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This paper studies the trade-off between inventory levels and the delivery leadtime offered to customers in achieving a target level of
service. It addresses the question of how much a delivery leadtime can be reduced, per unit increase in inventory, at a fixed fill rate.
We show that for a class of assemble-to-order models with stochastic demands and production intervals there is a simple linear
trade-off between inventory and delivery leadtime, in a limiting sense, at high fill rates. The limiting slope is easy to calculate and can
be interpreted as the approximate marginal rate for trading off inventory against leadtime at a constant level of service. We also
investigate how various model features affect the trade-off—in particular, the impact of orders for multiple units of a single item and
of orders for multiple units of different items.

In the production and distribution of goods, inventory is
the currency of service. An increase in service can virtu-

ally always be achieved through an increase in safety
stocks, so a supplier inevitably faces a trade-off between
service levels and inventory costs. This and related trade-
offs are discussed at least qualitatively in most operations
management textbooks (e.g., Section 14-5 of Chase and
Aquilano 1995, Chapter 7 of Bowersox and Cooper 1992,
Sections 14-4 and 14-5 of Mclain et al. 1992), in some of
the managerial literature (e.g., Chapter 5 of Heskett et al.
1990, Zipkin 1991), and in the research literature (e.g.,
Buzacott and Shanthikumar 1994, Chang 1985, Ettl et al.
1995, Muckstadt and Thomas 1980 and 1983, Schraner
1996, Song 1997, Song et al. 1997). It raises the question of
just how much service inventory can buy; i.e., what is the
marginal cost of a service improvement, in units of inven-
tory, if the improvement is achieved through increases in
inventory?

This is the main question we examine. There is no uni-
versal answer, but we show that for a particular class of
models there is a simple linear trade-off between service
and inventory, in a limiting sense, at high levels of service.
We identify the limiting slope and interpret it as the ap-
proximate marginal rate for trading off inventory against
service. We also investigate how other model features af-
fect this relation—in particular, the impact of orders for
multiple units of a single item and of orders for multiple
different items. Our general approach to identifying the
trade-off is applicable in other settings as well.

The models we consider have the following general fea-
tures. Items are made to stock to supply variable demands
for finished products; multiple finished products are
assembled-to-order from the items. Service is measured by

the fill rate, defined here to be the proportion of orders
filled within a target interval, called the delivery leadtime,
or simply the leadtime. The system operates under a
continuous-review base-stock policy under which each de-
mand for a unit of an item triggers a replenishment order
for that item. Items are produced one at a time on dedi-
cated facilities; production intervals may be constant or
variable. Reducing the delivery leadtime while maintaining
a fill rate of, say, 98% requires increasing inventories, and
this is the trade-off we investigate.

Though we focus on fill rates and leadtimes, it is worth
noting that in a closely related discrete-time version of the
single-item case of our model, a base-stock policy has been
shown to minimize holding and backorder costs in Feder-
gruen and Zipkin (1986ab). Glasserman (1997), Liu (1995),
and Tayur (1993) discuss the optimal base-stock level. Sec-
tion 6 of the survey of van Houtum et al. (1995) discusses
capacitated models generally. The models of Lee and Zipkin
(1992), Veatch and Wein (1994), Zipkin (1986), and the as-
sembly systems of Chapter 6 of Zhang (1996) are also rele-
vant in that they combine features of queueing and inventory
systems and (in some cases) study control rules similar to
base-stock policies. Extending the results of Clark and Scarf
(1962), Rosling (1989) identifies the optimal policy in unca-
pacitated multistage assembly systems; this is a base-stock
policy in the absence of fixed order costs. Ettl et al. (1995)
use base-stock policies as approximations to study trade-offs
between service levels and inventory costs in a large-scale
model of an IBM supply chain. More recently, Schraner
(1996) approximates the fill rate in a discrete-time model
related to ours and examines trade-offs between capacity and
inventory, building in part on Hausman et al. (1993). Song
(1997) calculates the exact off-the-shelf order fill rate in a
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related setting, under the assumptions of Poisson demand
and deterministic production times. Song et al. (1997) extend
the model of Song (1997) to allow for random (exponential)
production times. They also study the effect of dependent
demands for different items, but the batch sizes are restricted
to 0 or 1. Because we allow multiple units of multiple items to
be combined into multiple products, our results are also rel-
evant to the literature on component commonality; see, e.g.,
Baker et al. (1986).

To give some indication of the solutions we arrive at, we
begin by describing the simplest possible setting. Orders
for individual units of a single item arrive in a Poisson
stream with rate l. The time to produce an individual unit
is exponentially distributed with mean 1/m, with l , m. Let
s denote the base-stock level and let x denote the delivery
leadtime. Let R denote the steady-state response time of
an order—the time elapsed from when an order arrives
until it is filled. This is 0 if the order is met from on-hand
inventory, and strictly positive otherwise.

Through an evident connection with the M/M/1 queue,
the distribution of R is easily found in closed form. The fill
rate (the proportion of orders whose response time does
not exceed x) is 1 minus

P~R . x! 5 ~l
m! s

exp$2~m 2 l! x% . (1)

Consider the set of points in (x, s) space for which the
expression on the right equals d, thus resulting in a fill rate
of 1 2 d, with 0 , d , 1. So long as x and s are both
positive, these points are characterized by the relation

s 5
log d

log~l/m!
2

m 2 l
log~m/l!

x.

In other words, the level curves of constant service are
straight lines, with slope 2b 5 2(m 2 l)/log(m/l). De-
creasing the leadtime by Dx without reducing the fill rate
entails increasing s by bDx; increasing s to s 1 1 buys a
reduction of 1/b in x.

Once we move beyond this Poisson-exponential setting,
the simplicity of (1) is lost and the level curves are no
longer exactly straight lines. Nevertheless, we show that
the trade-off between x and s is approximately linear at
high fill rates. The Poisson-exponential setting does not
provide much insight into the appropriate slope b in the
general case, in part because it contains just two parame-
ters l and m. Indeed, this setting could even be considered
misleading because substituting the mean interarrival time
and mean service time for 1/l and 1/m in the general case
is far from correct. We will see, however, that the appro-
priate generalization of b is quite easily characterized.

The Poisson-exponential setting is useful in providing a
first look at the effect of compound demands. Suppose
each Poisson arrival brings an order for geometrically
many units, with a mean of 1/(1 2 p), for some 0 , p , 1
with l , m(1 2 p). An order is filled only when all units
demanded have been provided. The time to produce a
geometric batch is the sum of geometrically many expo-

nential random variables and is thus again exponential;
however, this setting cannot be entirely reduced to the
previous one because the inventory level at an arrival may
be strictly positive but insufficient to fill the order. The
system is still tractable and results in

P~R . x! 5 ~pm 1 l
m ! s

exp$2~~1 2 p!m 2 l! x%.

Thus, the level curves of constant service are still straight
lines in the positive (x, s) orthant. The new slope [(1 2
p)m 2 l]/log(m/( pm 1 l)) reflects the effect of batch
arrivals. This, too, generalizes, but not in a way that is
obvious from the formula alone.

The rest of this paper is organized as follows. The next
section describes the models we consider in more detail—
particularly the extension to multiple items and multiple
combinations of items—and then formulates our main re-
sults. Section 2 illustrates our results numerically and dis-
cusses further approximations. Sections 3–4 develop the
necessary tools to prove our main results. Section 5 con-
tains some concluding remarks.

