from chiral symmetry,

d̄g5u5 im0f pp1. ~9!

It is easy to observe that twist-3 contributions are su
pressed by a power ofm0 /Q. The asymptotic behaviors o
fp , fp

t , andfp
p are known to be

fp~x!}x~12x!, fp
p,t~x!}1. ~10!

As the hard amplitude in Eq.~6! is convoluted with these
distribution amplitudes, we find that the twist-2 contributio
is finite, while the twist-3 ones are logarithmically diverge
without Sudakov suppression. The Sudakov factor then
troduces an effective cutoff to the integral atxc;LQCD/Q,
and the twist-3 contributions are proportional
(m0 /Q)ln(Q/LQCD). That is, the power counting is not a
tered by a logarithmic divergence in the factorization fo
mula. As shown later, the power counting for contributions
the B meson transition form factors is modified by line
divergences in the factorization formulas. Therefore, the
ferent end-point behavior leads to different power count
rules for the pion form factor and for theB meson transition
form factors.

III. B\p TRANSITION FORM FACTORS

In the B meson rest frame, we define theB meson mo-
mentumP1 and the pion momentumP2 in the light-cone
coordinates:

P15
MB

&
~1,1,0'!, P25

MB

&
~h,0,0'!, ~11!
7-3
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with the energy fractionh carried by the pion. The spectato
momentak1 on theB meson side andk2 on the pion side are
parametrized as

k15S 0,x1

MB

&
,k1'D , k25S x2h

MB

&
,0,kW2'D . ~12!

Note that the four components ofk1 should be of the same
order,O(L̄), with L̄[MB2mb , mb being theb quark mass.
However, sincek2 is mainly in the plus direction withk2

1

;O(MB), the hard amplitudes will not depend on the pl
componentk1

1 as explained below. This is the reason we
not showk1

1 in Eq. ~12! explicitly.
Consider the configuration for the semileptonic decayB

→p l̄ n depicted in Fig. 4, which corresponds to soft cont
bution to theB→p form factor FBp. The ū quark and the
lepton pair fly back to back with energy ofMB/2. The spec-
tator quarkd carries a momentum ofO(L̄). If this configu-
ration is responsible for the decay, it is impossible to co
pute FBp using PQCD. However, applying an argume
similar to that used for the pion form factor, we know th
the ū quark recoiling against the lepton pair is bound to em
infinitely many gluons. Thus, Fig. 4 in fact corresponds
the inclusive decayB→Xūl̄ n. The probability that the fina
state in Fig. 4 contains only a single pion is suppressed
the Sudakov form factors. A quantitative estimate of Su
kov suppression of the soft contribution toFBp in the QCD
sum rule formalism will be discussed later.

A. Threshold and k� resummations

It has been explained that the internalb̄ quark involved in
the hard amplitude becomes on-shell as the momentum
tion x of the d quark vanishes@15#. The contributions to the
B→p form factorFBp are then logarithmically divergent a
twist 2 and linearly divergent at twist 3. We argue that as
end-point region is important, the corresponding large dou
logarithmsas ln2 x need to be organized into a jet functio
St(x) as a consequence of threshold resummation@15#. This
jet function vanishes asx→0,1, and modifies the end-poin
behavior of meson distribution amplitudes effectively. Th
modification provides a plausible explanation for the mo
of the twist-3 pion distribution amplitude proportional
x(12x), which was adopted in@5#. Our numerical study
shows that the results of theB→p form factor obtained in
this work are almost the same as those obtained in@5#. In the
following analysis we shall employ the approximate form

St~x!5
2112cG~3/21c!

ApG~11c!
@x~12x!#c, ~13!

FIG. 4. Soft contribution toFBp.
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where the parameterc'0.3 comes from the best fit to th
next-to-leading-logarithm threshold resummation in mom
space. Note that the jet functionSt is normalized to unity.
For details of the derivation, refer to Appendix D.

Similarly, the inclusion ofk' regulates the end-point sin
gularities, and large double logarithmsas ln2 k' are produced
from higher-order corrections. These double logarith
should also be organized to all orders, leading tok' resum-
mation @23,24#. The resultant Sudakov form factor, whos
explicit expression can be found in our previous wor
@25,26#, controls the magnitude ofk'

2 to be roughly

O(L̄MB) by suppressing the region withk'
2 ;O(L̄2). The

coupling constantas(L̄MB)/p;0.13 is then small enough
to justify the PQCD evaluation of heavy-to-light form facto
@5#. We emphasize that the hard scale for heavy-to-light
cays must beL̄MB in order to define a gauge-invariantB
meson distribution amplitude@27#. We shall include the
Sudakov factor associated with the light spectator quark
the B meson. Whether this factor is essential will be det
mined by theB meson distribution amplitude. Since theB

meson is dominated by soft dynamics withx1;O(L̄/MB),
the associated Sudakov effect is minor compared to that f
the energetic pion.

We argue that Sudakov resummation of the double lo
rithms is necessary for a PQCD analysis of the heavy-to-li
transition at large recoil. Resummation will be demanded
the radiative correction satisfies the condition

as

p
ln2

MB

L
&1, ~14!

where the double logarithms appearing inB meson decays
have been estimated by ln(MB /L̄). If the above correction
were larger than unity, perturbative expansion would fail.
it were much smaller than unity, resummation would not
necessary. It is trivial to confirm that forMB /L̄;10 and
as /p;0.13 stated before, the correction is about 0.7, a
that Eq.~14! holds. That is, the resummation effects are c
cial in our PQCD analysis.

