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1 Introduction

Analytic properties of the S-matrix of massless particles have been intensively studied since

the introduction of twistor string theory by Witten in 2003 [1]. One of the earliest outcomes

was the recognition of “leading singularities” as a fundamental set of well-defined (free of

divergences and gauge invariant) quantities in any field theory [2–6]. Leading singularities

are generalizations of textbook unitarity cuts. While the latter compute discontinuities

across codimension one branch cuts, the former correspond to singularities of the highest

possible codimension [7].

Motivated by the spectacular advances that led to the recent gravitational wave de-

tections [8, 9], it is natural to ask how leading singularities can be used in computations

involving the scattering of two massive particles through the exchange of gravitons.

A classic textbook exercise in quantum field theory is the derivation of the Newtonian

potential from the non-relativistic limit of tree-level scattering of two massive particles via a

graviton. Higher order effects defining what is known as the post-Newtonian expansion are

much more complicated and were studied in the same context in [10], followed by [11–13].

Recently, a range of sophisticated techniques has led to impressive progress in effective field

theory approaches [14–22]. Some of them exploit both analytic and numerical techniques

in order to have control over the whole evolution of binary mergers such as the very
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successful Effective One Body approach [23–26]. More recently, several applications of on-

shell techniques [27–31], originally developed for gluon scattering, have also been used to

study the binary problem in the post-Newtonian perturbative scheme [32–35].

Treating the interaction of two massive bodies as a scattering process mediated by

gravitons immediately separates the computation by the topology of Feynman diagrams

according to their loop order. In standard field theoretic computations, loop contributions

are usually related to quantum effects. In applications where at least one of the external

particles is massive loop integrals can give rise to both classical and quantum effects [36, 37].

There are integration regions [38, 39] that can only contribute quantum effects while others

can contribute to both kind of effects [32]. Computations of classical potentials or effective

actions thus require the separation of both effects.

In this work we explore general leading singularities in the scattering of massive parti-

cles via massless particles. Leading singularities, which are computed as multidimensional

residues, generically have support outside the physical region of integration [2, 3]. There-

fore they are not naturally located on any of the regions mentioned above. However, here

we argue that leading singularities associated to multiple discontinuities exclusively in the

t-channel contain all the information needed to reproduce the classical scattering. More-

over, the leading singularity itself is directly computing the classical contribution as we

show in several examples.

The main example in this work are the two leading singularities that determine the

full classical part of the one-loop scattering of two massive scalars with masses ma and mb

exchanging gravitons. The complete fully relativistic result for one of them is expressed

compactly as a contour integral

32π2G2 mb√
−t

M4(
4− t

m2
b

) 5
2

∮
Γ

dz

z3

(
1√
−x+ (u−s)

M2 z+
√
−xz2

)4(
1− (m2

a−m2
b−s)

M2

√
−t
mb

z−z2
)(

1+ (m2
a−m2

b−u)
M2

√
−t
mb

z−z2
) . (1.1)

The contour Γ computes the residue at z = 0 minus that at z = ∞ while M and x are

defined via the equations

M4 = (m2
a −m2

b)2 − su and (1 + x)2 =
t

m2
b

x. (1.2)

Here s, t, u are standard Mandelstam invariants satisfying s+ t+ u = 2(m2
a +m2

b).

The leading singularity computed by (1.1) has the topology of a triangle with a massive

mb propagator (see figure 3 in section 2).

The second leading singularity is the one corresponding to its reflection and it is ob-

tained by simply exchanging ma and mb.

The non-relativistic limit of (1.1) in the center of mass frame is

16G2π2mb

|~q|

(
6m2

am
2
b +

15

2
(ma +mb)2~p 2 +O

(
|~p|4
))

+O
(
|~q|0
)
, (1.3)

where ~q is the momentum transfer, while ~p is the average momentum of the system.
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In order to make the link between classical pieces of scattering amplitudes and their

leading singularities, we propose a construction using multiple dispersion relations in the

t-channel which projects out irrelevant information. In fact, (1.1) is nothing but the dou-

ble discontinuity across branch cuts in the t-channel of the one-loop amplitude. It turns

out that the leading singularity remains invariant, up to terms projected out by the con-

struction, after being integrated along the branch cuts in the dispersion integrals. Single

dispersion integrals have been used as a tool in the computation of corrections to classical

potentials for a long time (see e.g. the work of Feinberg and Sucher [40]) but we find that

multiple dispersion integrals provide a natural way of separating classical from quantum

contributions.

The final step is to add (1.1) to the contribution from the reflected leading singularity

and include a non-relativistic normalization to obtain1

M1-loop
classical(t)

4EAEB
=G2π2 (ma+mb)

|~q|

(
6mamb+

9(m2
a+m2

b)+30mamb

2mamb
~p2+O

(
|~p|4
))

. (1.4)

This is the known one-loop contribution to the classical part of the normalized ampli-

tude [32]. From this formula there is a standard procedure to obtain the classical potential,

V 1−loop
classical, in the post-Newtonian expansion2 (see e.g. [32] for details).

This paper is organized as follows. The main purpose of this work is to introduce the

concept of leading singularities in the context of gravitational scattering so in section 2

the general definition of leading singularities is introduced and illustrated via a variety

of examples. We start with theories containing only scalar particles where computations

are simpler and then move on to gravitational scattering. Conveniently, computations in

scalar theories provide useful intermediate results for their gravitation counterparts. All

examples are at one-loop with two- and higher loop cases postponed until section 4. In

section 3, we concentrate on the problem of reproducing the classical contributions to

the scattering of two massive particles via gravitons using the results from section 2. In

order to set the stage, we start with the tree-level computation using a BCFW recursion

relation construction which is then linked to a dispersion relation in the t-channel. This is

used to motivate a double dispersion projection in the t-channel at one-loop which leads

to the connections presented above between (1.1) and the classical contribution (1.4). In

section 4, we provide several results on leading singularities. These include a more formal

connection between leading singularities and multiple discontinuities which justifies their

use in section 3 as well as examples of two and higher loop leading singularities. In section 5,

we end with discussion which include some possible future directions.

2 Leading singularities in general theories

Scattering amplitudes possess a very intricate analytic structure in perturbation theory as

can be seen from imposing unitarity [7]. When the unitarity constraint is imposed in a

1A factor of 4 has been included which comes from the dispersion relations. This is explained in detail

in section 3.
2The reason (1.4) is not V 1−loop

classical is that to this order in coupling constants one has to subtract the

contribution from the iteration of the tree-level potential.

– 3 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
1

given channel, it relates the discontinuity of the amplitude to the exchange of on-shell states

between two sets of external particles. The one-particle exchange implies the existence of

poles while a two-particle exchange implies the presence of a branch cut. In most cases,

the discontinuities in a given channel also possess an intricate analytic structure and the

process can be repeated leading to what is known as generalized unitarity constraints [7].

The discontinuity across a pole is simply the residue at the location of the pole. Most

quantum field theory textbooks present discontinuities in a given channel from two-particle

exchanges and refer to them as unitarity cuts. These can also be thought of as residues of

the amplitude by taking two propagators 1/(L2
1 −m2

1 + iε) and 1/(L2
2 −m2

2 + iε) to define

variables 1/u1 and 1/u2 and integrate over contours |ua| = ε that encircle ua = 0 in the

corresponding complex planes. This process is usually known as “cutting” propagators.3

The term comes from the fact that this is equivalent to removing the principal part of

1/(L2
a−m2

a+ iε) while keeping the delta function imposing the on-shell condition L2
a = m2

a.

Generalized unitarity explores further discontinuities and these too can be realized as

contour integrals. Every time a residue is computed one explores a higher codimension

singularity. The maximal number of residues at L-loop order in four dimensions is 4L.

Taking 4L residues gives rise to the highest codimension singularity and its discontinuity

is known as the leading singularity [2–6].

Standard unitarity cuts can have divergences and might need a regulator. Divergences

come from integrals performed over non-compact contours. Leading singularities are com-

puted using only compact contours and are therefore finite. Also, just as unitarity cuts,

leading singularities only involve physical states and are gauge invariant (see e.g. [6]). These

features make them ideal quantities to study in general theories.

Before proceeding to the computation of leading singularities in gravitational scatter-

ing, we start with leading singularities in a theory with a massive and a massless scalar

field. Keeping in mind the applications to gravitational scattering we restrict the study

to amplitudes with four external states. The scattering picture for massive particles is

represented in figure 1, where our conventions are set to all-incoming states. Hereafter

we denote by ki the momenta associated to massless particles, while Pi will denote the

external momenta for massive ones.

