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Abstract We examined the hypothesis that leaf gas

exchange of scion is affected by different rootstocks in

wood plants. We investigated daily courses of gas

exchange and photosynthetic potential using the CO2

assimilation rates as a function of photosynthetic

photon flux density, and then assessed CO2 response

curves in atemoya scion (Annona 9 atemoya Mabb.)

grafted onto araticum-de-terra-fria [A. emarginata

(Schltdl.) H. Rainer var. terra-fria]: ATF, araticum-

mirim [A. emarginata (Schltdl.) H. Rainer var. mirim]:

ATM, biribá [A. mucosa (Bail.) H. Rainer]: ATB,

atemoya (autograft): ATA, and in ungrafted atemoya

plants: CTR. Throughout the entire evaluation period,

the net assimilation rate (Anet) and stomatal conduc-

tance (gs) of CTR plants remained practically con-

stant, being lower than those of grafted plants between

08:00 a.m. and 12:00 a.m., regardless of the rootstock

used. Moreover, ATM plants proved to be more

efficient in keeping the stomata open, even during the

hottest hours of the day, improving Anet and

carboxylation use efficiency. However, this occurred

at the lowest maximum carboxylation rate of ribulose-

1,5-bisphosphate (Vcmáx). Overall, ATF plants pre-

sented a low light saturation point and photosynthetic

electron transport rates, though increased maximum

quantum yield of photosynthesis was observed. Thus,

we accept our hypothesis and conclude that grafting

might affect the photosynthetic metabolism of the

atemoya hybrid, regardless of the combination used,

which promotes enhanced Anet and lowVcmáx and light

saturation points.

Keywords Annonaceae � Gas exchange � Grafted
plants � Light curves

1 Introduction

From the earliest times, since the Old Testament of the

Bible, Greek Civilization, and ancient China, food

producers have connected the root part of a species to

the aerial part of another species, forming a ‘‘new’’

plant through a process known as grafting (Melnyk

and Meyerowitz 2015; Melnyk et al. 2015; Xu et al.

2016). The grafting technique and the combination of

different graft and rootstock species has long been the

target of investigations aimed at proposing solutions to

problems in acclimation of commercial plants to

numerous biotic and abiotic factors in the field, such

as resistance to pathogens, the influence of
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temperature and shading conditions, as well as ther-

mal, saline, and nutritional stresses (Colla et al. 2010;

Goldschmidt 2014; Warschefsky et al. 2016).

In orchards, atemoya (Annona9 atemoyaMabb.) is

a hybrid fruit of economic importance and is grafted to

ensure that the genetic characteristics of productive

scions are maintained (Encina et al. 2014). Rootstocks

most often used to graft atemoya include araticum-de-

terra-fria [Annona emarginata (Schltdl.) H. Rainer

‘‘var. terra-fria’’], araticum-mirim [Annona emargi-

nata (Schltdl.) H. Rainer ‘‘var. mirim’’], biribá

[Annona mucosa (Bail.) H. Rainer], and atemoya

(autograft) (Kavati 2013). However, the latter is

susceptible to fungi present in the soil when used as

a rootstock (Stenzel et al. 2003).

Atemoya scion grafted onto araticum-de-terra-fria

(ATF) rootstock results in further development of the

scion and tolerance to cave nematodes, stem borers,

and water stress (Tokunaga 2005). However, arati-

cum-mirim (ATM) rootstock causes dwarfism (Baron

et al. 2017), which is considered beneficial, as it

facilitates the management of commercial orchards

(Prassinos et al. 2009). Additionally, biribá has been

studied to avoid problems with nematodes and stem-

borers, with improved adaptation to adverse condi-

tions (de Almeida et al. 2010) and the facilitation of

expanded adaptability in scion (Baron et al. 2017).

However, the physiology and biochemistry of

grafted plants tend to differ from that of ungrafted

plants due to graft–rootstock interactions. Most graft-

ing studies suggest that changes in the scion are

controlled by the rootstock through controlled uptake,

synthesis, and translocation of water, minerals and

plant hormones (Al-Harbi et al. 2018; Balal et al.

2017; dos Santos et al. 2017).

Moreover, several authors have reported that

grafting improves net CO2 assimilation rate, stomatal

conductance, and transpiration, which results in higher

plant growth and yields (Borgognone et al. 2013; He

et al. 2009; Penella et al. 2017). As a result of this

metabolic change, grafting affects photosynthetic

metabolism by means of increased net CO2 assimila-

tion rate improvement and decreased maximum

quantum yield of photosynthesis (Amaro et al. 2014;

Covarrubias et al. 2016). Since all biomass production

depends on photosynthetic activity, agricultural prac-

tice aims to maximize the photosynthetic efficiency of

crops and improve the final crop yield in terms of

productivity and quality.