With the possible order of magnitude ofk'
2 ;O(L̄MB), a

Taylor expansion of the hard gluon propagator near the
point,

1

~k12k2!2
'

21

2k1
2k2

11ukW1'2kW2'u2
'

21

x1x2hMB
2

1
ukW1'2kW2'u2

~x1x2hMB
2 !2

1¯ , ~15!

is certainly not appropriate. A more reasonable treatmen
to keepk'

2 in the denominators of internal particle propag
tors, and to dropk'

2 in the numerators, which are powe
suppressed compared to otherO(MB

2) terms. Under this pre-
scription, the Sudakov factor fromk' resummation can be
introduced into the PQCD factorization theorem witho
breaking gauge invariance of the hard amplitudes. For
7-4



Eq
p

-

io
in
n

sh

n-
to
th

r

or-

ding

LEADING-POWER CONTRIBUTIONS TOB→p,r . . . PHYSICAL REVIEW D 65 014007
same reason, the terms proportional tok1;O(L̄) in the nu-
merators should be neglected. It is then obvious from
~15! that the hard amplitudes are independent of the com
nentk1

1 . Thek1
1 dependence of theB meson wave function

can then be integrated out@27#, leading to the parameteriza
tion in Eq. ~12!.

Note that the mechanism of threshold andk' resumma-
tions is similar, with the former responsible for suppress
in the longitudinal direction and the latter for suppression
the transverse direction. As shown below, both twist-2 a
twist-3 contributions are well-behaved after including thre
old andk' resummations. Hence, the contributions toFBp

from Fig. 5 dominate in the large recoil region. In this co
figuration, thed quark gains a large momentum parallel
the ū quark momentum by exchanging a hard gluon with
b̄ or ū quark.

B. Form factors

We compute theB→p form factorsF1 and F0 defined
by the following matrix element:

^p~P2!ub̄~0!gmu~0!uB~P1!&

5F1~q2!F ~P11P2!m2
MB

22Mp
2

q2 qmG
1F0~q2!

MB
22Mp

2

q2 qm , ~16!

where q5P12P2 is the lepton-pair momentum. Anothe
equivalent definition is

^p~P2!ub̄~0!gmu~0!uB~P1!&5 f 1~q2!P1m1 f 2~q2!P2m ,
~17!

in which the form factorsf 1 and f 2 are related toF1 andF0
by

F15 1
2 ~ f 11 f 2!, ~18!

F05 1
2 f 1S 11

q2

MB
2 D 1 1

2 f 2S 12
q2

MB
2 D . ~19!

The factorization formula for theB→p form factors is writ-
ten as

FIG. 5. Leading-order contribution toFBp.
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^p~P2!ub̄~0!gmu~0!uB~P1!&

5g2CFNcE dx1 dx2 d2k1' d2k2'

dz1d2z'

~2p!3

dy2d2y'

~2p!3

3e2 ik2•y^p~P2!ud̄g~y!ub~0!u0&

3eik1•z^0ub̄a~0!dd~z!uB~P1!&THm
gb;ad . ~20!

The pion distribution amplitudêpud̄g(y)ub(0)u0& has been
supplied in Eq.~7!, and theB meson wave function is given
by ~see Appendix C!

E dz1d2z'

~2p!3 eik1•z^0ub̄a~0!dd~z!uB~P1!&

52
i

A2Nc

@~P” 11MB!g5fB~k1!#ad . ~21!

Employing Eqs.~7! and ~21!, we derive, from Eq.~20!,

f 1516pMB
2CFr pE dx1 dx2E b1 db1 b2 db2 fB~x1 ,b1!

3@fp
p ~x2!2fp

t ~x2!#E~ t ~1!!h~x1 ,x2 ,b1 ,b2!, ~22!

f 2516pMB
2CFE dx1 dx2E b1 db1 b2 db2 fB~x1 ,b1!

3XH fp~x2!~11x2h!12r pF S 1

h
2x2Dfp

t ~x2!

2x2fp
p ~x2!G J E~ t ~1!!h~x1 ,x2 ,b1 ,b2!

12r pfp
p E~ t ~2!!h~x2 ,x1 ,b2 ,b1! C, ~23!

with the ratior p5m0 /MB and the evolution factor

E~ t !5as~ t !e2SB~ t !2Sp~ t !. ~24!

In the above formulas, we have dropped the terms prop
tional to the momentum fractionx1;O(L̄/MB) as argued
before, which are power-suppressed compared to the lea
terms such as 11x2 /h in the form factorf 2 . The explicit
expressions of the Sudakov exponentsSB andSp are referred
to @25#. The hard function is written as

h~x1 ,x2 ,b1 ,b2!5St~x2!K0~Ax1x2hMBb1!

3@u~b12b2!K0~Ax2hMBb1!

3I 0~Ax2hMBb2!

1u~b22b1!K0~Ax2hMBb2!

3I 0~Ax2hMBb1!#, ~25!
7-5
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where the factorSt suppresses the end-point behaviors of
pion distribution amplitudes, especially of the twist-3 on
The hard scalest are defined as

t ~1!5max~Ax2hMB,1/b1,1/b2!,
~26!

t ~2!5max~Ax1hMB,1/b1,1/b2!.