2.1 Leading singularities in scalar theories

In this section we consider a variety of scalar theory leading singularities. Some scalars

have a mass while others are massless. Interaction terms are taken to be of all possible

orders, i.e., cubic, quartic, etc. The reason is that we are interested in the most general

leading singularities that can be present in gravitational interactions.

Massless box diagram. One of the simplest examples is the leading singularity of a

one-loop four particle amplitude in a massless scalar theory with trivalent interactions, see

3The cutting process also involves a step function θ(L0
a) but this will not play a role in this section.

These step function will be crucial in section 4 and we postpone their introduction until then.
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Figure 1. Scattering process of massive scalars. Throughout the text we will extensively discuss

the case m1 = m2 = ma and m3 = m4 = mb. Note that all momenta are incoming.

figure 2a. The leading singularity is given by a contour integral of the form

LS =

∫
ΓLS

d4L
M3(L1, k1, L2)M3(L2, k2, L3)M3(L3, k4, L3)M4(L4, k3, L1)

L2(L− k1)2(L+ k3)2(L− (k1 + k2))2
(2.1)

where L1 = L, L2 = L − k1, L3 = L − (k1 + k2) and L4 = L + k3. The contour ΓLS has

the topology of (S1)4 and it is defined by |L2| = ε, |(L − k1)2| = ε, |(L + k3)2| = ε, and

|(L − (k1 + k2))2| = ε. Each M3(p, q, r) is a fully on-shell three-particle tree amplitude of

the theory. In this example M3(p, q, r) is simply given by the cubic coupling constant of

the theory g3.

There are two contours ΓLS. Using the spinor helicity formalism,4 all external massless

particle momenta can be written as (ka)α,α̇ = (λa)α(λ̃a)α̇. The loop momentum at the

location of the poles becomes either Lα,α̇ = [1 2]
[3 2](λ1)α(λ̃3)α̇ or Lα,α̇ = 〈1 2〉

〈3 2〉(λ3)α(λ̃1)α̇. Note

that on the physical contour R4, this integral is IR divergent and needs a regulator.

The contour integral is easily performed and gives g4
3 × 1/st with s = (k1 + k3)2 and

t = (k1 + k2)2.

The final comment on this example is that the result 1/st is what it would have

been obtained by computing the integral, using e.g. dimensional regularization, and then

evaluating the discontinuity across the t-channel branch cut and the discontinuity of the

result across the s-channel branch cut [2]. Building on the intuition from standard unitarity

cuts, the t-channel discontinuity is computed by cutting 1/L2 and (L − (k1 + k2))2 while

that in the s-channel by cutting 1/(L−k1)2 and 1/(L−(k1 +k2))2. Here we have performed

both simultaneously.

Triangle with massive external particles. The next example is the one-loop scat-

tering of four massive scalars interacting via the exchange of massless scalars φ. Let us

assume that there are two kind of massive scalars fields ΦA and ΦB with masses ma and

4Any four-vector Pµ can be transformed into a bispinor by using the four-vector of Pauli matrices

Pµσναα̇ηµν . Given two spinors λα and λ′α, the SL(2,C) invariant product is denoted by 〈λ λ′〉 := λαλ
′
βε
αβ .

Likewise for spinors of the opposite helicity one has [λ̃ λ̃′].
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(a) (b)

Figure 2. (a) Box with internal and external massless particles. (b) Triangle with massive external

particles and massless internal particles. All lines in this work represent on-shell particles.

mb. They each have only one kind of interaction vertex with the massless scalars. We take

them to be quartic and cubic couplings respectively (see figure 2). The leading singularity

is computed by the integral

LS =

∫
ΓLS

d4L
M4(L1, P1, P2, L2)M3(L2, P4, L3)M3(L3, P3, L1)

(L+ P3)2(L2 −m2
b)(L− P4)2

(2.2)

where L1 = L, L2 = P4 − L and L3 = L+ P3. Once again, the on-shell amplitudes are all

given by the coupling constants M4(φ,ΦA,ΦA, φ) = g4, M3(φ,ΦB, φ) = g3.

It might be surprising that there is a leading singularity contour with four poles while

the integral only has three propagators. As it will be clear from the computation, a new

pole, not visible at first, appears when some propagators are cut [41].

The contour integral becomes

I =

∫
ΓLS

d4L

(L2 −m2
b)(L+ P3)2(L− P4)2

. (2.3)

Here P 2
3 = P 2

4 = m2
b. Note that the loop momenta L is associated to the massive propaga-

tor. In order to compute the integral, and for future convenience, we introduce a suitable

parametrization of L

L = z`+ ωq , `α,α̇ = λαλ̃α̇ . (2.4)

Here the integration variables correspond to the scales z, ω ∈ C and the (projective) spinors

λα, λ̃α̇. All together they parameterize L ∈ C while q is a fixed reference massless vector.

Cutting L2−m2
b means that we are dealing with the Lorentz invariant phase space integral

of a massive vector. It is well-known that the measure becomes [2, 42–44]

1

(2π)4

d4L

(L2 −m2
b)

=
1

(2π)4
z dz 〈λ dλ〉[λ̃ dλ̃]

dω

4(ω − m2
b

2z`·q )
, (2.5)
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where we expanded the massive propagator using L2 = 2zω`·q. For convenience we have

restored the factor (2π)4 from the measure and used 〈λ dλ〉 to denote εαβλαdλβ . The

integral around the pole L2 − m2
b = 0 can then trivially done as a contour integral in

the ω plane, extracting the corresponding residue. This fixes ω = m2
b

2z`·q , while the leading

singularity takes the form

I =
1

4(2πi)3

∫
ΓLS

zdz〈λ dλ〉[λ̃ dλ̃]

(2m2
b + 2L · P3)(2m2

b − 2L · P4)
. (2.6)

In order to compute the residue around the massless propagators we introduce at this

stage two auxiliary massless vectors, (p3)α,α̇ = (λ3)α(λ̃3)α̇ and (p4)α,α̇ = (λ4)α(λ̃4)α̇, which

satisfy the relations

P3 = p3 + xp4 , P4 = p4 + xp3 , x =
m2

b

2p3 · p4
. (2.7)

The last equation is just the on-shell condition for P3 and P4. It is easy to verify that

(1 + x)2

x
=

t

m2
b

or equivalently
(1− x)2

x
=
t− 4m2

b

m2
b

, (2.8)

so that x can be regarded as a useful parametrization of the t-channel as hinted already in

the introduction.5 Now we can choose the reference vector to be qα,α̇ = (λ3)α(λ̃4)α̇. We

also define its conjugate q̄α,α̇ = (λ4)α(λ̃3)α̇. As these are linearly independent, we expand

` = Ap3 +Bp4 + Cq +Dq̄ . (2.9)

The overall scale of ` is irrelevant as it can be absorbed into z and it can be used to set

D = 1. Imposing `2 = 0 fixes C = AB. Now we regard A,B ∈ C as the integration

variables corresponding to the measure 〈λ dλ〉[λ̃ dλ̃]. Performing the change of variables

leads to

I =
1

(2πi)3

(2p3 · p4)

16

∫
ΓLS

zdz dAdB

(m2
b + zp3 · p4(B + xA))(−m2

b + zp3 · p4(A+ xB))
. (2.10)

The location of the poles for the two propagators corresponds to A = −B = 2x
z(1−x) .

Performing the integrals finally leaves

I =
x

4m2
b(1− x2)

(
1

2πi

∫
ΓLS

dz

z

)
. (2.11)

We note the presence of emergent poles at both z =∞ and z = 0, directly arising from the

integration measure of the triple-cut. In this case both poles yield the same contribution for

the leading singularity. Thus, we are now in a position to define ΓLS as the contour enclos-

ing either of these, and the leading singularity as the corresponding residue. In section 4

we show how these poles arise naturally in a completely different parametrization, and we

5The transformation (2.7) is invertible except at the singular points x2 = 1, corresponding to the physical

threshold t = 0, 4m2
b. We will come back at this for the discussion of gravitational scattering.

– 7 –
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will discuss the meaning of the leading singularity as a second discontinuity operation in

the t-channel.

By choosing the contour at z =∞, i.e. Γ(S1)3×S1
∞

, and using the definition of x we can

write the final result as

LStriangle = g4(g3)2

∫
Γ

(S1)3×S1∞

d4L

(L2−m2
b)(L+P3)2(L−P4)2

=
g4(g3)2

4
√

(−t)(4m2
b−t)

. (2.12)

This leading singularity can be iterated in order to compute one with an arbitrary number

loops where scalar triangles are arranged in a nested topology (figure 5). In section 4 we

present more details on this and other higher loop examples.