Gas exchange in grafted plants are directly modi-

fied by rootstock, as this can alter the vigor and

productivity of the scion (Colla et al. 2012; Karimi and

Nowrozy 2017; Lima et al. 2017). For example,

grafting affects the plant water relations, whereas

sufficient vascular connection between the rootstock

and scion increases the flow of nutrients and water,

facilitating increased photosynthesis (Martı́nez-Bal-

lesta et al. 2010; Salehi et al. 2010).

Several physiological responses of the plants to

grafting in herbaceous plants are found in the litera-

ture. However, little is known about its effects on

woody plants due to the difficulty of working with

plants that require a longer periods of time to present

stages suitable for grafting. Therefore, we examine the

hypothesis that leaf gas exchange of scion is affected

by different rootstocks in wood plants.

2 Material and methods

2.1 Plant material and treatments

The present study was conducted in a greenhouse.

Seeds of three rootstocks species, including araticum-

de-terra-fria [Annona emarginata (Schltdl.) H. Rainer

‘variety terra-fria’], araticum-mirim [Annona emargi-

nata (Schltdl.) H. Rainer ‘variety mirim’], biribá

[Annona mucosa (Bail.) H. Rainer], and atemoya

(Annona 9 atemoya Mabb.) were sown in polystyrene

trays containing vermiculite, according to the method

of Baron et al. (2011).

When seedlings developed fully expanded leaves,

they were transplanted to plastic pots (approximately

20 dm3) containing a mixture substrate with fertile

soil, vermiculite, and coconut fibre (2:1:1 v/v). The

plants were irrigated with water (400 mL per pot/day,

or as necessary) and supplemented, via soil, with

Hoagland and Arnon no. 2 nutrient solution. This

solution was diluted to 50% of its ionic strength, with

an electrical conductivity (EC) range of

1.0–1.5 mS cm-1 and calcium nitrate, EC range from

0.20 to 0.25 mS cm-1, which is recommended for

growing annonaceous plants from seedlings until

young plants, according to Baron et al. (2017).

The whip and tongue grafting technique was

performed according to technical bulletins on plant

propagation for atemoya hybrid ‘Thompson’ (Toku-

naga 2005). Rootstocks were prepared 18 months
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after sowing, when the plants possessed stem diam-

eters ranging from 8 to 15 mm and were 15 cm in

height. The plants were prepared using stem segments

(12 cm in length, 8–15 mm in diameter) from the

same plant.

An evaluation of gas exchange was performed in

each graft combination [atemoya scions grafted onto

ATF, ATM, biribá (ATB), atemoya (ATA) root-

stocks], and in ungrafted atemoya (CTR). Gas

exchange was measured 12 months after grafting,

when grafted plants exhibited complete post-grafting

re-establishment using an infrared CO2 and water

vapor analyzer (LI-6400, Li-Cor, Inc., Lincoln, NE,

USA) using the second fully expanded leaves from the

apex.

2.2 Daily gas exchange

Daily gas exchange was performed every 2 h from

8:00 a.m. until 4:00 p.m. Net CO2 assimilation rate

(Anet, lmol CO2 m
-2 s-1), transpiration (E, mmol H2-

O m-2 s-1), stomatal conductance (gs, mol H2O

m-2 s-1), and vapor pressure deficit (VPD, kPa) were

evaluated. Water use efficiency [WUE, lmol CO2

(mmol H2O)
-1] was determined by the relationship

between net assimilation rate and transpiration (Anet/

E), and the carboxylation efficiency (Anet/Ci) was

determined by the relationship between the CO2

assimilation rate and the intercellular CO2 concentra-

tion (Ci, lmol CO2 mol air-1).

To ensure the consistency of experimental condi-

tions, photosynthetic photon flux density (PPFD) was

standardized through the use of a light-emitting diode

coupled to a photosynthesis chamber. Moreover, all

plants were placed under the same light conditions to

ensure a consistent light environment during each

experimental period (Table 1). The reference CO2

concentration used during the evaluation was

380 lmol mol-1. Air temperature and relative humid-

ity, as well as PPFD, were recorded by the LI-6400

during gas exchange evaluations in the greenhouse

(Table 1).

Measurements were conducted by selecting 12

plants of each treatment (four of each grafting

combination). Evaluations were performed over three

consecutive days, each representing an experimental

block.

2.3 Response curve of the CO2 assimilation rate

(Anet, lmol CO2 m
-2 s-1) as a function

of photosynthetic photon flux density (PPFD)

The response curve for CO2 assimilation rate (Anet,

lmol CO2 m-2 s-1) as a function of PPFD was

obtained by decreasing PPFD from 2000 to

0 lmol m-2 s-1 at intervals of 300 lmol m-2 s-1

until 200 lmol m-2 s-1, and thereafter at 100, 50, and

0 lmol m-2 s-1. Measurements were then conducted

by selecting three plants from each treatment (one

from each experimental block).