It is obvious that by turning off threshold andk' resumma-
tions withas fixed, Eqs.~22! and~23! are infrared-divergent

We argue that the two-parton twist-3 distribution amp
tudesfp

p,t , though proportional to the ratiom0 /MB , need to
be taken into account. As stated above, the correspon
convolution integrals for theB→p form factor are linearly
divergent without including Sudakov effects. These integr
regulated in some way with an effective cutoffxc;L̄/MB ,
are proportional to the ratioMB /L̄. Combining the two ra-
tios m0 /MB andMB /L̄, the twist-3 contributions are in fac
not down by a power of 1/MB :

m0

MB
E

xc

1 dx2

x2
2

;OS m0

L̄
D , ~27!

and should be included in a complete leading-power an
sis. We emphasize that the presence of linear diverge
modifies the power-counting rules, causing the difference
tween theB meson transition form factors and the pion for
factor.

Various computing methods have been proposed for
evaluation of theB→p transition form factorsFBp(q2) in
the literature, such as the lattice technique@28#, light-cone
QCD sum rules@12,29#, and PQCD@25,30#. Obviously, lat-
tice calculations become more difficult in the large rec
region of the light meson. However, this region is the o
where PQCD is reliable, indicating that the PQCD and latt
approaches complement each other. This complementa
will be explicitly exhibited in Fig. 6 below. In light-cone sum
rules, dynamics of theB→p form factors have been as
sumed to be dominated by the large scale ofO(mb). This is
the reason twist expansion into Fock states in powers of 1mb
applies to the pion bound state. If this assumption were va
PQCD should also be applicable to theB→p form factors.
Besides, large radiative correction to theB meson vertex,
which reaches 35% of the full contribution, or about half
the soft ~zeroth-order! contribution, has been noticed. Th
O(as) correction renders the sum rule forf BFBp, with f B
being theB meson decay constant, quite unstable relative
the variation of input parameters@29,31#. To stabilize the
sum rule, one considers another sum rule forf B at the same
time, which also receives large radiative correction to theB
meson vertex. The two large vertex corrections then can
in the ratio f BFBp/ f B . However, the radiative correction t
f B is then large.

A careful look at the light-cone-sum-rule analyses in
cates that the soft contribution is more sensitive to the e
point (x→0) behavior of the pion distribution amplitud
than theO(as) correction@31#. Hence, if the end-point be
havior of the pion distribution amplitude is modified by th
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Sudakov factor in this work, such that the end-point con
bution is not important, perturbative contribution can b
come dominant. The Sudakov effect on the soft contribut
to FBp(0) has been investigated in the QCD sum-rule f
malism @32# ~without twist expansion for the pion boun
state!. In this analysis, the soft contribution without Sudak
suppression was estimated to be between 0.15~correspond-
ing to f B;190 MeV! and 0.22 ~corresponding to f B
;130 MeV!. The soft contribution tof BFBp obtained in@31#
is consistent with the above range. It was then shown that
Sudakov effect decreases the soft contribution by a fa
0.4–0.7, depending on infrared cutoffs for loop correctio
to the weak decay vertex. Therefore, the soft contribut
turns out to be about 0.06–0.15. Compared with the lat
resultsFBp(0);0.3, it is reasonable to conclude that the s
contribution amounts to about 30%, which is consistent w
the observation made in@25#. It is a fair opinion that the
estimate of the soft contribution is more model-depend
than the perturbative one. For example, the perturbative c
tribution is less sensitive to the pion distribution amplitude
to other input parameters such as the Borel mass in lig
cone sum rules@31#. In the PQCD approach, we calculate th
perturbative contribution toFBp, which is more model-
independent, and show that the result can more or less s
rate the value predicted by the lattice technique.

For the B meson distribution amplitude, we adopt th
model

fB~x,b!5NBx2~12x!2 expF2
1

2 S xMB

vB
D 2

2
vB

2b2

2 G ,
~28!

FIG. 6. The B→p form factors F1 and F0 as functions of
q2~GeV2!. PQCD results forvB50.36, 0.40, and 0.44 GeV ar
shown as dots. The solid lines correspond to fits to the lattice Q
results with errors. The dashed lines come from light-cone s
rules.
7-6
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TABLE I. Contributions toF1(q2) from the twist-2 and two-parton twist-3 pion distribution amplitudes.

q2 ~GeV2! 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

twist 2 0.120 0.128 0.138 0.148 0.159 0.172 0.188 0.204 0.223 0.243 0.
twist 3 0.177 0.193 0.210 0.230 0.253 0.279 0.308 0.344 0.385 0.432 0.
total 0.297 0.321 0.348 0.378 0.412 0.451 0.496 0.548 0.608 0.675 0.
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with the shape parametervB50.4 GeV @5#. The normaliza-
tion constant NB is related to the decay constantf B
5190 MeV through the relation

E dx1 fB~x1,0!5
f B

2A2Nc

. ~29!

It is easy to find that Eq.~28! has a maximum atx
;L̄/MB . We employ the models for the pion@33#,

fp~x!5
3 f p

A2Nc

x~12x!@110.44C2
3/2~2x21!

10.25C4
3/2~2x21!#, ~30!

fp
p ~x!5

f p

2A2Nc

@110.43C2
1/2~2x21!10.09

3C4
1/2~2x21!#, ~31!

fp
t ~x!5

f p

2A2Nc

~122x!@110.55~10x2210x11!#,

~32!

with the pion decay constantf p5130 MeV. The Gegenbaue
polynomials are defined by

C2
1/2~ t !5 1

2 ~3t221!, C4
1/2~ t !5 1

8 ~35t4230t213!,
~33!