Box with massive external particles. For our final example in this section consider

the case in which both massive scalars can only interact with the massless scalars via three

particle couplings. At one-loop, the amplitude with four external massive scalars gives rise

to the following contour integral (we suppress the three-particle amplitudes as they are all

given by the coupling constant),

LSbox =

∫
d4L

1

(L+ P3)2((L+ P3 + P1)2 −m2
a)(L2 −m2

b)(P4 − L)2
. (2.13)

This box contour integral is easy to compute using the previous parametrization. In fact,

cutting the three propagators associated to the triangle leads to the measure (2.11). We now

only need to include the fourth propagator, which we write in terms of the new variables

LSbox =
x

4(1− x2)m2
a

(
1

2πi

∫
ΓLS

dz

z

1

(L+ P3 + P1)2 −m2
a

)
=

x

8(1 + x)2m2
b

(
1

2πi

∫
ΓLS

dz

z2(1−x
1+x)q̄ · P1 + z(p3 − xp4) · P1 − x(1+x

1−x)q · P1

)

=
1

8t

(
1

2πi

∫
ΓLS

dy

y2(q · P1q̄ · P1) + y(p3 − xp4) · P1 − x

)
, (2.14)

where a change of variables z = y(1+x
1−x) was used in the last equality. Note that the poles at

z = 0 and z =∞ associated to the triangle leading singularity are replaced by two poles as-

sociated to the additional massive propagator. Also the non-analytic (i.e. containing a
√
−t)

prefactor is replaced by x
(1+x)2m2

b
= 1

t . Again, there are two possible contours defined by

|y2(q · P1q̄ · P1) + y(p3 − xp4) · P1 − x| = ε (2.15)

and centered around the two roots of the quadratic polynomial. Here we define the leading

singularity as the residue at one of the two poles. Clearly, the residue at the other pole

only differs by a sign as the integral has no other poles and the sum over the two residues

must vanish.

For future convenience, let us define the quantity M as a solution to the equation

M4 := −4(1− x)2(q · P1q̄ · P1) = (m2
a −m2

b)2 − su , (2.16)

– 8 –
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where we have used momentum conservation, s+ t+ u = 2(m2
a +m2

b) together with (2.7)

(see also eq. (2.28) below). Restoring the corresponding couplings, we find the leading

singularity to take the form

LSbox =
(g3)4

√
M4 − st

× 1

t

=
(g3)4√

(s−m2
a −m2

b)2 − 4m2
am

2
b

× 1

t
. (2.17)

This computation is also the basis for an infinite family of leading singularities with the

topology of a ladder with r+ 1 rungs, see figure 7. We discuss this case in section 4 where

it is shown how one can find 4r poles in an integral that only possesses 3r+ 1 propagators

following the construction introduced in [41].

2.2 Leading singularities in gravitational scattering

In this section we compute several examples of leading singularities in the scattering of

massive scalars interacting via gravitons. As shown in the scalar examples, leading sin-

gularities are built using on-shell amplitudes. Let us list all the relevant tree amplitudes

that will be used in this section. Scalar particles ΦA and ΦB again have masses ma and

mb while gravitons of positive and negative helicity are denoted by G±. Denoting the

momenta of the gravitons by ki and introducing κ =
√

32πG, we have

M3(Φ1,Φ2, G
+) =

κ

2

〈q|P1|k]2

〈q k〉2
, M3(Φ1,Φ2, G

−) =
κ

2

[q|P1|k〉2

[q k]2
, (2.18)

M4(Φ1,Φ2, G
+
3 , G

−
4 ) =

κ2

4

1

(P1 + P2)2

[k3|P1|k4〉4

[k3|P1|k3〉[k3|P2|k3〉
, (2.19)

M4(Φ1,Φ2, G
+
3 , G

+
4 ) =

κ2

4

m4
a

(P1 + P2)2

[k3 k4]4

[k3|P1|k3〉[k3|P2|k3〉
. (2.20)

The motivation for the notation 〈q|P |k] := (λq)αP
αα̇(λ̃α̇) can easily be explained by noting

that when P is replaced by a null vector p then 〈q|p|k] = 〈q p〉[p k]. These amplitudes have

been computed in a variety of ways in the literature (see e.g. [32, 35]) and they require

the introduction of a reference null vector q. It is easy to show that the amplitudes are

independent of the choice up to momentum conservation in exactly the same way as they

would be gauge invariant when written in terms of polarization vectors.

In this section we compute two one-loop leading singularities. The first is the analog

of the triangle topology in the purely scalar case while the second is the box topology. In

the previous section the corresponding contours were defined. The main difference here is

that unlike the purely scalar case, all tree-amplitudes are non-trivial and therefore modify

the computation in interesting ways. The starting point for both computations is the same

and it is given by the contour integral

I=
∑
h3,h4

∫
d4L

L2 −m2
b

1

(L+ P3)2(L− P4)2
M4(P1, P2, k

h3
3 , k

h4
4 )M3(k−h4

4 , P4, L)M3(L,P3, k
−h3
3 )

(2.21)
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Figure 3. The box and triangle leading singularities can be computed from the triple-cut diagram.

where k3 = L+P3 and k4 = L−P4. The sum is over all possible helicity configurations (see

figure 3). Such a sum decomposes the leading singularity into four pieces, Ih3,h4 , as follows

I = I−+ + I+− + I++ + I−−. (2.22)

We start with h3 = −2, h4 = +2. The configuration h3 = −h4 = +2 is then obtained

by conjugation. At the end we briefly explain how the h3 = h4 configurations have zero

contribution to the triangle leading singularity.

Performing now the triple cut in the visible propagators we again obtain the mea-

sure (2.11), leading to

I−+ =
x

4(1−x2)m2
b

(
1

2πi

∫
ΓLS

dz

z
M4(P1,P2,k

−
3 ,k

+
4 )M3(k−4 ,P4,L)M3(L,P3,k

+
3 )

)
. (2.23)

In order to compute the z integral using (2.18) we need to provide expressions for the

momenta ki, i = 3, 4, and their corresponding spinor variables. Note that any little group

transformation on these cancels in (2.23), as they correspond to internal particles. Thus

we can freely choose the spinor variables by arbitrarily decomposing the momenta k3 and

k4. These can be readily computed using the parametrization of section 2.1, giving

k3(z) = r(x)

(
λ3 +

z

r(x)
λ4

)
︸ ︷︷ ︸

λk3

(
λ̃3 −

x

z
r(x)λ̃4

)
︸ ︷︷ ︸

λ̃k3

,

k4(z) = r(x)
(
λ4 +

x

z
r(x)λ3

)
︸ ︷︷ ︸

λk4

(
λ̃4 −

z

r(x)
λ̃3

)
︸ ︷︷ ︸

λ̃k4

, (2.24)
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where r(x) = (1+x)/(1−x). Here we have suppressed the spinor indices since all quantities

involved are 2× 2 matrices. We can now compute

M3(k−4 , P4, L)M3(L,P3, k
+
3 ) =

κ2

4

(
〈q̄|P3|k3]2

〈q̄ k3〉2

)(
[q̄|P4|k4〉2

[q̄ k4]2

)
=
κ2

4

(
2p3 · p4

〈k4 p4〉[k3 p3]

[k4 p3]〈p4 k3〉

)2

=
κ2

4

m4
bx

2

z4
r(x)4 . (2.25)

In the three-point amplitudes we have chosen the reference spinors corresponding to the

vector q̄. Plugging this into (2.23) we find our first main result

I−+ =
κ2m2

bx
3

16(1− x2)

(
1 + x

1− x

)4( 1

2πi

∫
ΓLS

dz

z5
M4(P1, P2, k

−
3 , k

+
4 )

)
. (2.26)

At this stage note that this formula is very general as nothing relating to the identity of

the particles Φ1 and Φ2 has been used. This means that one can choose M4(P1, P2, k
−
3 , k

+
4 )

according to the problem in consideration. In principle one can replace the scalar parti-

cles by any two particles with given mass (including massless) and spin and compute the

respective leading singularity. In this work we are interested in massive scalars undergo-

ing gravitational scattering. This means that M4(P1, P2, k
−
3 , k

+
4 ) is the amplitude given

in (2.19) for a scalar particle of mass ma. In section 4 we will also use this expression in

order to explore the leading singularity associated to a two-loop diagram.