1. MAIN RESULTS

1.1. Model Details and Notation

Figure 1 illustrates the general setting we consider. Multi-
ple items are produced on dedicated facilities (the circles)
and kept in inventories (the triangles). A product is a col-
lection of a possibly random number of items of each type.
It may be convenient to think of the items as components
that are assembled into products. When we treat assembly
times explicitly (see the discussion after Theorem 1) we
model them as random delays—i.e., the assembly opera-
tion is uncapacitated. Since this additional delay has little
impact on our results, we omit it from most of our
discussion.

Figure 1. Multiple items assembled to order into multiple
products. The demand process for product j is
independent of those for other products and has
generic interarrival time Aj. An order for prod-
uct j requires a generic item portfolio: Dj

l units
of item 1, . . . , Dj

d units of item d. Item i has
generic production time Bi.
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We use the following notation, often modified by sub-
scripts and superscripts:

A 5 order interarrival time;
B 5 unit production interval;
D 5 batch order size;
R 5 response time;
s 5 base-stock level;
x 5 delivery leadtime.

A superscript i refers to item i, ranging from 1 to d. Most
of the paper considers single product systems, where a
subscript n refers to the nth order. For example, Dn

i is the
number of units of item i required by the nth order; Rn

i is
the time taken to fill the nth order’s demand for item i,
and Rn is the time taken to fill the nth order completely.
Occasionally, we need to use double subscripts, as in Bn, j

i ,
which denotes the production time for the jth unit of item
i in the nth order. An R without a subscript refers to a
steady-state response time. Production intervals, interar-
rival times, and batch sizes are all independent of each
other, but we allow dependence among the batches of
different items required by an order. In other words, the
vectors {(Dn

1, . . . , Dn
d), n 5 1, 2, . . . } are i.i.d., but their

components may be dependent. (This is particularly im-
portant if different groups of items constitute different
products.) When there are multiple products, a subscript j
refers to product j, ranging from 1 to m. To simplify the
formulation of our results, we assume throughout that the
interarrival times have a continuous distribution.

For any random variable Y, the symbol cY denotes the
function

c Y ~u ! 5 log E@e uY# , (2)

called the cumulant generating function (c.g.f.) of Y. The
function cY is convex, and it is differentiable in the interior
of its domain (the set of u at which it is finite). The c.g.f.s
of all our input random variables will be finite for some u

. 0, and this implies c9Y(0)5 E[Y] and c 0Y(0) 5 Var [Y].
See Chapter 3 of Kendall (1987) for relevant background.

1.2. The Trade-Offs

We begin with a result for the case of a single item. In this
setting, we may omit the superscript i. We require that
E[D]E[B] , E[A] so that a steady-state response time ex-
ists. Defining X 5 ¥j51

D Bj 2 A, we have

c X ~u ! 5 c D ~c B ~u !! 1 c A ~2u ! . (3)

In the following result, the notation lims1x3` refers to the
limit as either s 3 ` (through integer values), or x 3 `,
or both.

Theorem 1. If there is a g . 0 at which cX(g) 5 0, then
with b 5 cB(g),

lim
s1x3`

e gx1bsP~R~s! . x! 5 C (4)

for some constant C . 0.

Based on this result, we interpret 2g/b as the approxi-
mate slope of the trade-off between s and x at high fill
rates. To see why, notice that (4) suggests the approxima-
tion P(R(s) . x) ' C exp(2gx 2 bs). A level curve of
constant service is a set of (x, s) points for which P(R(s) .
x) 5 d, for some 0 , d , 1, and this is given approximately
by the set of solutions to C exp(2gx 2 bs) 5 d. In the
positive (x, s) orthant, these solutions form the line

s 5 2
g
b

x 1
1
b

log~C/d!.

Thus, a leadtime reduction of Dx entails an increase in s of
(g/b)Dx, and a one-unit increase in s buys a reduction of
b/g in x, if the fill rate is to remain unchanged. It is not
hard to verify that the ratio g/b specializes to the ratios
given in the previous section in the Poisson-exponential
example.

We can extend the setting in Theorem 1 to include an
explicit assembly time Un for the nth order after all the
components it requires are available, with Un i.i.d. and
bounded. We assume no congestion and no finished goods
inventory at the assembly stage, so Un acts as an extra
delay in the response time. This changes only the constant
C in (4), as we explain after the proof of Theorem 1 in
Section 3.

If g in Theorem 1 exists, it is unique because cX is
convex and cX(0) 5 0. Sufficient conditions for the exis-
tence of g are that cX(u) be finite for some u . 0 and that
cX(u) not jump to infinity as u increases—i.e., if u# 5 sup{u

Ä 0;cX(u) , `}, then cX(u) 3 ` as u 1 u# . These
conditions are met for virtually all commonly used distri-
butions. (An exception is the lognormal distribution, which
has no exponential moments.) To avoid repeating techni-
cal conditions, we assume throughout that all input ran-
dom variables ( A, B, and D) satisfy these conditions.

In general, only a partial characterization of the con-
stant C in (4) is available. However, in the important spe-
cial case of Poisson arrivals, we obtain an explicit formula:

Proposition 1. In the setting of Theorem 1, if arrivals are
Poisson with rate l, then

C 5 l 21~l 1 g!~1 2 lE@D#E@B#!

z ~c9D ~b!c9B ~g!~l 1 g! 2 1! 21.

Consider, next, a system with d items but a single prod-
uct and thus just one arrival stream. Each item i has a
base-stock level si, so we need to make an assumption
about how these scale to get a limiting result. Let s 5 s1

1 . . . 1 sd and ki 5 si/s, i 5 1, . . . , d; we hold these ratios
constant as s increases. This assumes that the proportion
of total inventory held in each item remains constant,
though we could just as easily assume that, e.g., the pro-
portion of work content or holding cost for each item
remains constant; this would merely change the constants
ki in the subsequent analysis. For each item i define Xi

from A, Bi, and Di paralleling the definition of X just
before (3) and set
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c i ~u ! 5 c D i ~c B i ~u !! 1 c A ~2u ! , (5)

in analogy with (3). Clearly, Theorem 1 applies to each
item separately. Suppose gi . 0 solves ci(gi) 5 0 and set
bi 5 cBi(gi), ai 5 kibi. Then Theorem 1 implies

lim
s1x3`

e g i x1a i sP~R i~s! . x! 5 C i

for some Ci . 0. The response time for the full order is
the maximum of the response times for the individual
items required. Its behavior is a bit more subtle because of
the interactions among the multiple items.

Let g 5 mini gi and (x 5 {i;gi 5 g}; these are the set
of leadtime-critical items in the sense that their individual
fill rates increase most slowly as x increases to `. Let a 5
mini ai and (s 5 {i;ai 5 a}; these are similarly the set of
inventory-critical items because their fill rates increase most
slowly as s increase to `. These sets of items determine the
product fill rate when x or s becomes large. To exclude
trivial cases, we assume that for any two items i and j in (x

or (s, we have P(Xi Þ Xj) . 0. Indeed, the only case in
which this fails is if the two items are always ordered in the
same quantity and take the same time to produce, in which
case they should be modeled as a single item.

Theorem 2. Suppose the solutions g1, . . . , gd all exist.
Then

lim
x3`

e gxP~R~s! . x! 5 O
i[(x

C i e 2a i s, (6)

and if either u(su 5 1 or {Di, i [ (s} is independent, then

lim
s3`

e asP~R~s! . x! 5 O
i[( s

C i e 2g i x. (7)

The condition that the Di be independent is far from
necessary for (7), even if u(su . 1. From the proof of
Theorem 2 it will be clear that (7) holds under the much
weaker condition (35), and it may well be true without
even this additional condition.