C2
3/2~ t !5 3

2 ~5t221!, C4
3/2~ t !5 15

8 ~21t4214t211!,

whose coefficients correspond tom051.4 GeV.
We first investigate the relative importance of the twis

and twist-3 contributions toF1(q2), and the results are
listed in Table I. It is observed that the latter are in fact larg
than the former, consistent with the argument that the twis
contributions are not power-suppressed. The light-cone
rules also give approximately equal weights to the twis
and higher-twist contributions toF1 @31#. We then compare
our results ofF1(q2) andF0(q2) for q250 – 10 GeV2 with
those derived from lattice QCD@34# and from light-cone
sum rules@29# in Fig. 6, where lattice results have bee
extrapolated to the smallq2 region. Different extrapolation
methods cause uncertainty only of about 5%@35#. The good
agreement among these different approaches at large rec
explicit. The fast rise of the PQCD results at slow rec
indicates that the perturbative calculation gradually becom
unreliable. The values ofF1(0)5F0(0)[F(0) from PQCD
for the parametervB50.4060.04 GeV are listed in Table II
The resultant rangeF1(0)50.3060.04 is in agreement with
01400
r
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F(0);0.3 obtained in@29,34#. We shall adopt the sam
range ofvB in the evaluation of theB→r transition form
factors below. We also examine the uncertainty of our p
dictions from the parametrization of the jet function in E
~13!. The values ofF1(q2) vary about 15% for the choice
of c50.2 and 0.4 as shown in Table III. The variation f
F0(q2) is similar. In a future work we shall incorporate th
exact jet function into a convolution integrand in mome
space.

IV. B\r TRANSITION FORM FACTORS

Consider the semileptonic decayB→r l̄ n in the fast recoil
region of ther meson@36#. We define theB meson momen-
tum P1 as in Eq.~11!, the momentumP2 and the polariza-
tion vectorse of the r meson in light-cone coordinates as

P25
MB

&h
~h2,r p

2,0'!,

~34!

eL5
1

&r ph
~h2,2r r

2,0'!, eT5~0,0,1,0! or ~0,0,0,1!,

with the ratior r5M r /MB , and the energy fractionh carried
by the r meson. We first keep ther r

2 dependence of the
kinematic variables in Eq.~34!, and extract the twist-3 term
proportional tor r . The parametrization ofP2 ande is cho-
sen to make this extraction straightforward.

TheB→r form factors are defined through the followin
decompositions of hadronic matrix elements:

^r~P2 ,e* !ub̄~0!gmu~0!uB~P1!&

5
2iV~q2!

MB1M r
emnrsen* P2rP1s , ~35!

^r~P2 ,e* !ub̄~0!gmg5m~0!uB~P1!&

52M rA0~q2!
e* q

q2 qm1~MB1M r!A1~q2!

3Fe* m2
e* •q

q2 qmG2A2~q2!
e* •q

MB1M r

3FP1
m1P2

m2
MB

22M r
2

q2 qmG . ~36!

To calculate the form factorsV, A0 , A1 , andA2 , we adopt
the following procedures. First, only the transverse polari
tion vectorseT are involved in Eq.~35! and associated with
7-7



4

259

T. KURIMOTO, HSIANG-NAN LI, AND A. I. SANDA PHYSICAL REVIEW D 65 014007
TABLE II. Values of F1(0)5F0(0)[F(0) for givenvB .

vB ~GeV! 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.4

F(0) 0.345 0.334 0.321 0.309 0.297 0.287 0.277 0.268 0.
s
ir

o-

t
d

the definition ofA1 in Eq. ~36!, through which we evaluate
the form factorsV andA1 , respectively. Both the structure
associated withA1 andA2 are orthogonal to the lepton pa
momentumq. Contracting Eq.~36! with qm , we have

^r~P2 ,e* !ub̄~0!q”g5u~0!uB~P1!&52M rA0~q2!e* q,

~37!

which implies that only the form factorA0 is relevant in
two-body nonleptonic decays such asB→rp(K). We calcu-
lateA0 from Eq.~37! using the distribution amplitudes ass
ciated with a longitudinally polarizedr meson.

For the longitudinal polarization vectoreL , the structures
of A1 andA2 are in fact proportional to each other:

e* •q

MB1M r
FP1

m1P2
m2

MB
22M r

2

q2 qmG
5

~e* q!2~MB
22M r

22q2!

~MB1M r!@~e* •q!21q2# Fe* m2
e* •q

q2 qmG ,
~38!

which can be easily derived via the relation

P11P25
MB

22M r
22q2

~e* •q!21q2 e* •qeL* 1
MB

22M r
21~e* •q!2

~e* •q!21q2 q.

~39!

Contracting Eq.~36! with em* 2e* •qqm /q2, we obtain

^r~P2 ,e* !ub̄~0!Fe”* 2
e* •q

q2 q” Gg5u~0!uB~P1!&

5
2P2•q

MB1M r

~e* •q!2

q2 FA22
~MB1M r!2

2P2•q

3S 11
q2

~e* •q!2DA1G , ~40!

from which the form factorA2 can be computed. It turns ou
that A1 and A2 have a simple relation, since the left-han
side of Eq.~40! is power-suppressed.
01400
We derive the leading-power factorization formulas,

V58pMB
2CFE dx1 dx2E b1 db1 b2 db2 fB~x1 ,b1!

3XH fr
T~x2!1r rF S 2

h
1x2Dfr

a~x2!

2x2fr
v~x2!G J E~ t ~1!!h~x1 ,x2 ,b1 ,b2!

1r r@fr
v~x2!1fr

a~x2!#E~ t ~2!!h~x2 ,x1 ,b1 ,b1! C,
~41!

A058pMB
2CFE dx1 dx2E b1 db1 b2 db2 fB~x1 ,b1!

3XH ~11hx2!fr~x2!1r rF ~122x2!fr
t ~x2!