Returning to the computation, using (2.24) we have

M4(P1,P2,k
−
3 ,k

+
4 ) =

κ2

4

1

(P1+P2)2

[k3|P1|k4〉4

[k3|P1|k3〉[k3|P2|k3〉

=κ2 z2

(P1+P2)2

(
1+x

1−x

)2

×
z2(1−x

1+x)2q̄ ·P1+z(1−x
1+x)(p3−p4)·P1−q ·P1(

z2(1−x
1+x)q̄ ·P1+z(p3−xp4)·P1−x(1+x

1−x)q ·P1

)
(P1↔P2)

. (2.27)

This formula depends on the auxiliary variables p3, p4, q, and q̄. It is easy to rewrite

everything in terms of Mandelstam invariants and masses by first using (2.7) to find

(p3 − xp4) · P1 =
1

2

(
1 + x

1− x

)
(m2

b −m2
a + s) , (2.28)

(p3 − xp4) · P2 =
1

2

(
1 + x

1− x

)
(m2

b −m2
a + u) (2.29)

and then performing the scaling z → 2 (1+x)
M2

√
−x(q ·P1)z to write the integral (2.26) in the

compact form

mb√
−t

M4(
4− t

m2
b

) 5
2

1

2πi

∮
Γ

dz

z3

(
1√
−x+ (u−s)

M2 z+
√
−xz2

)4(
1− (m2

a−m2
b−s)

M2

√
−t
mb

z−z2
)(

1+ (m2
a−m2

b−u)
M2

√
−t
mb

z−z2
) . (2.30)
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We have temporarily omitted the couplings. Recall that M is defined in (2.16) as a solution

of M4 = (m2
a −m2

b)2 − su while x is given by (1 + x)2 = tx/mb. Note that even though

M2 appears explicitly in the leading singularity contour integral, rescaling z shows that it

is only a function of M4. The reason we keep it in the form given in (2.30) is to keep z is

dimensionless.

The branch of the square root in the solutions for x can be changed by replacing x→ 1
x

as it can be seen by writing the quadratic equation as 1√
−x −

√
−x =

√
−t/mb.

At this point we have to choose the contour Γ. Choosing the contour that computes

residues at z = 0 or z = ∞ gives rise to a triangle topology, while circling one of the two

solutions of any of the two quadratic factors leads to box topologies. Let us choose the

contour Γ = S1
∞ which computes the residue at z = ∞. This gives rise to the final form

for I−+.

One might have thought that since the residue is only a function of the Mandelstam

variables then conjugating the internal helicity of the gravitons would have no effect on

the answer and I−+ would be equal to I+−. This naive expectation is not true as the final

answer is not a single valued function of t.

It can be shown that I+− can be obtained by performing the change z → −1/z at the

level of the integrand in I−+. This in turn can be reabsorbed into a change of integration

contour while keeping the integrand unchanged, effectively mapping S1
∞ → −S1

0 (the minus

sign coming from the inversion). This implies, as can be checked directly from (2.30), that

I+− corresponds to minus I+− evaluated on the other branch of
√
−t. Alternatively, adding

up both contributions one finds that I−+ + I+− can be written as (2.30) on the contour

Γ = S1
∞ − S1

0 .

Finally we move on to the remaining two helicity configurations. After inserting the

four-point amplitude for same helicities (2.20) into the expression (2.21), we are left with

a contour integral of the form(
1− x
1 + x

)∫
ΓLS

zdz(
z2(1−x

1+x)q̄ · P1 + z(p3 − xp4) · P1 − x(1+x
1−x)q · P1

)
(P1 ↔ P2)

, (2.31)

which has zero residue at both z = 0 and z = ∞. Hence I++ = I−− = 0 for the

triangle leading singularity. This observation is consistent with results in the literature

which use single unitarity cuts and also consider different helicity configurations in their

computations [32].

Restoring the factors the gravitational coupling we define the leading singularity of

the triangle topology, LStriangle/16π2G2, as (2.30) integrated on Γ = S1
∞ − S1

0 which is the

result presented in (1.1) in the introduction.

We now proceed to compute the box leading singularity. In contrast to the triangle,

this will turn out to be analytic in t and hence invariant under x → 1
x . We can easily

compute it by selecting one of the poles from the denominators, corresponding to the

massive propagators of the scalar particle φA. Let us now perform the cut in the propagator

(P3 + k3(z))2−m2
a = 2P3 · k3(z). Solving the quadratic equation for z, selecting one of the
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roots and computing the residue around it gives

LS−+
box = G2π2 (s−m2

a −m2
b ±
√
M4 − st)4

t
√
M4 − st

(2.32)

= G2π2

(
s−m2

a −m2
b ±

√
(s−m2

a −m2
b)2 − 4m2

am
2
b

)4

t
√

(s−m2
a −m2

b)2 − 4m2
am

2
b

, (2.33)

where the sign± of the square root depends on the chosen root for P3·k3(z) = 0. The change

in the sign can be shown to account for the parity flip, leading to the contribution LS+−
box.

This result turns out to be strikingly simple. Note that the denominator corresponds to

the leading singularity of the scalar box (2.17) while the numerator involves higher powers

of the momenta, but tends to a constant in the non-relativistic limit s→ (ma +mb)2. The

fact that the gravitational leading singularity yields a pole 1
t enables us to easily extend the

computation to r-loop ladder, as in the scalar case. This is discussed in section 4. Finally

the case with equal helicities LS++
box can be treated analogously and yields

LS++
box = G2π2 (mamb)4

t
√

(s−m2
a −m2

b)2 − 4m2
am

2
b

. (2.34)

3 Classical gravitational scattering of two massive scalars

In this section we aim to apply leading singularities to the computation of one-loop classical

contributions to the scattering of two massive particles A and B with masses ma and

mb. This is a computation that has been performed in the literature using a variety of

methods [17–20, 22]. The techniques closest to our approach use on-shell methods such as

BCFW recursion relations to efficiently compute tree-level amplitudes that are then used

in unitarity cuts of loop amplitudes [28, 32, 34]. Using unitarity cuts for constraining, and

sometimes completely determining, the integrand of an amplitude is known as the unitarity-

based method developed mainly in the 90’s for gauge theory computations [45, 46]. Once

the integrand is known, reduction techniques are applied to write tensor integrals as sums

over scalar integrals. The latter can be computed explicitly. In the non-relativistic limit

two contributions are identified [20], the first, usually denoted by S = π/
√
−t, leads to

classical pieces and the second, T = log(−t), is quantum mechanical. As mentioned in the

introduction, both contributions are generically present and are separated at the end of

the computation.

The key idea in this section is to use a procedure we call multiple t-channel projections.

In few words, we consider an amplitude as an analytic function of t (possibly defined on a

multi-sheeted Riemann surface with punctures). The projection corresponds to replacing

the original function by one that agrees with the original on singularities at finite values of t

but which vanishes at infinity. In other words, we mod out by singularities at large t. This

is analogous to what in dispersion relation theory are called subtraction terms. We find

that at least up to one-loop, repeating this projection multiple times, in a way explained

below, projects out quantum contributions and leaves behind the classical information.
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In section 2 we explained how leading singularities are generalizations of standard

unitarity cuts. The latter compute discontinuities of the amplitude across branch cuts.

At one-loop, such discontinuities can themselves be functions with branch cuts. Leading

singularities (LS) at one-loop compute such second discontinuities. This was explained in

the case of a box-topology LS. As it turns out, the LS with a triangle topology computed in

the previous section is the double discontinuity in the t-channel (The fact that the triangle

topology LS has such an interpretation is discussed in detail in the next section). This

means only the triangle topology survives the double t-channel projection and integrating

back the double dispersion relation in the t-channel gives rise the classical contribution to

the amplitude.

In section 5 we explain what higher loop generalizations of this construction and what

the role of quantum corrections could be.

Before turning to the one-loop computation let us start at tree-level, which already

motivates the idea of what we call the projection in the t-channel.

3.1 Tree-level computation

We use a similar parametrization of the momenta as in the previous section but now tailored

to a BCFW computation that uses the t-channel.

Let P1 = p1 + yap3 and P3 = p3 + ybp1. Here (p1)α,α̇ = λ1,αλ̃1,α̇ and (p3)α,α̇ = λ3,αλ̃3,α̇

are null momenta while ya = m2
a/2p1 · p3 and yb = m2

b/2p1 · p3 ensure that P 2
1 = m2

a and

P 2
3 = m2

b. We proceed by using a BCFW deformation [47, 48] of the momenta via

P1(z) = P1 + zλ1λ̃3, P3(z) = P3 − zλ1λ̃3. (3.1)

Clearly P1(z)2 = m2
a and P 2

3 (z) = m2
b for any value of z. The amplitude under consideration

is M tree
4 ({ΦA, P1}, {ΦA, P2}, {ΦB, P3}, {ΦB, P4}) which under the deformation becomes a

function of z denoted M4(z). Here the subscript indicates the number of particles.