If (x 5 (s 5 (, Theorem 2 yields (without assuming
independence or (35))

lim
s1x3`

e gx1asP~R~s! . x! 5 O
i[(

C i ; C ( ,

which provides a simpler counterpart to Theorem 1 and
suggests the approximation

P~R~s! . x! < C ( e 2gx2as.

It is only in this case that we can give 2g/a the simplest
interpretation of the slope of the trade-off between x and
s. In the general case, (x and (s represent the sets of items
that constrain the fill rate at long delivery intervals and
high base-stock levels, respectively. When these are not
the same, different trade-offs apply in different regions.
This is further explored in Section 2.

The final variant we consider allows multiple sets of
items to be combined into m distinct products. In this
setting, we require that arrivals of orders for the various
products follow independent (compound) Poisson pro-

cesses. We also need to vary our notation slightly to distin-
guish products from items: we use subscripts for products
and continue to use superscripts for items. Orders for
product j arrive at rate lj, and each order of product j
requires Dj

i units of item i.
Let (j 5 {i;P(Dj

i . 0) . 0} be the set of items required
by product j; let 3i 5 { j;P(Dj

i . 0) . 0} be the set of
products requiring item i. For each item i, the demand is
the superposition of independent (compound) Poisson
processes with li 5 ¥j[3i lj; the batch size Di is distrib-
uted as a mixture of {Dj

i}; i.e., with probability lj/l
i, Di is

distributed as Dj
i, for j [ 3i. With gi and ai calculated just

as before, Theorem 1 applies to Ri, the steady-state item-i
response time. Let Rj be the steady-state response time for
product j; then Rj 5 maxi[(j

Ri. Define

g# j 5 min
i[( j

$g i% and ( j
x 5 $i [ ( j ;g i 5 g# j %;

(j
x is the set of leadtime-critical items for product j. Also

define

a# j 5 min
i[( j

$a i% and ( j
s 5 $i [ ( j ;a i 5 a# j %;

(j
s is the set of inventory-critical items for product j. We

now have Theorem 3.

Theorem 3. Suppose the solutions g1, . . . , gd all exist.
Then

lim
x3`

e g# j xP~R j ~s! . x! 5 O
i[( j

x

C i e 2a is, (8)

and if u(j
su 5 1 or {Dj

i, i [ (j
s} are independent, then

lim
s3`

e a# j sP~R j ~s! . x! 5 O
i[( j

s

C i e 2g ix. (9)

The same comments on the independence condition for
the Ds after Theorem 2 also apply here. As with Theorem
2 the cleanest version of this result applies when (j

x 5 (j
s;

i.e., the leadtime-critical and inventory-critical items coin-
cide. Because the result has been specialized to the case of
Poisson arrivals, Proposition 1 applied to each item i yields
an expression for each Ci.

2. APPLYING THE APPROXIMATION

In this section, we interpret and test the results of Section
1. We first illustrate the trade-offs in single-item systems
through several examples. Then, we discuss further ap-
proximations for the trade-off parameters g and b. Finally,
we address issues in applying the trade-off when there is
interaction among multiple items.

2.1. Single-Item Systems

Theorem 1 suggests that when the fill rate is high, varying
the values of leadtime x and inventory level s according to
the linear trade-off rule

Ds 5 2
g
b

Dx (10)
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entails little change in the fill rate (see the discussion fol-
lowing Theorem 1). Indeed, the smaller the resulting
change in the fill rate, the better the linear approximation
to the trade-off. We will test how the linear approximation
works through several examples. In each example, we first
calculate g and b according to Theorem 1. We study the
systems from x 5 0 and choose some s . 0 such that the
actual fill rate is high (90% or higher). We then make a
series of increases in x and decrease s according to the
trade-off rule (10) until s drops to 0. This way we get a
series of (x, s) pairs. At each pair the actual fill rate is
estimated by Monte Carlo simulation. Plotting the fill rate
against the leadtime x yields a curve; when this curve is
nearly a horizontal line the linear approximation in (10)
works well.

The procedure to estimate the fill rate is discussed after
the proof of Theorem 1 in the next section. We will test
several commonly used distributions at different utilization
levels, where by utilization we mean the ratio of the mean
production time of a random batch to the mean interar-
rival time. By choosing appropriate s values at x 5 0, we

study the trade-offs when the fill rate is around 90%, 95%,
and 99%. (At higher service levels, s has a larger value at
x 5 0 and reaches 0 at a larger x, so the resulting curve is
longer.) The simulation results are graphed in Figures 2–7,
with three curves corresponding to the three service levels
in each figure. The captions specify the distributions of A,
B, and D; all cases have E[B] 5 1. We use cA and cB to
denote the coefficient of variation for A and B, respec-
tively, and use PD(n) to denote P(D 5 n) and r to denote
the system utilization.

From the examples, we make the following observations.

1. In all the examples studied the simulated fill rate
curves are very close to flat, straight lines, regardless of the
difference in distributions and utilization levels. This
means that varying x and s according to the linear s-x
trade-off rule (10) indeed yields approximately the same
fill rate. Hence the linear limiting trade-off between x and
s captures the essence of the relation between x and s.

Figure 2. Compound Poisson demand process, E[A] 5
2.4; PD(1) 5 0.7, and PD(4) 5 0.3; Erlang pro-
duction time with cB

2 5 0.2; r 5 80%.

Figure 3. Compound Poisson demand process, E[A] 5
2.7; PD(1) 5 0.7, and PD(4) 5 0.3; Erlang pro-
duction time with cB

2 5 0.2; r 5 70%.

Figure 4. Compound Poisson demand process, E[A] 5
2.4; PD(1) 5 0.7, and PD(4) 5 0.3; normally
distributed production time with Var[B] 5 0.9;
r 5 80%.

Figure 5. Compound Poisson demand process, E[A] 5
2.5; PD(1) 5 PD(2) 5 PD(3) 5 PD(4) 5 0.1;
deterministic production time; r 5 90%.
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2. The approximation works very well when the service
level is reasonably high, and the higher the fill rate, the
better the results we get. When the fill rate is around 99%,
the linear trade-off rule is virtually exact. This is consistent
with the fact that at higher service level the system is closer
to the limit regime of Theorem 1.

3. Along each fill rate curve in the figures above, x and
s vary over a very wide range (in fact, over the entire
possible range from x 5 0 to s 5 0), yet the curves remain
nearly flat and straight. Thus, the trade-off rule (10) is not
just a local property. Changes in delivery leadtime and
inventory level, Dx and Ds, do not have to be very small;
they can be made to be very big as long as x 1 Dx and s 1
Ds remain nonnegative.

4. We observe a decline of the 90% fill rate curve as x
increases in Figures 2 and 3. This is mainly due to a round-
ing effect: for some changes in x, the corresponding
change in s given by (10) may not be an integer. But s has
to be integral because of its physical meaning, so we round
the nonintegral change to the nearest integer. In these
examples, it happens that we always round down so the fill

rate curves go down. We do not see the decline of the fill
rate in Figures 4 and 5, where rounding is not necessary.

2.2. Two-Moment Approximation

Calculating the trade-off parameters g and b requires
knowledge of the distributions of A, B and D, which may
not always be available. If we only have partial knowledge
of the distributions—specifically, the means and varianc-
es—we approximate g . 0 through a two-moment approx-
imation for the cX in (3), i.e., we set cX(u) ' E[X]u 1
(1/2)Var[X]u2 5 0 and solve to get

g < 2
2E@X#

Var@X#
, (11)

where

E@X# 5 E@B#E@D# 2 E@A#

and

Var@X# 5 E@D#Var@B# 1 Var@D#~E@B#! 2.