1S 2

h
2122x2Dfr

s~x2!G J E~ t ~1!!h~x1 ,x2 ,b1 ,b2!

12r rfr
s~x2!E~ t ~2!!h~x2 ,x1 ,b2 ,b1! C, ~42!

A158pMB
2CFhE dx1 dx2E b1 db1 b2 db2 fB~x1 ,b1!

3XH fr
T~x2!1r rF S 2

h
1x2Dfr

v~x2!

2x2fr
a~x2!G J E~ t ~1!!h~x1 ,x2 ,b1 ,b2!

1r r@fr
v~x2!1fr

a~x2!#E~ t ~2!!h~x2 ,x1 ,b2 ,b1! C,
~43!

A25
A1

h
, ~44!

with the evolution factorE(t) the same as in Eq.~24!. Tak-
ing the fast recoil limit with h→1 and assuming the
0

.886

.757

.659
TABLE III. Values of F1(q2) for c50.2, 0.3, and 0.4.

q2 ~GeV2! 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.

c50.2 0.347 0.376 0.406 0.442 0.482 0.527 0.580 0.639 0.709 0.790 0
c50.3 0.297 0.321 0.348 0.378 0.412 0.451 0.496 0.548 0.608 0.675 0
c50.4 0.260 0.280 0.303 0.330 0.359 0.392 0.432 0.475 0.527 0.588 0
7-8
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asymptotic behaviorfr
v5fr

a , the above form factors ar
found to obey the symmetry relations@11,37#

V5A1 , A25A122r rA0 , ~45!

where the term22r rA0 , being higher power, does not ap
pear in Eq.~44!. Note that the form factors, treated as no
perturbative objects, are not calculated in@11#. Instead, the
diagrams we have calculated above are regarded as pert
tive corrections to the relations in Eq.~45!.

FIG. 7. TheB→r form factorsV, A0 , A1 , andA2 as functions
of q2. PQCD results are given as dots. The solid lines come fr
light-cone sum rules.
01400
-

ba-

We adopt ther meson distribution amplitudes given i
Appendix B @38#,

fr~x!5
3 f r

A2Nc

x~12x!@110.18C2
3/2~2x21!#, ~46!

fr
t ~x!5

f r
T

2A2Nc

$3~2x21!2

10.3~2x21!2@5~2x21!223#

10.21@3230~2x21!2135~2x21!4#%, ~47!

fr
s~x!5

3 f r
T

2A2Nc

~122x!@110.76~10x2210x11!#,

~48!

fr
T~x!5

3 f r
T

A2Nc

x~12x!@110.2C2
3/2~2x21!#, ~49!

fr
v~x!5

f r

2A2Nc

$ 3
4 @11~2x21!2#10.24@3~2x21!221#

10.12@3230~2x21!2135~2x21!4#%, ~50!

fr
a~x!5

3 f r

4A2Nc

~122x!@110.93~10x2210x11!#,

~51!

with the decay constantsf r5200 MeV and f r
T5160 MeV.

Theq2 dependence of the form factorsV andA0,1,2, with the
sameB meson distribution amplitude in Eq.~28! and M r
50.77 GeV employed, is displayed in Fig. 7. Our results
consistent with those from light-cone QCD sum rules@39# at
small q2.

It is found that the symmetry relationV5A1 in Eq. ~45!
holds very well: A1 is larger thanV only by 2% in the large
recoil region, even after considering the preasymptotic for
of fr

v andfr
a in Eqs.~50! and~51!, respectively. To compare

our results with the second symmetry relation, we inclu
next-to-leading power terms in Eq.~40!, obtaining

A25
112r r

h
A128pMB

2CF

2r r

h E dx1 dx2

3E b1 db1 b2 db2 fB~x1 ,b1!

3XH ~11hx!fr~x2!1r rF S 3

2h
21Dfr

t ~x2!

1~122x2!fr
s~x2!G J E~ t ~1!!h~x1 ,x2 ,b1 ,b2!

12r rfr
s~x2!E~ t ~2!!h~x2 ,x1 ,b2 ,b1! C. ~52!
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Because of the cancellation of the term 2r rA1 /h and the
second term in the above expression, the values ofA2 only
slightly deviate from those in Eq.~44!. The numerical study
shows thatA2 is larger thanA122r rA0 by about 40%,
which can be regarded as the estimate of the symme
breaking effect.

V. CONCLUSION

In this paper, we have presented a complete lead
power and leading-order PQCD evaluation of theB→p,r
transition form factors in the large recoil region. It has be
shown that under Sudakov suppression arising fromk' and
threshold resummations, the end-point singularities~logarith-
mic at twist 2 and linear at twist 3! do not exist. The soft
contribution to the form factors, being Sudakov-suppress
becomes smaller than the perturbative contribution. T
physical picture for the mechanism of Sudakov suppress
has been discussed. We have emphasized that the tw
contributions are in fact not power-suppressed in theMB

→` limit. The treatment of the parton transverse mome
k' and the light spectator momentumk1 in the B meson in
the computation of the hard amplitudes has been clearly
plained: the hard amplitudes should not be expanded in p
ers ofk'

2 as the end-point region is important. Using the lig
meson distribution amplitudes derived from QCD sum rul
and choosing an appropriateB meson distribution amplitude
we have derived reasonable results for theB→p,r form
factors, which are in agreement with those from light-co
QCD sum rules and from lattice calculations. Our study
dicates that in a self-consistent perturbative analysis,
heavy-to-light form factors are calculable.