The BCFW construction starts with the identity

M4(0) =
1

2πi

∮
|z|=ε

dz

z
M4(z). (3.2)

Deforming the contour, or equivalently, using the residue theorem one finds an expression

written in terms of the poles and residues of M4(z)/z. There are two poles at finite

locations in z. One is determined by requiring t(z) = (P1(z) +P2)2 = 0 while the other by

u(z) = (P1(z) + P4)2 = 0. The pole at u(z) = 0 has a non-zero residue only if there are

interaction terms among particles A and B. There is also a pole at z =∞.

In preparation for the one-loop computation we write t(z) = t+ 2zq · P2. Recall that

q is the null vector λ1λ̃3. This means that

M(0) = − 1

2πi

∮
|t(z)|=ε

dz

z
M(z) + . . . = − 1

2πi

∮
|t′|=ε

dt′

t′ − t
M(t′) + . . . (3.3)

where the change of variables from z to t′ = t(z) was performed. The ellipses in the first

formula stand for other poles, either at finite locations or at infinity.
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The explicit computation of the residue of M(z)/z at t(z) = 0 is very simple. Unitarity

determines the residue to be

M3(P1(z∗), P2, G
−)

1

t
M3(P3(z∗), P4, G

+) +M3(P1(z∗), P2, G
+)

1

t
M3(P3(z∗), P4, G

−) (3.4)

where z∗ is satisfies t(z∗) = 0.

Using the explicit form of the three-particle amplitudes the product can be written as

(let us suppress the couplings temporarily)

M3(P1(z∗), P2, G
−)M3(P3(z∗), P4, G

+) =

(
〈k|P1(z)|η̃]

[k η̃]

)2(〈η|P3(z)|k]

〈η k〉

)2

. (3.5)

Here η and η̃ are reference spinors that can be freely chosen while k represents the mo-

mentum vector of the graviton exchanged. A natural choice for the reference spinors is

η = λ1 and η̃ = λ̃3. The factors in the numerator simplify to 〈k|P1(z)|λ̃3] = 〈k 1〉[1 3] and

〈λ1|P3(z)|k] = 〈1 3〉[3 k]. Very nicely all dependence on k cancels out to give

M3(P1(z∗), P2, G
−)M3(P3(z∗), P4, G

+) = (2p1 · p3)2 =
m2

am
2
b

yayb
(3.6)

where we have used 〈1 3〉[1 3] = 2p1 · p3 and the definitions of ya and yb. A completely

analogous computation shows that

M3(P1(z∗), P2, G
+)M3(P3(z∗), P4, G

−) = (2p1 · p3)2(yayb)2 = m2
am

2
byayb. (3.7)

Combining both contributions one has that t-channel part of the amplitude is

− 1

2πi

∮
|t′|=ε

dt′

t′ − t
M(t′) = m2

am
2
b

(
yayb +

1

yayb

)
1

t
. (3.8)

Using (P1 + P3)2 = (1 + ya)(1 + yb)2p1 · p3 and the definitions of ya and yb it is easy to

show that

M tree
4 ({ΦA, P1}, {ΦA, P2}, {ΦB, P3}, {ΦB, P4}) =

(s−m2
a −m2

b)2 − 2m2
am

2
b

t
+ . . . (3.9)

As the ellipses indicate, there are other pieces that are missing to obtain the full amplitude.

However, as it is well-known, only the piece computed from the t-channel dispersion relation

is needed in order to account for the long range interactions. The missing pieces are

polynomials in t and once the non-relativistic limit is taken these polynomials give rise to

contact interactions.

We can now recover the standard form of the Newtonian potential in Fourier space by

writing (3.9) in the COM frame [20], which is well suited to perform the non-relativistic

expansion. In this frame

t = −~q 2 ,

s−m2
a −m2

b =

(
2mamb +

(ma +mb)2

mamb
~p 2 +O

(
|~p|4
))

+O
(
|~q|2
)

(3.10)

– 15 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
1

where ~q corresponds to the momentum transfer vector,6 and ~p accounts for the (average)

momentum of the system. In this coordinates, the energies associated to each particle read

Ea = ma +
~p 2

2ma
+ . . . , Eb = mb +

~p 2

2mb
+ . . . (3.11)

Restoring the couplings κ =
√

32πG in (3.9), the classical potential is given by [40]

M tree
classical

(4EAEB)
= 4πG

mamb

~q 2

(
1 +

(3m2
a + 8mamb + 3m2

b)

2m2
am

2
b

~p 2 +O
(
|~p|4
))

. (3.12)

3.2 One-loop computation

The tree-level computation hints to the fact that dispersion relations in the t-channel are

the only relevant ones to the classical scattering. In fact, one could have started from the

trivial identity

M tree
4 (t) =

1

2πi

∮
|t′−t|=ε

dt′

t′ − t
M tree

4 (t′) (3.13)

and deformed the contour to pick up the pole at t′ = 0 and at t′ = ∞. The former gives

the result shown in (3.8) while the latter gives the extra pieces not relevant for the long

range interactions.

At one-loop level one expects to find branch cuts. Using the same dispersion relation

formula (3.13), a contour deformation localizes the integral along a contour hugging the

branch cut in the t-channel. The integral can be written as

M1-loop
4 (t) =− 1

2πi

∫
Γt

dt′

t′−t
M1-loop

4 (t′)+. . .=− 1

2πi

∫ tf

ti

dt′

t′−t
∆tM

1-loop
4 (t′)+. . . , (3.14)

where Γt is the contour hugging the cut which starts at t′ = ti and ends at t′ = tf . In

the second equality the integral performed over the branch cut and the integrand is the

difference of the values of M1-loop
4 (t) on both sides of the cut at t. This is known as the

discontinuity of M1-loop
4 across the cut or ∆tM

1-loop
4 (t′). Here again, the ellipses indicate

other pieces which correspond to contributions from t′ =∞.

The presence of branch cuts seems to make the loop case different from the tree level

one. However, this is not where the difference lies as the pole 1/t found at tree level can

also be thought of as a branch cut by deforming it to 1/
√
−t(4µ2 − t) with µ � 1 an

auxiliary mass scale. From this point of view the tree level formula is also given by (3.14)

with ti = 0 and tf = 4µ2 with the limit µ→ 0 understood.

What makes one-loop level different from tree level is that ∆tM
1-loop
4 (t) has additional

branch cuts. In fact it has another branch cut in the t-channel. Applying a dispersion

relation argument again to ∆tM
1-loop
4 (t) one finds

M1-loop
4 (t) =

1

2πi

∫ tf

ti

dt′

t′ − t
1

2πi

∫ t′f

t′i

dt′′

t′′ − t′
∆t∆tM

1-loop
4 (t′′) + . . . . (3.15)

6Here we slightly abuse the notation and use ~q for the three-momentum transfer while in other parts of

the text we use q for a reference massless four-vector. The meaning should be clear from the context and

the use of the vector arrow in the case of the momentum transfer.
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It turns out that the double dispersion relation in this formula now contains all the classical

scattering information. In other words, quantum corrections and contact interactions are

projected away by the multiple discontinuities in the t-channel.

As discussed in the introduction of this section and in detail in the next section, the

double discontinuity in the t-channel is nothing but the leading singularity associated with

the triangle topology.

It is important to mention that we are treating the amplitude as an analytic function

of t,ma and mb and not restricting it to a particular physical region. This means that even

though we borrow the “t-channel” terminology, the computation is not restricted to that

region. Therefore in addition to the standard branch cut used in dispersion relations in

the t-channel which runs e.g. from ti = 4m2
a to tf =∞ [15] we also allow another running

from ti = −∞ to tf = 0. Once the contour of integration has been deformed to enclose

both branch cuts we can equivalently express the result assuming that the branch cut runs

from ti = 0 to tf = 4m2
a since we are ignoring terms that come from infinity. Of course,

there is also a second branch cut now running from ti = 0 to tf = 4m2
b.

The final formula for the one-loop contribution to the classical scattering is then

M1-loop
classical =

1

(2πi)2

∫ 4m2
a

0

dt′

t′ − t

∫ 4m2
a

0

dt′′

t′′ − t′
LSA(t′′) +

1

(2πi)2

∫ 4m2
b

0

dt′

t′ − t

∫ 4m2
b

0

dt′′

t′′ − t′
LSB(t′′).