Similarly, by the two-moment approximation for cB we get

b 5 c B ~g! < E@B#g 1
1
2 Var@B#g 2. (12)

We tested the linear trade-off of (10) on the same sys-
tems studied in the previous subsection, but replacing g

and b with their two-moment approximations (11) and
(12). The resulting graphs are virtually indistinguishable
from the previous ones and are therefore omitted. This
indicates that the two-moment approximation is adequate
in practice.

2.3. Multiple-Item Systems

In Section 1 we stated two limiting results (6) and (7) for
the tail probability of the product response time, one on x
and one on s. When the leadtime x is long, P(R . x) '
¥i[(x

Cie
2gx2bisi

and the product fill rate is constrained by
the items with the smallest g (leadtime-critical items).
When the total inventory level s is high, P(R . x) ' ¥i[(s

Cie
2gix2as and the product fill rate is constrained by the

items with the smallest a (inventory-critical items). While
it is sometimes possible to determine which regime ap-
plies, in other cases, the dominating effect of the items in
(x or (s may not be evident, since x and s are always finite
in practice. We address this issue next.

When product fill rate is high, the fill rate of each item i
must be as high or higher, and is approximately equal to
1 2 Cie

2gix2bisi
. Obviously, items with relatively small fill

rates are the ones that constrain the product fill rate. So
we propose the following criterion to determine a set ( of
constraining items. For each item i we calculate p̂i –
e2gix2bisi

as a surrogate for P(Ri(s) . x) and take ( to be
the set of items with high p̂i. (The constant Ci is, of course,
unknown in general.) When the leadtime x is changed,
inventory levels of the items in ( should be varied accord-
ing to the item-level trade-off rule

Ds i 5 2
g i

b i
Dx (13)

Figure 6. Compound Poisson demand process, E[A] 5
2.24; PD(1) 5 PD(2) 5 PD(3) 5 0.3; determin-
istic production time; r 5 98%.

Figure 7. Hyperexponential interarrival time, E[A] 5 2.5;
cA

2 5 4; PD(1) 5 PD(2) 5 PD(3) 5 0.3; PD(4) 5
0.1; deterministic production time; r 5 88%.
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to maintain the same product fill rate. Our experience
from numerical studies is that when ¥i[( p̂i/¥i51

d p̂i Ä
80%, we get satisfactory results, as will be illustrated
through several examples.

We first study two-item systems with p̂1 and p̂2 close to
each other so ( contains both items. Much as in the single
item case, we choose some s1 . 0, s2 . 0 at x 5 0 such
that the product fill rate is high (90% or higher). We then
make a series of increases in x and decrease both s1 and s2

according to the item-level trade-off (13) until either si

drops to 0. By estimating the product fill rate at each (x,
s1, s2) triple we get a plot of fill rate against leadtime x.
Again, a horizontal curve means the linear s-x trade-off
relation and the proposed mechanism to identify con-
straining items work well. The results of the two-item sys-
tems are in Figures 8–13. In the captions, we use PD(m, n)
to denote P(D1 5 m, D2 5 n), and r1, r2 to denote the
utilization level of items 1 and 2.

Finally, we consider a five-item system with a Poisson
order process, having E[A] 5 3. The order quantities have
the following probabilities: PD(2, 3, 4, 2, 1) 5 0.2, PD(3, 2,
2, 4, 3) 5 0.3, PD(4, 4, 1, 1, 3) 5 0.2 and PD(1, 1, 2, 2, 2)
5 0.3. Production times all have Erlang distributions with
c2 5 0.2, E[B1] 5 E[B2] 5 E[B3] 5 1, E[B4] 5 E[B5] 5
0.9. We choose different si values at x 5 0 so that different
sets of items are binding. The results are illustrated in
Figures 14–17. In Figure 14, all five items have similar p̂
values so the constraining set ( 5 {1, 2, 3, 4, 5}. In Figure
15 one item is constraining and ( 5 {1}. In Figures 16 and
17, the same three items are constraining, ( 5 {1, 2, 3}.
The difference is that in Figure 16 the trade-offs are on the
constraining items, whereas in Figure 17 the trade-offs are
on all five items—when x changes, s4 and s5 also change
according to their trade-off equations, although items 4

Figure 8. Poisson demand process, E[A] 5 2.4; PD(1, 1) 5
0.4; PD(1, 2) 5 0.3; B1, B2 have Erlang distribu-
tion, E[B1] 5 1, cB1

2 5 0.2, E[B2] 5 0.8, cB1

2 5
0.2; r2 5 63%.

Figure 9. Poisson demand process, E[A] 5 2.7; PD(1, 1) 5
0.4; PD(1, 2) 5 0.3; PD(4, 3) 5 0.3; B1, B2 have
Erlang distribution, E[B1] 5 1, cB1

2 5 0.2, E[B2]
5 0.8, cB1

2 5 0.2; r1 5 70%; r2 5 56%.

Figure 10. Poisson demand process, E[A] 5 2.4; PD(1, 1)
5 0.4; PD(1, 2) 5 0.3; PD(4, 3) 5 0.3; B1, B2

have normal distribution, E[B1] 5 1, Var[B1] 5
0.09, E[B2] 5 0.8, Var[B2] 5 0.625; r1 5 79%;
r2 5 63%.

Figure 11. Poisson demand process, E[A] 5 2.5; PD(1, 2)
5 PD(1, 3) 5 PD(1, 4) 5 PD(2, 2) 5 PD(3, 4)
5 PD(4, 1) 5 0.1, PD(2, 3) 5 PD(3, 1) 5 0.2;
deterministic production times B1 5 1, B2 5
0.9; r1 5 88%; r2 5 86%.
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and 5 are considered nonbinding. This is for comparison
with Figure 16.

From the figures, we see that the proposed trade-off rule
generally works well, again, regardless of the distribution
and utilization level. In some examples, the lowermost
(90%) curve is jagged. One of the main reasons is the
rounding effect, which is more severe here than in the
single-item case. For example, on the 90% curve in Figure
8, the s2 value should be 4.804 for the fifth point and 3.474
for sixth point according to (13). After rounding, the val-
ues become 5 and 3, respectively. A difference of 4.804 2
3.474 5 1.33 increases to 5 2 3 5 2, so we see a drop in
the fill rate. Two-moment approximations for gi and bi

yield virtually the same fill rate graphs.

3. ANALYSIS OF THE SINGLE-ITEM SYSTEM

The main purpose of this section is to prove Theorem 1. A
useful first step is a characterization of the response time
in terms of an associated queue. Consider, then, a batch-
arrival queue with batch interarrival times {An}, batch
sizes {Dn}, and individual production times {Bn,1, . . . ,
Bn,Dn

}. The queue is empty at time zero. The following
sample-path result relates the response times Rn(s) in the
original system to the waiting times in the associated
queue when both systems are driven by the same inputs.

Lemma 1. Let Wn be the waiting time of batch n in the
queue. Then

R n ~s! 5 SW Nn
1 O

j51

Hn

B Nn , j 2 O
j51

n2Nn

A n2jD 1

, (14)

where

N n 5 supH 1 < k < n : O
j5k

n

D j . sJ , (15)

and

Figure 12. Poisson demand process, E[A] 5 2.24; PD(1, 2)
5 PD(1, 3) 5 PD(1, 4) 5 PD(2, 2) 5 PD(3, 4)
5 PD(4, 1) 5 0.1, PD(2, 3) 5 PD(3, 1) 5 0.2;
deterministic production times B1 5 1, B2 5
0.9; r1 5 98%; r2 5 96%.