The jet function from threshold resummation needs m
thorough exploration. We shall investigate the relevant s
jects, such as factorization theorem in moment space, thr
old resummation up to next-to-leading logarithms, appli
tion to nonleptonicB meson decays@16#, and numerical
effects elsewhere. Note that if considering onlykT resumma-
tion @40#, twist-3 contributions, though infrared-finite, ar
still too large to give reasonable heavy-to-light transiti
form factors, because the large double logarithmsas ln2 x
have not yet been organized.
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APPENDIX A: PION DISTRIBUTION AMPLITUDES

It has been shown@27# that the factorization in fermion
flow between the pion distribution amplitude and the ha
amplitude is achieved by inserting the Fierz identity,

I i j I lk5 1
4 I ikI l j 1

1
4 ~g5! ik~g5! l j 1

1
4 ~gm! ik~gm! i j

1 1
4 ~g5gm! ik~gmg5! l j 1

1
8 ~smn! ik~smn! l j , ~A1!

into the quark and antiquark lines of the pion, whereI rep-
resents the identity matrix, andsmn is defined by smn

5 i @gmgn2gngm#/2. The insertion of Eq.~A1! then leads to
various nonlocal matrix elements,

^0uū~0!g5gmd~z!up2~P!&, ^0uū~0!g5d~z!up2~P!&,

^0uū~0!g5smnd~z!up2~P!&,... ~A2!

each of which is characterized by different twists. The lig
like vectorz5(0,z2,0') is the coordinate of thed quark, and
P5(P1,0,0') is the pion momentum.

The general expressions of the relevant matrix eleme
are, quoted from@33#,

^0uū~0!gmg5d~z!up2~P!&5 i
f p

Nc
PmE

0

1

dx e2 ixP•zfv~x!

1
i

2

f p

Nc
Mp

2 zm

Pz

3E
0

1

dx e2 ixP•zgp~x!,

~A3!

^0uū~0!g5d~z!up2~P!&52 i
f p

Nc
m0

3E
0

1

dx e2 ixP•zfp~x!,

~A4!

^0uū~0!g5smnd~z!up2~P!&5
i

6

f p

Nc
m0S 12

Mp
2

m0
2 D

3~Pmzn2Pnzm!

3E
0

1

dx e2 ixP•zfs~x!,

~A5!

wheref andgp are the distribution amplitudes of unit no
malization, Mp is the pion mass, andx is the momentum
fraction associated with thed quark. It should be understoo
that a path-ordered exponential exists between the two q
fields separated by a distancez, and the above matrix ele
ments are gauge-invariant. For the derivation of the pa
order exponential, refer to@27#. It is easy to observe that th
contribution fromfv , independent of the pion mass, is twi
2, and the contribution fromgp is twist 4 because of the
factor Mp

2 . The contributions fromfp andfv , proportional
7-10
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to r p5m0 /MB , are twist 3. We shall neglect the twist-
terms and the term (Mp /m0)2 in Eq. ~A5!.

It is straightforward to read off the pseudovector a
pseudoscalar structures of the pion distribution amplitu
from Eqs.~A3! and ~A4!. To derive the pseudotensor stru
ture from Eq.~A5!, we need more effort. Using integratio
by parts, Eq.~A5! is rewritten as

^0uū~0!g5smnd~z!up2~P!&

5
1

6

f p

Nc
m0S 12

Mp
2

m0
2 D emnE

0

1

dx e2 ixP•z
d

dx
fs~x!,

~A6!

with the antisymmetric tensoremn , e1251. The tensoremn

in Eq. ~A6! contracts to the spin structuresmng5/2 in the
evaluation of the corresponding hard amplitude. The fac
1
2 comes from the extra factor12 associated with the pseudo
tensor structure compared to other structures in Eq.~A1!. We
have

1
2 emnsmng552

i

2
~g1g22g2g1!g552 i ~n”2n”121!g5 .

~A7!

Therefore, up to twist-3, the initial-statep2 meson distribu-
tion amplitudes are written as

^0uū~0! jd~z! l up2~P!&

52
i

A2Nc
E

0

1

dx e2 ixP•z$@P” g5# l j fp~x!

1@g5# l j m0fp
p ~x!1m0@g5~n”2n”121!# l j fk

t ~x!%,

~A8!

with

fp~x!5
f p

2A2Nc

fv~x!, fp
p ~x!5

f p

2A2Nc

fp~x!,

fp
t ~x!5

f p

12A2Nc

d

dx
fs~x!. ~A9!

For the final-statep2 meson, we consider the adjoints
Eqs.~A3!, ~A4!, and~A5!:

^p2~P!ud̄~z!gmg5u~0!u0&

52 i
f p

Nc
PmE

0

1

dx eixP•zfv~x!, ~A10!

^p2~P!ud̄~z!g5u~0!u0&

52 i
f p

Nc
m0E

0

1

dx eixP•zfp~x!, ~A11!
01400
s
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^p2~P2!ud̄~z!smng5u~0!u0&

52
f p

6Nc
m0S 12

Mp
2

m0
2 D emnE

0

1

dx eixP•z
d

dx
fs~x!. ~A12!

It is observed that the pseudotensor structure in Eq.~A12!
acquires an extra minus sign, compared to the other
structures. The pseudotensor structure is then given
2g5(n”2n”121)5g5(n”1n”221). Therefore, up to twist 3,
we have Eq.~7! for the final-statep2 meson. Note that there
is an extra term in the definition offp

t , which contains a
differential operator applying to hard amplitudes@11#. This
term, being power-suppressed, is negligible here. The di
bution amplitudesfp andfp

p are normalized according to

E
0

1

dx fp~x!5
f p

2A2Nc

, E
0

1

dx fp
p ~x!5

f p

2A2Nc

.