(3.16)

Let us rewrite the leading singularity LSB(t)/16π2G2 computed in section 2.2 for the

reader’s convenience

mb√
−t

M4(
4− t

m2
b

) 5
2

∮
Γ

dz

z3

(
1√
−x + (u−s)

M2 z +
√
−xz2

)4(
1− (m2

a−m2
b−s)

M2

√
−t
mb

z − z2
)(

1 + (m2
a−m2

b−u)
M2

√
−t
mb

z − z2
) . (3.17)

Recall that the contour Γ = S1
∞−S1

0 . computes the residue at z =∞ minus that at z = 0

while M and x are defined via the equations

M4 = (m2
a −m2

b)2 − su and (1 + x)2 =
t

m2
b

x. (3.18)

At this point one might worry that LSB(t) is a very complicated function of t and hence

the dispersion integrals would lead to complicated functions. Moreover, the leading singu-

larities are to be too singular around t = 4m2
b to be integrable. Let us postpone the issue

of the double pole at t = 4m2
b and proceed to compute the residue at infinity and at z = 0.

The contour integral at z =∞ has the form (R1x+R2x
2 +R3x

3)/M4 while that at z = 0

is −(R1/x + R2/x
2 + R3/x

3)/M4, where Ra = Ra(s, u,ma,mb) are polynomials in their

variables. Subtracting and multiplying by the prefactor in order to compute the leading

singularity one finds

LSB(t) = 16π2G2 mb√
−t

M4(
4− t

m2
b

) 5
2

(
R1

(
x+

1

x

)
+R2

(
x2+

1

x2

)
+R3

(
x3+

1

x3

))
. (3.19)

It is easy to show that any combination of the form xm + x−m is a polynomial in t/m2
b of

degree m. For example, x+ 1/x = (t/m2
b)− 2.
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Now we can go back to the problem of integrating this expression. Here we have to

replace u = −s− t+2(m2
a+m2

b) as all dependence on t must be explicit for the integration.

The polynomial of degree three in t in the numerator now becomes one of degree six after

removing u. The next step is to write this polynomial as one in t − 4m2
b. Finally, we are

left with terms of the form

1√
−t(4m2

b − t)
1

(4m2
b − t)2−m with m ∈ {0, 1, 2, . . . , 6}. (3.20)

When m = 0 or m = 1, the dispersion integral does not converge. The way to resolve the

problem caused by the presence of the pole at t = 4m2
b is to deform it so that it separates

from the branch point by a small amount ε. More explicitly, we compute∫ 4m2
b

0

dt′

(t′ − t)
√
−t′(4m2

b − t′)
1

(4m2
b − t′ + ε)2−m . (3.21)

The result of the integration can be expanded around ε = 0 to discover that all singular

terms are again meromorphic functions in the t-complex plane with poles at t = 4m2
b, if

any at all. These functions are of the same kind that the projection along the t-channel we

defined above mods out by. The justification for doing so is that their final contribution

to the amplitude only lead to terms that do not contribute to classical effects (see e.g.

appendix B in [28] for more details on why these kind of terms can be discarded).

Restricting our attention to the finite contributions in the ε expansion one discovers

that, up to terms mod out by the t-projection, a copy of the original function, i.e.,∫ 4m2
b

0

dt′

(t′ − t)
√
−t′(4m2

b − t′)
1

(4m2
b − t′ + ε)2−m =

iπ√
−t(4m2

b − t)
1

(4m2
b − t)2−m + . . . .

(3.22)

In other words, these functions are self-similar under the dispersion relation projection.

This means that the leading singularity itself can be taken to be self-similar. Therefore, a

simple form of the classical contribution of the one-loop amplitude can be obtained

M1-loop
classical(t) =

LSA(t) + LSB(t)

4
. (3.23)

Restoring the couplings, the non-relativistic limit of (3.23) in the center of mass frame is

M1-loop
classical(t) =G2π2 (ma+mb)

|~q|

(
6m2

am
2
b+

15

2
(ma+mb)2~p2+O

(
|~p|4
))

+O
(
|~q|0
)
. (3.24)

Therefore one obtains

M1-loop
classical

(4EAEB)
=G2π2 (ma+mb)

|~q|

(
6mamb+

(9(m2
a+m2

b)+30mamb)

2mamb
~p2+O

(
|~p|4
))

, (3.25)

which agrees with the results in the literature [32].

4 More on leading singularities: meaning and higher loops

In this section we collect some results on leading singularities which are either used in

previous sections and require more detailed explanations or provide useful starting points

for generalizations to higher loops.
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4.1 Triangle leading singularities as a second discontinuity

One of the key ingredients in the previous section is the fact that the triangle topology

leading singularity is the double discontinuity across the t-channel. In section 2 we briefly

argued why the box topology leading singularity is the discontinuity in the t-channel of the

function obtained by computing the discontinuity in the s-channel of a one-loop amplitude.

In this section we give a more detailed explanation of this connection by working the cutting

procedure taking into account the step functions involved.

Consider again the leading singularity for the scalar triangle of figure 2b. Cutting the

propagators 1/(L+P3)2 and 1/(L−P4)2 clearly computes the discontinuity in the t-channel.

Further cutting 1/(L2 − m2) and the emergent pole is very similar to the massless box

computation of the first example. However, we will see that the meaning is very different:

as anticipated, the second operation computes a discontinuity again across the t-channel.

To illustrate this, let us compute explicitly the first unitarity cut. When regarded as

a Feynman diagram, this corresponds to the imaginary part of the amplitude. This time

let us parameterize the massless loop momenta as K = vλλ̃. Define also Q := P3 + P4 to

be the momentum transfer. The discontinuity can then be written as [2]

∆triangle = − 1

4(2π)2

∫
Γ∆

dv〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉
δ(Q2 + v[λ̃|Q|λ〉) , (4.1)

where the delta function arises from cutting the second massless propagator, with momen-

tum Q−K, see figure 4. Here the contour Γ∆ is defined such that the loop momenta K is

real, i.e. v ∈ R and λ† = λ̃. After fixing v = − Q2

[λ̃|Q|λ〉 we find that the integrand develops

a new pole in [λ|Q|λ〉:

∆triangle = − 1

4(2π)2

∫
Γ∆

〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉[λ̃|Q|λ〉
. (4.2)

The meaning of new the pole is clear: it corresponds to v = − Q2

[λ̃|Q|λ〉 → ∞, rendering

the loop momenta K divergent. This is exactly what we get for z → 0 or z → ∞ in the

previous parametrization (see (2.24)). Thus we again find the existence of a hidden pole

in the triangle, arising from the measure of the cut in the visible propagators.

We can solve the integral for the spinor helicity variables by introducing Feynman

parameters, and then performing the integral over the real contour Γ∆ as in [44]

∆triangle = − 1

4(2π)2

∫ 1

0
du

∫
Γ∆

〈λ dλ〉[λ̃ dλ̃]

[λ̃|(1− u)P3 + uQ|λ〉2

=
1

4(2πi)

∫ 1

0
du

1

((1− u)P3 + uQ)2

=
1

4(2πi)

∫ 1

0
du

1

(1− u)2m2
b + ut

=
1

4m2
b

1

2πi

∫ 1

0
du

1

(u− u+)(u− u−)
, (4.3)
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where u+ = −x and u− = − 1
x , and x is given by (2.8). At this stage we are interested

in the analytic properties of ∆triangle, hence we regard it as a function of the complexified

t variable, with potential branch cuts. We assume that the solutions u+ and u−, for a

given t ∈ C do not lie in the interval [0, 1], such that the integral converges. With this

considerations, the expression can be explicitly integrated to give

∆triangle =
1

4π
√

(−t)(4m2
b − t)

arctanh

(√
4m2

b − t
−t

)
. (4.4)

We can now study the behavior of ∆triangle associated to analytically continuing t→ eiφt,

with 0 ≤ φ < 2π. For t ∈ (0, 4m2
b) we find a further discontinuity corresponding to the

square root factor. This is easily seen by noting that

u+ − u− =
1− x2

x
=

√
(−t)(4m2

b − t)
m2

b

. (4.5)

Hence, for t ∈ (0, 4m2
b), the complex rotation corresponds to exchanging the roots u− and

u+. The discontinuity associated to the exchange of the roots of a second order polynomial

can be easily computed, by contour deformation, as the residue in any of such roots. We

thus have

∆2
triangle =

1

4m2
b

1

(u+ − u−)
Θ(t)Θ(4m2

b − t)

=
1

4
√

(−t)(4m2
b − t)

Θ(t)Θ(4m2
b − t) . (4.6)

Note that here we have explicitly written the step functions, which account for the location

of the new branch cut. The process can be trivially iterated to compute further discon-

tinuities, leading to the exact same contribution (4.6) (up to factors of 2), which can be

understood as the “maximal ambiguity” in the t channel. That is to say, the expression

is self similar under higher dispersion relations in the sense explained in section 3. The

location of the new branch cuts coincide with the original one coming from the first dis-

continuity, that is, the unitarity cut [7]. The two branch points t = 0, t = 4m2
b have the

physical meaning of being the threshold for production of massless and massive states,

respectively [36]. Furthermore, they correspond to the non-relativistic limit of different

physical regions, i.e. physical processes in the t and s channel, respectively [14, 15].