Figure 13. Hyperexponential interarrival time, E[A] 5 2.5;
cA

2 5 4; PD(1, 2) 5 PD(1, 3) 5 PD(1, 4) 5
PD(2, 2) 5 PD(3, 4) 5 PD(4, 1) 5 0.1, PD(2, 3)
5 PD(3, 1) 5 0.2; deterministic production
times B1 5 1, B2 5 0.9; r1 5 88%; r2 5 86%.

Figure 14. A five-item system. All five items are equally
constraining, and trade-offs are on five items.

Figure 15. A five-item system. One item is constraining
and the trade-off is on that constraining item.
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H n 5 O
j5Nn

n

D j 2 s. (16)

Proof. In the queue, let {tn, n Ä 1} be the batch arrival
epochs, let {t9n, n Ä 1} be the batch departure epochs and
let {t̂(k), k Ä 1} be the service completion epochs of the
individual jobs. In the production-inventory system, the
inventory level starts from s at time 0. The cumulative
demand at time tn is ¥j51

n Dj. For n with ¥j51
n Dj ¶ s, no

waiting is necessary for demand n and Rn(s) 5 0; equation
(14) holds trivially because Nn 5 1, Hn ¶ 0 and W1 5 0.
For n with ¥j51

n Dj . s,

R n ~s! 5 S t̂S O
j51

n

D j 2 sD 2 t nD 1

.

To see this, notice that at time t̂(¥j51
n Dj 2 s) the system

finishes producing ¥j51
n Dj 2 s units. With the initial inven-

tory of s units, there are cumulatively ¥j51
n Dj units avail-

able to meet the first n demands at this time. By the
definition of Nn,

t9Nn
2 O

j51

DN n

B Nn , j , t̂S O
j51

n

D j 2 sD < t9Nn
.

A little careful bookkeeping shows that t̂(¥j51
n Dj 2 s) 5

t9Nn
2 ¥

j51
DNn BNn, j 1 ¥j51

Hn BNn, j and

t̂S O
j51

n

D j 2 sD 2 t n 5 t9Nn
2 t Nn

1 t Nn
2 t n 2 O

j51

DN n

B Nn , j

1 O
j51

Hn

B Nn , j 5 W Nn
1 O

j51

Hn

B Nn , j 2 O
j51

n2Nn

A n2j .

The result (14) follows. □

In words, Equation (14) states that order n is filled when
the system finishes producing all the units of order (Nn 2
1), plus the first Hn units of order Nn. By construction, WNn

is determined by {Aj, (Bj,1, . . . , Bj,Dj
), Dj; j ¶ Nn 2 1} and

(Nn, Hn) are determined by {Dj, Nn ¶ j ¶ n}. Under our
independence assumptions, {Aj, (Bj,1, . . . , Bj,Dj

), Dj; j ¶
k 2 1}, and {Dj, j Ä k} are independent of each other for
any k, and therefore

P~W Nn
< x uN n 5 k! 5 P~W k < x uN n 5 k! 5 P~W k < x!,

(17)
for any x. As n 3 `, Nn 3 `, a.s., and if the system is
stable (i.e., E[D1]E[B1] 2 E[A1] , 0) the Wn converge
weakly to a random variable W having the distribution of
the steady-state batch waiting time in the queue. Using
(17) in the first equation of the proof of Theorem 1.1.1 of
Gut (1988), we conclude that the WNn

also converge in
distribution to W. Indeed, a small extension of Gut’s result
shows that (WNn

, n 2 Nn, Hn) converge in distribution to
(W, N 2 1, H) with

N 5 N~s! – minH k > 1 : O
j51

k

D# j . sJ , (18)

and

H 5 H~s! – O
j51

N~s!

D# j 2 s, (19)

and W independent of (N, H). (Here, the D# j are i.i.d. with
the same distribution as the Dj.) In light of Lemma 1, the
steady-state response time can therefore be represented as

R~s! 5 SW 1 O
j51

H~s!

B# j 2 O
j51

N~s!21

A# jD 1

, (20)

where the A# j and B# j are i.i.d. with the same distributions as
the original interarrival and unit production times.

The proof of Theorem 1 uses an exponential change of
measure (also called exponential twisting), so we briefly
review this concept; see Chapter XII of Asmussen (1987)
or Chapter VIII of Siegmund (1985) for additional back-
ground. Suppose a random variable Z has distribution F
and that

c Z ~u ! 5 log # e ux dF~ x!

Figure 16. A five-item system. Trade-offs are on the three
constraining items.

Figure 17. A five-item system. Same three items as in Fig-
ure 16 are constraining, but the trade-offs are
on all five items for comparison with Figure 16.
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is finite in some nondegenerate interval containing 0. Then

dF ~u ! ~ x! 5 e ux2cZ ~u ! dF~ x!

defines a family of distributions indexed by u. Let P(u) be
the probability measure under which Z has distribution
F(u); we say that P(u) is obtained by u-twisting Z. For any
integrable function g, the expectation of g(Z) under the
original measure can be evaluated under P(u) if we first
multiply g(Z) by the likelihood ratio e2uZ1cZ(u), i.e.,

E@ g~Z!# 5 E~u ! @ g~Z! z e 2uZ1cZ ~u !# , (21)

where E(u) denotes expectation under P(u). From this, we
get the following relation, which will be used very often in
our proofs:

E~u ! @Z# 5 E@Ze uZ2cZ ~u !# 5 c9Z ~u ! .

A twist can be applied to a sequence of i.i.d. random
variables {Zn}. Let P̃ be the probability measure obtained
by u-twisting Z1, Z2, . . . . Then for any fixed n and any
function g of {Z1, . . . , Zn}, (21) generalizes to

E@ g~Z 1 , . . . , Z n !#

5 ẼF g~Z 1 , . . . , Z n ! P
j51

n

e 2uZj 1cZ ~u !G ,

where Ẽ denotes expectation under P̃. This identity ex-
tends to stopping times—i.e., for any stopping time T and
any function g of {Z1, . . . , ZT}, Wald’s likelihood ratio
identity (see Siegmund 1985, p.166 or Asmussen 1987,
p.258) gives

E@ g~Z 1 , . . . , Z T !; T , `#

5 ẼF g~Z 1 , . . . , Z T ! P
j51

T

e 2uZj 1cZ ~u !; T , `G .

We use this frequently. (A semicolon inside an expectation
indicates that the expectation is evaluated over the event
following the semicolon.)

Proof of Theorem 1. Because of the representation in (20),
the distribution of R(s) can be analyzed through W. To
that end, let Xn 5 ¥j51

Dn Bn, j 2 An, for all n Ä 1; S0 5 0
and Sn 5 ¥j51

n Xj. A classical result (see, e.g., Asmussen
1987, p. 80) states that W has the same distribution as
maxnÄ0 Sn. Thus,

P~R~s! . x! 5 PSW . O
j51

N~s!21

A# j 2 O
j51

H~s!

B# j 1 xD
5 P~max

nÄ0
S n . O

j51

N~s!21

A# j 2 O
j51

H~s!

B# N~s!, j 1 x!.