~A13!

The tensor distribution amplitude is normalized to zero, b
cause of

E
0

1

dx
d

dx
fs~x!5fs~1!2fs~0!50, ~A14!

if fs vanishes at the end points of the momentum fractio

APPENDIX B: r MESON DISTRIBUTION AMPLITUDES

We choose ther meson momentumP with P25M r
2,

which is mainly in the plus direction. The polarization ve
tors e, satisfyingP•e50, represent one longitudinal pola
ization vectoreL and two transverse polarization vectorseT .
Their explicit expressions in light-cone coordinates ha
been given in Eq.~34!. To arrive at the factorization in fer
mion flow, we insert the Fierz identity into the quark an
antiquark lines of ther meson. The spin structures in E
~A1! lead to the following nonlocal matrix elements:

^r2~P,e!ud̄~z!gmu~0!u0&, ^r2~P,e!ud̄~z!smnu~0!u0&,
~B1!

^r2~P,e!ud̄~z!Iu~0!u0&, ^r2~P,e!ud̄~z!gmg5u~0!u0&,

characterized by different twists. The definition ofz is the
same as that for the pion distribution amplitudes in the p
ceding Appendix.

The general expressions of the above matrix elements
quoted from@38#,

^r2~P,e!ud̄~z!gmu~0!u0&

5
f r

Nc
M rH Pm

e•z

P•z E0

1

dx eixP•zf i~x!

1eTmE
0

1

dx eixP•zgT
~v !~x!2 1

2 zm

e•z

~P•z!2 M r
2

3E
0

1

dx eixP•z@g3~x!2f i~x!#J , ~B2!
7-11
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^r2~P,e!ud̄~z!smnu~0!u0&

52 i
f r

T

Nc
H ~eTmPn2eTnPm!

3E
0

1

dx eixP•zfT~x!1~Pmzn2Pnzm!
e•z

~P•z!2 M r
2

3E
0

1

dx eixP•zhi
~ t !~x!1 1

2 (eTmzn2eTnzm)
M r

2

P•z

3E
0

1

dx eixP•z@h3~x!2fT~x!#J , ~B3!

^r2~P,e!ud̄~z!Iu~0!u0&

52
i

2Nc
S f r

T2 f r

mu1md

M r
D e•zMr

2

3E
0

1

dx eixP•zhi
~s!~x!,

5
1

2Nc
S f r

T2 f r

mu1md

M r
D e•z

P•z
M r

2E
0

1

dx eixP•z
d

dx
hi

~s!~x!,

~B4!

^r2~P,e!ud̄~z!g5gmu~0!u0&

52
1

4Nc
S f r2 f r

T mu1md

M r
D

3M rem
nabeTnP2azbE

0

1

dx eixP•zgT
~a!~x!,

52
i

4Nc
S f r2 f r

T mu1md

M r
D M r

P•n2
emnrseT

n Prn2
s

3E
0

1

dx eixP•z
d

dx
gT

~a!~x!, ~B5!

wheref r and f r
T are the decay constants of ther meson with

longitudinal and transverse polarizations, respectively, anx
is the momentum fraction associated with thed quark. We
adopt the conventione012351 for the Levi-Civita tensor
emnab. The distribution amplitudesf, g, andh are normal-
ized to unity.

Following similar procedures, we derive ther meson dis-
tribution amplitudes up to twist 3,

^r2~P,eL!ud̄~z! ju~0! l u0&

5
1

A2Nc
E

0

1

dx eixP•z$M r@e” L# l j fr~x!

1@e” LP” # l j fr
t ~x!1M r@ I # l j fr

s~x!%, ~B6!
01400
^r2~P,eT!ud̄~z! ju~0! l u0&

5
1

A2Nc
E

0

1

dx eixP•zH M r@e”T# l j fr
u~x!

1@e”TP” # l j fr
T~x!1

M r

Pn2
i emnrs

3 @g5gm# l j eT
n Prn2

s fr
a~x!J , ~B7!

for longitudinal polarization and transverse polarization,
spectively. We have dropped the terms proportional tor r

2

~twist-4! and the terms (mu1md)/M r in Eqs.~B4! and~B5!.
The definitions of the above distribution amplitudes are

fr5
f r

2A2Nc

f i , fr
t 5

f r
T

2A2Nc

hi
~ t ! , fr

s5
f r

T

4A2Nc

d

dx
hi

~s! ,

~B8!

fr
T5

f r
T

2A2Nc

fT , fr
v5

f r

2A2Nc

gT
~v ! ,

fr
a5

f r

8A2Nc

d

dx
gT

~a! . ~B9!

APPENDIX C: B MESON DISTRIBUTION AMPLITUDES

According to@41#, the nonlocal matrix element associate
with the B meson is written as

E d4z

~2p!4 eik1•z^0ub̄a~0!dd~z!uB~P1!&

5
i

A2Nc
H ~P” 11MB!g5Fn”1

w
fB

1~k1!1
n”2

&
fB

2~k1!G J
da

,

52
i

A2Nc
H ~P” 11MB!g5FfB~k1!

2
n”12n”2

&
f̄B~k1!G J

da

, ~C1!

with the wave functions

fB5 1
2 ~fB

11fB
2 !, f̄B5 1

2 ~fB
12fB

2!. ~C2!