The main observation is that (4.6) is precisely the leading singularity computed in

subsection 2.1. In fact, computing the residue in the u-plane accounts for cutting the

massive propagator [λ̃|P3|λ〉 in the integral over λ, λ̃. The real contour λ̃ = λ† can then

be deformed to circle the emergent pole [λ̃|Q|λ〉 = 0.

We can now provide further details of this process for the case of the complete one-loop

gravitational scattering represented in figure 1. It is instructive to consider complexified

external momenta, such that the momentum transfer reads Q = P3 +P4 = (iq, 0, 0, 0), with

t = Q2 = −q2. For this configuration, all the massive propagators [λ̃|Pi|λ〉, i = 1, 2, 3, 4

have support on the real contour given by Γ∆. Specifically, the first discontinuity of the
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Figure 4. Alternative parametrization of the loop momenta in the scalar triangle diagram.

1-loop amplitude has the form

∆full =
1

Q2

∫
Γ∆

〈λ dλ〉[λ̃ dλ̃]
F (λ, λ̃, P1, P3, Q)

[λ̃|Q|λ〉6
∏4
i=1([λ̃|Pi|λ〉+ iε[λ̃|Q|λ〉)

(4.7)

where F is a polynomial in its arguments and Γ∆ is defined by λ̃ = λ†. We have also

absorbed a factor of Q2 into the definition of ε. Γ∆ can be easily parameterized by putting

λ = (1, x+iy), with 〈λ dλ〉[λ̃ dλ̃] = dxdy. The second discontinuity can then be understood

as the ambiguity in the iε prescription, which yields the corresponding ambiguity in ∆full

as a function of t. In order to compute it, it is natural to cut the massive propagators one

by one, which already induces the triangle cut of figure 3, and sum over all such residues.

The remaining 1-dimensional contour in the x, y variables can be deformed to encircle the

pole at [λ̃|Q|λ〉, yielding the triangle leading singularity.

We have also shown that the triangle leading singularity encodes the precise non-

analytical structure needed to recover the 1-loop effective potential from gravitational

scattering. This turns it into a natural candidate for evaluating classical corrections to

low energy phenomena in a wide range of effective field theories.

The simplicity of the leading singularity computation, as contrasted with previous ap-

proaches, strongly motivates the study of higher loop corrections to long range interactions.

This is further supported by the fact that these quantities do not suffer from divergences

which are common in loop integrals, and hence become good candidates for building blocks

of a low energy effective theory. Also, as seen in section 2.1, the 1-loop box and triangle

diagrams define a contour that certainly projects out all the other scalar integrals. Thus,

the leading singularity contour can be used at higher loops to compute coefficients in the

scalar integral expansion, in order to decide if a given scalar diagram contributes to the

classical potential. We now proceed to point out some progress in these directions.
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4.2 Higher-loop examples

4.2.1 Iterating triangle leading singularities

We can iterate the result for the scalar triangle to an arbitrary number of loops. Consider

first the double triangle diagram of figure 5, where the five visible propagators are cut. All

the particles in the diagram are on-shell, thus we can first compute the leading singularity

in the upper triangle. As shown in the previous subsection, performing the triple cut in

the upper triangle and taking the residue at z = ∞ is equivalent to introduce Feynman

parameters and compute the residue in the u plane. The result is given by (4.6), which we

can now write as

1

4(2πi)

∫
ΓLS1

du
1

(1− u)2m2
b + uQ̂2

=
1

4

√
(−Q̂2)(4m2

b − Q̂2)
. (4.8)

Here Q̂ = Q−L2, and we have omitted the functions Θ(Q̂2)Θ(4m2
b− Q̂2) associated to the

second branch cut. We will now see, however, that these precisely define the corresponding

contour LS2 for the Leading Singularity. Parameterizing L2 = vλλ̃, the leading singularity

of the full diagram reads

LS =

∫
ΓLS2

dv〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉
1√

(−Q̂2)(4m2
b − Q̂2)

(4.9)

where Q̂2(v) = Q2 + v[λ̃|Q|λ〉. We find the presence of a branch cut in the v-plane directly

arising from the integration of the upper triangle. This is the analog of the hidden pole

[λ̃|Q|λ〉 that appears in the 1-loop case, thus it is natural to define the new contour LS2

to enclose it. Furthermore, this accounts for inserting the function Θ(Q̂2)Θ(4m2
b − Q̂2)

into the integrand, which arise naturally as part of the second discontinuity (4.6). The

integration over the branch cut in v is easily done after putting v = − Q2

[λ̃|Q|λ〉y and yields

eq. (4.12) below. However, let us retrace our steps to see if there is another way leading to

the final result. Let us write the first leading singularity using the l.h.s. of equation (4.8)

and commute the integration over the u and v variables in (4.9). This leads to

LS =

∫
〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉[λ̃|Q|λ〉

∫
du

∫
dy

Q2

(1− u)2m2
b + u(1− y)Q2

. (4.10)

Again we have set v = − Q2

[λ̃|Q|λ〉y. In the integral sign we have omitted the explicit con-

tours for simplicity. We find the emergent pole [λ̃|Q|λ〉 arising from the Jacobian of the

v-integration. This time, however, we note that there is no branch cut in the y plane, but

instead a simple pole, which residue readily gives

LS =

∫
ΓLS

〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉[λ̃|Q|λ〉

∫
du

u
(4.11)

which again generates a simple pole in the u plane, nicely turning the original quadratic

denominator of (4.8) into a linear one. After restoring the corresponding factors, the

– 22 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
1

Figure 5. 2-loop nested triangle. The solid lines represent massive particles exchanging massless

states, represented by dashed lines.

residue in the u plane is simply

LS = − 1

(2π)2

∫
ΓLS

〈λ dλ〉[λ̃ dλ̃]

[λ̃|P3|λ〉[λ̃|Q|λ〉
=

1

4
√

(−t)(4m2
b − t)

. (4.12)

We stress that this is exactly the same result as if the integration over the branch cut

in (4.9) had been performed. This fact reflects the intrinsic nature of the leading singularity

and its defining contour. More precisely, it provides evidence that the operation here

implemented neither depends on the order of integration nor the parametrization used.

Finally, in this way we can continue to iterate the result to any number of triangles

arranged in the nested topology of figure 5. We conclude that the leading singularity reflects

the non-analytical structure proper to the triangle topology, which has been extensively

discussed in [36] for the 1-loop case.

4.2.2 A 2-loop example for gravity

Here we demonstrate that leading singularities can be used at higher loops to evaluate the

contribution from a given scalar integral. At two loops, the scalar diagrams associated to

the classical potential have been surveyed in [49] in the context of Non-Relativistic GR

(NRGR). We can study the leading singularities associated to each of these diagrams, and

use them to define the integration contours ΓLS. These contours can then be implemented in

the 2-loop gravity amplitude, and the result can be used to obtain the respective coefficients

in the scalar expansion.

We consider only the simplest example, a complete analysis being left for future work.

We evaluate the product triangle of figure 6a and argue that its contribution to the grav-

itational amplitude is quantum mechanical in nature. This is consistent with the results

found in [49] using NRGR.

In this case ΓLS = Γ(S1)∞×(S1)∞ , and the leading singularity trivially gives (up to

irrelevant factors)

LSpt =
1

t
√

(4m2
a − t)

√
(4m2

b − t)
. (4.13)
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(a) (b)

Figure 6. The product triangle scalar diagram and its gravitational counterpart. The gravity

diagram also contains double boxes that emerge when one of the propagators is cut in the 4-graviton

amplitude.