If we set L 5 ¥j51
N(s)21 A# j 2 ¥j51

H(s) B# N(s), j 1 x and T 5
inf{n Ä 1;Sn . L}, then

P~R~s! . x! 5 P~T , `! . (22)

Let P̃ be the measure obtained by g-twisting X1, X2, . . . ,
b-twisting D# 1, D# 2, . . . , (2g)-twisting A# 1, A# 2, . . . , and

g-twisting B# N,1, B# N,2, . . . . Notice that N(s) is a stopping
time for {D# j} and T is a stopping time for {Xn}. In this
setting, Wald’s identity gives

P~T , `! 5 ẼF P
j51

T

e 2gXj 1cX ~g! P
j51

N

e 2bD# j 1cD ~b!

z P
j51

N21

e g A# j 1cA ~2g! P
j51

H

e 2g B#
N, j 1cB ~g!; T , `G

5 ẼF expH2gS T 2 b O
j51

N

D# j 1 Nc D ~b! 1 g O
j51

N21

A# j

1 ~N 2 1!c A ~2g! 2 g O
j51

H

B# N, j 1 HbJ ; T , `G
5 e 2gx2bs1cD ~b!Ẽ@e 2g~ST 2L!; T , `# . (23)

Under P̃, Ẽ[X1] 5 E[egX1X1] 5 c9X(g) . 0, so P̃(T , `) 5
1. The random level L is independent of {Sn} and L 3 `
as s 1 x 3 `. A minor extension of a classical result in
renewal theory (see Corollary 8.33 of Siegmund 1985, or
Theorem XII.5.2 of Asmussen 1987) shows that

C 1 5 lim
s1x3`

Ẽ@e 2g~ST 2L!#

5 Ẽ@e 2gZe #

exists, where Ze has the equilibrium distribution of the
ascending ladder heights of the random walk under P̃. (See
Chapter 12 of Feller 1972, Chapter 1 of Prabhu 1980,
Chapter VII of Asmussen 1987, or Chapter VIII of Sieg-
mund 1985 for background on ladder heights and related
results from the theory of random walks.) So we have

lim
s1x3`

e gx1bsP~R~s! . x! 5 e cD ~b!C 1 5 C . □ (24)

When we have an assembly time Un, the steady-state
response time becomes R̂(s) 5 R(s) 1 U, where R(s) is as
in Theorem 1. By the simple relation P(R̂(s) . x) 5
P(R(s) . x 2 U) and conditioning on U, the argument in
the proof of Theorem 1 shows that

lim
s1x3`

e gx1bsP~R̂~s! . x uU!

5 lim
s1x3`

e gx1bsP~R~s! . x 2 U uU! 5 Ce gU.

When s 3 ` but x stays finite in the limit above, we
require x to be such that P(U ¶ x) 5 1. Invoking the
dominated convergence theorem, we get

lim
s1x3`

e gx1bsP~R̂~s! . x! 5 CE@e gU#,

which means that the assembly time changes only the con-
stant and does not alter the asymptotic trade-off between x
and s. Obviously, this is also true when assembly times are
added in multiple-item systems.

The change of measure introduced above is also useful
in estimating the service level for given x and s through
relation (22). When x 1 s is large, L is also large. But for
a stable production system the random walk {Sn} has neg-
ative drift, so {T , `} is a rare event and it becomes
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increasingly rare as the service level increases. Straightfor-
ward simulation is not efficient, if possible at all. Working
with the new measure P̃, we appeal to (23) and estimate
P(T , `) by averaging i.i.d. replications of

e 2g~ST 2L!1cD ~b!2gx2bs

generated under P̃.

Proof of Proposition 1. We adopt the notation of Sieg-
mund (1985). Let t1 5 min{n Ä 1;Sn Ä 0}, t2 5
min{n Ä 1;Sn ¶ 0}. By Equation 8.48 of Siegmund (1985)

Ẽ@e 2gZe # 5 P~t 1 5 `!P̃~t 2 5 `!~gc9X ~g!! 21. (25)

The first factor P(t1 5 `) 5 P(maxnÄ0 Sn 5 0) 5 P(W
5 0) 5 1 2 lE[D]E[B]. To evaluate P̃(t2 5 `), let X̂n

5 2Xn and Ŝn 5 2Sn, for n Ä 1; Ŝ0 5 0.

P̃~t 2 5 `! 5 P̃~min
nÄ0

S n 5 0!

5 P̃~max
nÄ0

Ŝ n 5 0!

5 P̃~Ŵ 5 0! ,

where Ŵ is the steady state waiting time of a G/M/1 queue
with interarrival time ¥j51

D Bj and service time A. Notice
that E[X1] . 0, so the G/M/1 queue is in fact stable under
P̃. By Theorem 1.3. of Asmussen (1987, p. 204)

P̃~Ŵ 5 0! 5 1 2 ẼF expH2gS O
j51

D

B jD J G 5 1 2 E@e 2gA#

5
g

l 1 g
.

Write c9X(g) 5 c9D(cB(g)) z c9B(g) 2 c9A(2g) 5
c9D(b)c9B(g) 2 (l 1 g)21 and ecD(b) 5 e2cA(2g) 5 (l 1
g)/l. Recalling (24) and (25) we have

C 5 e cD ~b!~1 2 lE@D#E@B#!
g

l 1 g
g 21

z ~c9D ~b!c9B ~g! 2
1

l 1 g! 21

5 l 21~l 1 g!~1 2 lE@D#E@B#!

z ~c9D ~b!c9B ~g!~l 1 g! 2 1! 21.

□

4. MULTIPLE-ITEM SYSTEMS

We turn next to the setting of Theorem 2, in which the nth
order requires Dn

i units of item i. The vectors (Dn
1, . . . ,

Dn
d), n 5 1, 2, . . . are i.i.d., but their components need not

be independent. An order is filled only when all units of all
items required are available. Thus the response time of the
nth order is given by Rn 5 max{Rn

1, . . . , Rn
d}. Under the

stability conditions, E[Bi]E[Di] 2 E[A] , 0, for all i 5
1, . . . , d, (Rn

1, . . . , Rn
d) converges in distribution to a

steady-state limit (R1, . . . , Rd) as n 3 `, and the steady-
state order response time is R 5 max{R1, . . . , Rd}. The
tail probability of each Ri is described by Theorem 1. From
this and the simple bounds

max
i

P~R i~s! . x! < P~R~s! . x! < O
i

P~R i~s! . x!,

(26)

it follows directly that

lim
x3`

1
x log P~R~s! . x! 5 2g

and

lim
s3`

1
s log P~R~s! . x! 5 2a,

with g 5 mini gi and a 5 mini ai. Strengthening these
logarithmic limits to the exponential asymptotics claimed
in Theorem 2 requires a more involved argument. We
shall need the following auxiliary result for the bivariate
cumulant generating function of random vector (Y1, Y2),
defined by

c Y1 ,Y2
~u 1 , u 2 ! 5 log E@e u1 Y1 1u2 Y2 #.

We use u1
c, u2

c to denote the partial derivatives of c

with respect to its first and second argument, respectively.

Lemma 2. Suppose for some v1 . 0 and v2 . 0, cY1,Y2
(v1,

0) 5 cY1,Y2
(0, v2) 5 c , ` and (v1, 0) is in the interior of

the domain of cY1,Y2
, then

v 1  u1
c Y1 ,Y2

~v 1 , 0! > v 2  u2
c Y1 ,Y2

~v 1 , 0!, (27)

and equality holds if and only if v1Y1 5 v2Y2, a.s.

Proof. Let ! 5 {(u1, u2);cY1,Y2
(u1, u2) ¶ c}. Convexity of

cY1,Y2
implies convexity of ! which further implies (essen-

tially by the supporting hyperplane theorem—see the argu-
ment used for Theorem 2.3.7 of Bazaraa and Shetty 1979)
that for any (u, v) [ !

~u 2 v 1 ! u1
c Y1 ,Y2

~v 1 , 0! 1 ~v 2 0! u2
c Y1 ,Y2

~v 1 , 0!

< 0.