Because the light meson momenta have been chosen in
plus direction, the hard amplitudes for the heavy-to-lig
transition form factors are independent of the componentk1

1

as explained in Sec. III. We construct theB meson distribu-
tion amplitude,

f~x1 ,b!5E dk1
1 d2k1' eikW1'•bWf~k1!, ~C3!

with x15k1
2/P1

2 .
7-12
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The two B meson distribution amplitudesfB
1(x)

5fB
1(x,0) andfB

2(x)5fB
2(x,0) are related by the equatio

of motion @41#

fB
1~x!52x

d

dx
fB

2~x!. ~C4!

Assuming thatfB
2 vanishes at both ends of the momentu

fraction,x→0 andx→1, we derive

E
0

1

dx fB
1~x!5E

0

1

dx fB
2~x!5

f B

2A2Nc

,

~C5!

E
0

1

dx xfB
1~x!52E

0

1

dx xfB
2~x!;

2L̄

MB

f B

2A2Nc

.

Therefore,f̄B is normalized to zero.
We shall argue that the contribution from the distributi

amplitudef̄B is negligible compared to that fromfB . Con-
sider the reasonable parametrizations,

fB~x!5
f B

2A2Nc
FdS x2

L̄

MB
D 2

L̄

2MB
d8S x2

L̄

MB
D

1OS L̄2

MB
2 D G ,

~C6!

f̄B~x!5
f B

2A2Nc
F2

L̄

2MB
d8S x2

L̄

MB
D 1OS L̄2

MB
2 D G ,

whose moments satisfy Eq.~C5!. As shown in Sec. III, the
hard amplitudes are approximated by ln(1/x1) at smallx1 . A
simple estimation indicates that the contribution fromfB ,
proportional to ln(MB /L̄), is numerically larger than tha
from f̄B , proportional to a constant. Hence, after taking in
account Eq.~C4!, we consider only a singleB meson distri-
bution amplitude in this work.

APPENDIX D: THRESHOLD RESUMMATION

In this appendix, we supply details of the derivation of t
Sudakov factor in Eq.~13!. Threshold resummation intro
duces a jet functionSt(x) into the PQCD factorization of the
B→p form factors near the end points@15#,

St~x!5E
a2 i`

a1 i` dN

2p i

St~N!

N
~12x!2N, ~D1!

wherea is an arbitrary real constant larger than all the r
parts of poles involved in the integrand. The factor 1N
comes from Mellin transformation of the initial conditio
St

(0)(x)51,

E
0

1

dx~12x!N21St
~0!~x!5

1

N
, ~D2!
01400
l

The Sudakov factorSt(N) in the moment~N! space has been
derived explicitly to the accuracy of leading logarithms~LL !
@15#,

St
~LL !~N!5exp@2 1

4 gK
~LL ! ln2 N#, ~D3!

with the anomalous dimensiongK
(LL) 5asCF /p. The contour

integral in Eq.~D1! leads to

St
~LL !~x!52expS p

4
asCFD E

2`

` dt

p
~12x!exp~ t !

3sin~ 1
2 asCFt !expS 2

as

4p
CFt2D , ~D4!

which vanishes atx→0 since the integrand is an odd fun
tion in t, and atx→1 due to the factor (12x)exp(t).

In this paper we consider threshold resummation up
next-to-leading logarithms. At this level of accuracy, t
anomalous dimensiongK contains two-loop contributions
and the coupling constantas is running. The Sudakov facto
St(N) is then given by

St~N!5expF1

2 E0

121/N dz

12z E~12z!

~12z!2 dl

l
gK@as~lMB

2/2!#G ,
~D5!

with

gK5
as

p
CF1S as

p D 2

CFFCAS 67

36
2

p2

12D2
5

18
nf G , ~D6!

nf being the number of quark flavors andCA53 is a color
factor. The anomalous dimensiongK is the same as that fo
kT resummation@42#.

It can be shown thatSt(x) still vanishes at the end point
x→0 and x→1. To simplify the analysis, we propose th
parametrization

St~x!5
2112cG~3/21c!

Ap~11c!
@x~12x!#c, ~D7!

whose end-point behavior satisfies the above requiremen
theas→0 (c→0) limit, i.e., without QCD effects, Eq.~D7!
approaches unity. Mellin transformation ofSt(x) gives

FIG. 8. Difference between the jet function and its parametri
tion in the moment space.
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St
fit~N!

N
5

2112cG~3/21c!

ApG~11c!
B~c11,c1N!. ~D8!

The variableN should be large enough to justify thresho
resummation up to the next-to-leading logarithmsas ln N,
and small enough to avoid the divergent running coupl
na

na

et

01400
g

constantas@MB
2/(2N2)# in Eq. ~D5!. Performing the best fit

of Eq. ~D8! to St(N)/N for 3,N,7, we determine the pa
rameter c50.3. The difference St(N)/N2St

fit(N)/N is
shown in Fig. 8 forc50.2, 0.3, and 0.4. Equation~D7! im-
plies that threshold resummation modifies the end-point
havior of the meson distribution amplitudes, causing them
vanish faster atx→0.
tt.

s.
@1# CLEO Collaboration, Y. Kwonet al., hep-ex/9908039.
@2# CLEO Collaboration, D. Cronin-Hennessey et al.,

hep-ex/0001010.
@3# Belle Collaboration, talk presented at the 4th Internatio

Workshop onB Physics andCP Violation, Ise, Japan, 2001.
@4# Babar Collaboration, talk presented at the 4th Internatio

Workshop onB Physics andCP Violation, Ise, Japan, 2001.
@5# Y. Y. Keum, H.-n. Li, and A. I. Sanda, Phys. Lett. B504, 6

~2001!; Phys. Rev. D63, 054008~2001!.
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