On the other hand, the full contribution from the triangle scalar integral of figure 4 can be

found in eq. B.5 of [30]. This result can be used to evaluate the full contribution of the prod-

uct triangle. Here we just provide the non-relativistic limit which will determine the long

range behavior of the potential. Up to irrelevant factors, the leading terms for t→ 0 read

Ipt = −mamb

t
+
ma +mb

π2
√
−t

log

(
−t

mamb

)
+

1

π4
log2

(
−t

mamb

)
+ . . . (4.14)

We note the presence of t−1 as leading term in the expansion. This may seem puzzling

at first sight, since after Fourier transformation this term leads back to the Newtonian

potential [50]. However, such contribution yields in fact a contact term in the gravitational

potential. To see this, recall that in the amplitude the contribution Ipt is multiplied by

the corresponding coefficient cpt. Assuming the contour ΓS∞×S∞ projects out all the other

scalar integrals, we find

cpt =
LSgrav

pt

LSpt
. (4.15)

In order to compute LSgrav
pt we use the expression (2.26), and insert the 4-graviton am-

plitude M4(k−1 , k
+
2 , k

−
3 , k

+
4 ) instead of the Compton amplitude M4(P1, P2, k

−
3 , k

+
4 ). We then

consider a copy of this integral associated to the particle ma. The full expression now reads

LSgrav
pt =

κ4m2
am

2
b(xy)3

(1− x2)(1− y2)

(
1 + x

1− x

)4(1 + y

1− y

)4

×

(
1

(2πi)2

∫
Γ(S1)∞×(S1)∞

dz

z5

dω

ω5
M4(k−1 , k

+
2 , k

−
3 , k

+
4 )

)
, (4.16)
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where y is defined as in (2.28) for P1 and P2, and k1,k2 are defined as in (2.24). The

4-graviton amplitude is given by

M4(k−1 , k
+
2 , k

−
3 , k

+
4 ) =

κ2

t
× [k4 k2]4〈k1 k3〉4

[k3 k1]〈k3 k1〉[k3 k2]〈k3 k2〉
. (4.17)

Again, it is easy to check that the configurations h1 = h2, h3 = h4 lead to vanishing

residue in ΓS∞×S∞ . After performing the change of variables z =
(

1+x
1−x

)
u, ω =

(
1+y
1−y

)
v,

the residue can be computed exactly. The coefficient then takes the form

cpt = t× κ6(mamb)4P2

(
s−m2

a −m2
b

mamb

)
+O(t2) , (4.18)

where P2 is a second order polynomial. Hence, we conclude that the leading term in (4.14)

becomes a contact term when multiplied by cpt. Having shown that the leading contribution

is quantum mechanical, it is easily argued that the subleading terms are of the same nature.

In fact, as argued in [36], the ~ factors can be restored in the result by keeping track of the

combination m√
−t →

1
~
m

|~k|
. We conclude that the expansion in (4.14) precisely corresponds

to an expansion in ~, hence the full contribution of Ipt is quantum in nature.

4.2.3 Infinite family of leading singularities

In this part we present an all-loop iterative result for ladder diagrams. The construction is

similar in nature to that presented above in iterated triangle case. However, in this case it

can be readily extended to its gravitational counterpart. Ladder diagrams have also been

studied in the context of NRGR, see e.g. [51].

Consider the case in which both massive scalar can only interact with the massless

scalars via three particle couplings. We would like to consider a family of leading singu-

larities with the topology of a ladder with r + 1 rungs, i.e., with r loops, as in figure 7.

In the formula we will suppress the three-particle amplitudes as they are all given by the

coupling constant. The integral to be performed is then∫ r∏
a=1

d4La

(
r−1∏
a=1

1

L2
a(P

2
1(a)−m2

a)(P 2
3(a)−m2

b)

)
1

L2
m(P 2

1(m)−m2
a)(P 2

3(m)−m2
b)L2

m+1

(4.19)

where momenta are defined recursively as follows P1(a) = P1(a−1) +La, P3(a) = P3(a−1)−La
with P1(0) = P1, P3(0) = P3 and Lr+1 = P3 + P4 − (L1 + L2 · · ·+ Lr−1).

Once again we seem to be in the situation of having to find 4r poles while given

only 3r + 1 propagators. As in the previous case, emergent propagators account for the

difference.

Starting with the integral over Lr one has a box integral with external particles on-shell

(as the contour encloses the propagators 1/(P1(r−1)−m2
a) and 1/(P 2

3(r−1)−m
2
b)). This box

contour integral is easy to compute and gives

1√
(s−m2

a −m2
b)2 − 4m2

am
2
b

× 1

(P3 + P4 − (L1 + L2 · · ·+ Lr−2))2
. (4.20)
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Figure 7. r-loop ladder. The solid lines represent two different massive particles exchanging r+ 1

massless states, represented by dashed lines.

Note the appearance of the 1/(P3 + P4 − (L1 + L2 · · · + Lr−1))2. This is nothing but an

emergent propagator which happens to be exactly the one needed to complete the left over

integrations into an r − 1 loop ladder integral. The procedure can be iterated until all

integrals are completed and the result is

LSrladder =
1

((s−m2
a −m2

b)2 − 4m2
am

2
b)r/2t

(4.21)

where again t = (P3 + P4)2.

Using the exact result of section 2.2, we can repeat the construction for the gravi-

tational case. Let us now sketch the differences in the procedure. In the gravitational

case the vertices in figure 7 correspond to the on-shell 3pt amplitudes M3(ΦA,ΦA, G), the

internal lines being gravitons. Consider, for instance, the helicities of the gravitons to be

hi = −2, except for hr+1 = +2. After cutting the top box, that is, the integral over Lr, we

end up with the same expression (4.20), now multiplied by the numerator of (2.32). We

again use the emergent propagator to close the remaining ladder. However, this time we

need to also restore the 3pt amplitudes given by

M(P1(r−1), P2, G
±)M(P3(r−1), P4, G

∓)=
(
s−m2

a −m2
b ±

√
(s−m2

a −m2
b)2 − 4m2

am
2
b

)2
,

(4.22)

which means we need to extract this factor from the result of the first integration and

attach it to the next one. After iterating this procedure r times we will get

LS
r(grav)
ladder =

(
s−m2

a −m2
b ±

√
(s−m2

a −m2
b)2 − 4m2

am
2
b

)2(r+1)

((s−m2
a −m2

b)2 − 4m2
am

2
b)r/2t

. (4.23)
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5 Discussions

In this work we explored leading singularities (LS) of amplitudes of massive scalar fields

interacting via the exchange of gravitons. While leading singularities have been extensively

explored in gauge theory and gravity (and their supersymmetric generalizations), the main

applications have been for massless external states.

Having massive external particles leads to the presence of classical effects coming from

loops in perturbation theory. Classical effects in loop computations are known to origi-

nate in certain regions of the loop integration space. Restricting the integration to those

regions captures all the classical effects. However, classical contributions can also come

accompanied by quantum pieces.

Leading singularities are not directly supported on the regions contributing to classi-

cal or quantum pieces. In fact, most leading singularities are computed on contours that

are analytic continuations of the loop momenta and do not belong to any physical region.

Despite this separation from physical regions, leading singularities capture valuable in-

formation about the analytic structure of amplitudes. As explained in sections 2 and 4,

leading singularities at one-loop capture information about double discontinuities in the

s- and t-channel for the box topology and in the double t-channel for the triangle topology.

In section 3 we found that by using a double dispersion relation construction in the

t-channel, the triangle leading singularities were “stable” under the integration procedure.

This means that, up to terms irrelevant to classical scattering, leading singularities pre-

served their form after the integrals were computed. Using this fact we were able to express

the complete one-loop contribution of the amplitude to the classical post-Newtonian expan-

sion purely in terms of leading singularities. We also found that those with a box topology

did not contribute to the classical pieces as they did not have double discontinuities in the

t-channel.

It is tempting to suggest that this phenomenon can continue at higher loops. More

explicitly, it would be interesting to explore the possibility that classical effects are those

that are “stable” under multiple t-channel discontinuities. In fact, even at one-loop, the

triangle LS has an infinite number of t-channel discontinuities. In contrast, quantum

contributions come from pieces that eventually stop having discontinuities in the t-channel.

It is well-known that in supersymmetric gauge theories the symbols of the amplitude

have been a powerful tool in the study of their analytic structure (for a review see [52]

and [53] for a dramatic simplification obtained by using this technique). The symbol is

a mathematical tool designed to store the information of multiple branch cuts and their

discontinuities when they are packaged in transcendental functions such as polylogarithms.

One could try to formally extend the concept of the symbol to cases of functions with square

roots and allow for an infinite number of entries. This would depart from the connection

to period integrals but if that were possible, then it is reasonable to expect that classical

pieces are those with an infinite-length generalized symbol while quantum ones are those

with a finite-length generalized symbol. Even more speculatively, one could even be able

to see that functions with only infinite-length or “classical-like” symbols cannot produce

physically meaningful results at short distances and therefore they have to be corrected

– 27 –
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by finite-length or “quantum-like” symbols. We leave these intriguing possibilities for

future research.

Several directions for future research are clear. The most pressing one is to work out

all the leading singularities that contribute at two and three loops to try and reproduce

post-Newtonian results. Another direction is the extension to the case of a massless particle

of helicity |h| = 0, 1
2 , 1 interacting with a scalar massive one, this case is known as “light-

bending” in the literature and has been addressed in a variety of ways [27, 29–31, 54].

Also interesting is the extension to massive particles with spin [20, 33, 55]. Adding spin to

the external massive particles usually leads to complications in most approaches but using

leading singularities one could expect that they are minimal.
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