Applying this inequality at (0, v2) [ ! we get (27).
When the equality holds, cY1,Y2

(u1, u2) 5 c, for all (u1,
u2) on the line segment [(0, v2), (v1, 0)], i.e.,

c Y1 ,Y2
Sv 1 2

v 1

v 2
u 2 , u 2D 5 c , ; 0 < u 2 < v 2 ,

E@e v1 Y1 2cY 1 ,Y 2 ~v1 ,0! z e ~Y2 2v1 /v2 Y1 !u2 # 5 1, (28)
; 0 < u 2 < v 2 .

Notice that E[ev1Y12cY1,Y2
(v1,0)] 5 1, so ev1Y12cY1,Y2

(v1,0) de-
fines the likelihood ratio between two probability measures
P and P̃(v1,0), which are absolutely continuous with respect
to each other. Equation (28) can be written as
Ẽ(v1,0)[e

(Y22(v1/v2)Y1)u2] 5 1 for all 0 ¶ u2 ¶ v2. As a result,
we have v2Y2 2 v1Y1 5 0, P̃(v1,0)-a.s., and P-a.s. □

We can now give the proof of Theorem 2.

Proof of Theorem 2. The limits on x and s follow fairly
directly from Theorem 1 and simple bounds if u(xu 5 1 or
u(su 5 1, respectively. Most of the difficulty arises from
dealing with ties among constraining items.
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We first prove (6), the limit on x. By the simple upper
bound in (26), we have lim supx3` egxP(R(s) . x) ¶ ¥i[(x

Cie
2ais. For the lower bound, we refine (26) to

P~R~s! . x! > O
i

P~R i . x!

2 O
iÞj

P~R i~s! . x, R j~s! . x! ,

and get

lim inf
x3`

e gxP~R~s! . x! > O
i[(x

C i e 2a i s

2 O
i, j[(x ,iÞj

lim sup
x3`

e gxP~R i~s! . x, R j~s! . x! .

From these bounds, (6) is obviously true if u(xu 5 1. We
consider the case u(xu Ä 2 and index two arbitary items in
(x by 1 and 2, i.e., g1 5 g2 5 g. It suffices to show

lim sup
x3`

e gxP~R 1~s! . x, R 2~s! . x! 5 0.

Indeed, it suffices to show

lim sup
x3`

e gxP~R 1~s! . x, R 2~s! . x, N 2 < N 1 ! 5 0, (29)

where the Ni are defined for each item i paralleling (18):
Ni 5 min{n Ä 1;¥j51

n D# j
i . si}. We continue to use the

notation in the proof of Theorem 1 on each item and
analyze the response times through queues and random
walks, which are now correlated across items.

We represent the response time distribution of item 1 as

R 1 5
$ S ~max

nÄ0
S n

1! 2 O
j51

N1 21

A# j 1 O
j51

H1

B# N1 , j
1 D 1

,

where S0
1 5 0, Sn

1 5 ¥j51
n Xj

1, for n Ä 1 with

X n
1 5 O

j51

Dn
1

B n, j
1 2 A n . (30)

Then, on the set {N2 ¶ N1}, R2 has the representation

R 2 5
$ S ~max

nÄ0
S n

2! 2 O
j51

N2 21

A# j 1 O
j51

H2

B# N2 , j
2 D 1

,

where S0
2 5 0, Sn

2 5 ¥j51
n Xj

2, for n Ä 1 with

X n
2 5 5

O j51
D# n1N 2

2 B# n1N2 , j
2 2 A# n1N2

,

for 1 < n < N 1 2 N 2 ,

O j51
Dn2~N 1 2N 2 !

2
B n2~N1 2N2 !, j

2 2 A n2~N1 2N2 ! ,

for n . N 1 2 N 2 .

(31)

To see why R1, R2 have these representations, notice that
R1, R2 are the steady-state response times for item 1 and
item 2 of the same order. As a result, Xn

2 is correlated with
Xn2(N12N2

)1 for n . N1 2 N2. We define Li 5 ¥j51
Ni21 A# j 2

¥j51
Hi B# Ni

, ji 1 x and Ti 5 inf{n Ä 1;Sn
i . Li}, i 5 1, 2.

To analyze the left side of (29), we let P̃T1

1 be the mea-
sure defined by g-twisting {X1

1, . . . , XT1

1 }, b1-twisting {D# 1
1,

D# 2
1, . . . }, (2g)-twisting {A# 1, A# 2, . . . }, and g-twisting

{B# N1,1
1 , . . . , B# N1,H1

1 }. Then for any event E determined by

{X1
1, . . . , XT1

1 ; D# 1
1, . . . , D# N1

1 ; A# 1, . . . , A# N121; B# N1,1
1 , . . . ,

B# N1,H1

1 },

P~E! 5 ẼT1

1 F expH2gS T1

1
2 b 1 O

j51

N1

D j
1 1 N 1 c D 1 ~b 1 !

1 g O
j51

N1 21

A# j 1 ~N 1 2 1!c A ~2g!

2 b 1 O
j51

H1

B N1 , j
1 1 H 1 c B 1 ~g!J ; EG

5 ẼT1

1 @e 2g~ST 1

1
2L1 !; E# z e 2gx2b1 s 11cD 1 ~b1 !.

Both N1 and N2 are finite a.s. To show (29), we write

e gxP~R 1~s! . x, R 2~s! . x, N 2 < N 1 !

5 e gxP~T 1 , ` , T 2 , ` , N 2 < N 1 !

5 e gxẼT1

1
@e 2g1 ~ST 1

1 2L1 !; T 1 , ` , T 2 , ` , N 2 # N 1 #

z e 2gx2a1 s1cD 1 ~b1 !

# P̃ T1
~T 1 , ` , T 2 , ` , N 2 # N 1 !e 2a1 s1cD 1 ~b1 !

5 P̃ T1
~T 2 # T 1 1 ~N 1 2 N 2 ! , ` , N 2 # N 1 !

z e 2a1 s1cD 1 ~b1 ! 1 P̃ T1
~T 1 1 ~N 1 2 N 2 ! , T 2 , `,

N 2 # N 1 !e 2a1 s1cD 1 ~b1 !. (32)

We will show that both terms in (32) have limit 0 when
x 3 `. This is obviously true if ẼT1

1 [X2] , 0 because
P̃T1

(T2 , `) 3 0. If ẼT1

1 [X2] Ä 0, then

T 2

T 1 1 ~N 1 2 N 2 !

5
1

1 1 ~N 1 2 N 2 !/T 1
z

L 1 /T 1

L 2 /T 2
z

L 2

L 1
3
a.s.

1 z
ẼT1

1 @X 1#

ẼT1

1 @X 2#
z 1

5
E@X 1e g1 X 1

#

E@X 2e g1 X 1
#

5
 u1

c X 1,X 2 ~g 1 , 0!

 u2
c X 1,X 2 ~g 1 , 0!

.
g 2

g 1
5 1,

where the last inequality uses Lemma 2. The limiting ratio
above equals ` when ẼT1

1 [X2] 5 0. We conclude that the
first term of (32) goes to 0.

What remains to be shown is that the second term of
(32) also goes to 0. Observe that on the set {T1 1 (N1 2
N2) , T2}, the process {Sn

2 2 ST1
1(N12N2)2 , n . T1 1

(N1 2 N2)} has the original law under P̃T1
and thus has

negative drift (cf. (31) to see how {Sn
2} is generated). It is

independent of {Sn
2, n ¶ T1 1 (N1 2 N2)} hence indepen-

dent of L2 2 ST1
1(N12N2)2 . Since

P̃ T1

1 ~T 1 1 ~N 1 2 N 2 ! , T 2 , ` , N 2 < N 1 !

< P̃ T1

1 ~ max
n.T1 1~N1 2N2 !

S n
2 . L 2 , N 2 < N 1 !

5 P̃ T1

1 ~ max
n.T1 1~N1 2N2 !

~S n
2 2 S T1 1~N1 2N2 !

2 ! . L 2

2 S T1 1~N1 2N2 !
2 , N 2 < N 1 ! ,
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the result follows if L2 2 ST1
1(N12N2)2 3 `. This is

indeed the case, because

L 2

S T1 1~N1 2N2 !
2 5

L 1 /T 1

S T1 1~N1 2N2 !
2 /~T 1 1 N 1 2 N 2 !

z
1

1 1 ~N 1 2 N 2 !/T 1
z

L 2

L 1

3
a.s. ẼT1

1 @X 1#

ẼT1

1 @X 2#
z 1 z 1 . 1.

the limiting ratio above equals ` when ẼT1

1 [X2] 5 0. This
completes the proof of (6).

The limit on s in (7) is a bit more involved due to the
way random levels Li go to ` as s 3 `. We give an outline
of the proof here and refer the reader to Wang (1997) for
the complete proof. Similar to the proof of (6), we only
need to consider the case u(su Ä 2 where we index two
arbitrary items in (s by 1 and 2, i.e., a1 – k1b1 5 a2 –
k2b2 5 a. It then suffices to show

lim sup
s3`

e asP~T 1 , `, T 2 , `, N 2 < N 1 ! 5 0. (33)

We consider the two cases g1 . g2 and g1 ¶ g2 sepa-
rately and show that (33) always holds. If g1 . g2, we write
the left side of (33) as

e asP~T 1 , `, T 2 , `, N 2 < N 1 !

< e asP~T 1 , `, N 2 < N 1 !

5 e asẼT1

1 @e 2g1 ~ST 1
1 2L1 !; T 1 ,` , N 2 ¶N 1 #e 2g1 x2as1cD 1 ~b1 !

< e 2g1 x1cD 1 ~b1 !P̃ T1

1 ~N 2 < N 1 ! .

Under P̃T1

1 , we use the strong law of large numbers to show
that as s3 `, N2/N1 has a limit larger than 1. So P̃T1

1 (N2 ¶
N1) 3 0 and (33) follows when g1 . g2.

For the case g1 ¶ g2, which implies h1 5 2cA(2g1) ¶
h2 5 2cA(2g2), we analyze the left side of (33) through a
different change of measure. Let P̃T2

,N2
2 be the measure

obtained by g2-twisting {X1
2, . . . , XT2

2 }, b2-twisting
{D# 1

2, . . . , D# N2

2 }, (2g2)-twisting {A# 1, . . . , A# N221}, and g2-
twisting {B# N1

,12 , . . . , B# N2
,H2

2 }. We write the left side of
(33) as

e asP~T 1 , `, T 2 , `, N 2 < N 1 !

5 e asẼT2 ,N2

2 @e 2g2 ~ST 2
2 2L2 !; T 1 , `, T 2 , `, N 2 < N 1 #

z e 2g2 x2as1cD2 ~b2 !

< P̃ T2 ,N2

2 ~T 1 , `, T 2 , `, N 2 < N 1 !e 2g2 x1cD 2 ~b2 !

5 e 2g2 x1cD 2 ~b2 !P̃ T2 ,N2

2 ~T 2 ¶N 1 2N 2 , T 1 ,` , N 2 ¶N 1 !

1 e 2g2 x1cD 2 ~b2 !P̃ T2 ,N2

2 ~T 1 1 ~N 1 2 N 2 ! < T 2

, `, N 2 < N 1 !

1 e 2g2 x1cD 2 ~b2 !P̃ T2 ,N2

2 ~0 , T 2 2 ~N 1 2 N 2 ! , T 1

, `, N 2 < N 1 ! , (34)

and show that each of the three terms in (34) has a limit of
0. (It suffices to consider the case ẼT2,N2

[X1] Ä 0 because
otherwise P̃T2,N2

(T1 , `) 3 0 trivially.) The first term is
easy to show because on the set {T2 , N1 2 N2} the
process {Sn

1; n Ä 1} has the original law under P̃T2 ,N2

2 , thus
has negative drift. The random level L1 3 `, P̃T2,N2

-a.s., so
P̃T2,N2

(T1 , `) 3 0.
The arguments for the second and third terms of (34)

parallel those for the first and second terms of (32), re-
spectively. For the second term, we use the strong law of
large numbers to show that under P̃T2 , N2

, (T1 1 N1 2
N2)/T2 has a limit that is larger than 1 under the condition

E@D 2e b2 D 22cD 2 ~b2 !#

E@D 1e b2 D 22cD 2 ~b2 !#
>

b 1

b 2
2

, (35)

where b2
2 (¶ b2) is defined by cD2(b2

2) 5 h1 (¶ h2). (The
existence of b2

2 is guaranteed by our standing assumption
that cD2(u) does not jump to ` as u increases.) As a result,
we have P̃T2, N2

(T1 1 (N1 2 N2) ¶ T2, N2 ¶ N1) 3 0. The
condition in (35) is implied by the independence of Di. To
see this, notice that the independence of Di implies
E[D1eb2D22cD2(b2)] 5 E[D1] 5 c9D1(0) ¶ h1/b1; convexity of
c implies E[D2eb2D22cD2(b2)] 5 c9D2(b2) Ä c9D2(b2

2) Ä h1/
b2

2. Hence (35) follows.
For the third term of (34), observe that on the set (0 ,

T2 2 (N1 2 N2) , T1), the process {Sn
1 2 ST2

2(N12N2)1 ,
n . T2 2 (N1 2 N2)} has the original law under P̃T2, N2

2

and thus has negative drift. Also notice that

P̃ T2 , N2

2 ~0 , T 2 2 ~N 1 2 N 2 ! , T 1 , ` , N 2 < N 1 !

< P̃ T2 , N2

2 ~ max
n.T2 2~N1 2N2 !

S n
1 . L 1 , N 2 < N 1 !

5 P̃ T2 , N2

2 ~ max
n.T2 2~N1 2N2 !

~S n
1 2 S T2 2~N1 2N2 !

1 !

. L 1 2 S T2 2~N1 2N2 !
1 , N 2 < N 1 ! .

This probability goes to 0 if L1 2 ST2
2(N12N2)1 3 `, and

this condition holds because we can show that L1/
ST2

2(N12N2)1 has a limit that is larger than 1 under con-
dition (35). □

It is worth noting that independence of the Di was used
only to verify the rather technical condition in (35) and
does not appear to be essential to the result itself. We have
not, however, found a conveniently stated weaker condi-
tion to cover the case u(su . 1 and replace independence.

For Theorem 3, the setting reduces to that of Theorem
2 when we consider product j and the set (j of items it
requires. The results follow by the same argument used in
the proof of Theorem 2.

5. CONCLUDING REMARKS

We have demonstrated both theoretically and numerically
that it is possible to quantify the trade-off between longer
leadtimes or higher inventory levels in achieving a target
fill rate, in a class of production-inventory models. Not
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surprisingly, the trade-off is sharpest in single-item sys-
tems. When multiple items are assembled into multiple
products, the trade-off depends in part on which items
most constrain the product-level fill rate. One aspect of
our analysis is a characterization of which items are most
constraining at higher inventory levels and which are most
constraining at longer leadtimes. This distinction poten-
tially offers a new perspective on where efforts should be
expended to improve service; it emerges naturally from an
analysis focused directly on service levels.
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