The response curve was adjusted to the hyperbolic

function A = a ? [(Amáx 9 PPFD)/(b ? PPFD)],

where Amáx is the maximum net CO2 assimilation

rate, and a and b are the parameters of the hyperbolic

equation. This function allowed us to calculate

respiration in the dark (a in the equation) and at the

light compensation point (s, corresponding to the

value of PPFD where A is zero). The light saturation

point was determined by fitting a straight line (y = 1)

to the higher points of the curve. The hyperbolic

function was then fitted using SAS 9.2 statistical

software (SAS Institute, Inc., Cary, NC). The concen-

tration of the reference CO2 during the evaluation was

380 lmol mol-1.

2.4 CO2 response curves (Anet/Ci)

CO2 response curves (Anet/Ci) were performed using

the light saturation point, previously determined by the

light curves for each treatment. The CO2 concentra-

tions first ranged from 400 to 0 lmol mol-1 of CO2 at

intervals of 50 lmol mol-1 CO2. Thereafter, CO2

concentrations ranged from 400 to 2000 lmol mol-1

of CO2 at intervals of 200 lmol mol-1 CO2. Mea-

surements were then performed by selecting three

plants from each treatment (one from each experi-

mental block).

Curves were fitted according to the Sharkey model

(Sharkey et al. 2007), calculating the maximum

carboxylation rate of ribulose-1,5-bisphosphate

(RuBP, Vcmáx, lmol CO2 m-2 s-1), photosynthetic

electron transport rate (J, lmol electrons m-2 s-1),

triose phosphate use (TPU), respiratory rate (Rd*,

lmol CO2 m-2 s-1), and mesophyll conductance

(gm
�; lmol m-2 s-1).
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2.5 Experimental design and statistical analysis

The experimental design was conducted using a

randomized block design consisting of five treatments

involving three blocks with 12 plants each. To

determine the homogeneity of treatment variances,

Levene’s test was performed using SAS 9.2 statistical

software (SAS Institute, Inc., Cary, NC). The results

were subjected to an analysis of variance test, and

means were compared using the Tukey test (p B 0.05)

using SAS 9.2 statistical software (SAS Institute, Inc.,

Cary, NC).

3 Results

Between 08:00 a.m. and 04:00 p.m., stomata of ate-

moya remained open (gs) throughout the entire

evaluation period (Fig. 1) in all grafting combinations

(ATF, ATM, ATB and ATA) and in ungrafted plants

(CTR). During this period, the Anet and gs (Fig. 1) of

CTR plants remained practically constant and smaller

than those of grafted plants between 08:00 a.m. and

12:00 a.m., regardless of the rootstock used

(p\ 0.05).

Additionally, ATM and ATA plants exhibited

larger Anet from 08:00 a.m. to 02:00 p.m. (Fig. 1;

p\ 0.001). The ATF plants presented higher Anet

from 10:00 a.m. to 02:00 p.m. (p\ 0.001), while

ATB plants presented higher Anet from 08:00 a.m. to

12:00 a.m. (p\ 0.001). At 10:00 a.m., PPFD

(Table 1) exceeded the light saturation point of these

plants (Table 2).

Furthermore, ATM plants reached higher values of

Anet (p\ 0.0001; Fig. 1) and E (p\ 0.01; Fig. 2) than

the other combinations at 02:00 p.m., when the

ambient temperature was between the highest and

the lowest relative humidity (Table 1). This is due to

gs remaining high (p\ 0.001) despite having reached

greater Anet/Ci (p\ 0.01; Fig. 2), which represents a

similar response to that of ATA plants.

At 02:00 p.m., a decrease of gs in ATF, ATB and

ATA plants was observed, which led to a decrease of

Anet, E and Anet/Ci, which were similar to each other

and to CTR plants. At 04:00 p.m. ATM plants

equalized their gas exchange rates to a greater extent

than other evaluated plants (p[ 0.005).

Leaf temperature (Fig. 3) and VPD (Fig. 4) were

also similar between evaluated plants, and followed

diurnal temperature variations (Table 1), exhibiting

high values between 12:00 a.m. and 02:00 p.m.

(p\ 0.0001).

The graft–rootstock interaction also influenced the

light and carboxylation curves. Atemoya-grafted

plants, regardless of the combination used, presented

a lower light saturation point and maximum carboxy-

lation rate of RuBP (Vcmáx) (Table 2). The lowest

Vcmáx was observed in ATM plants. The greatest light

compensation point (Table 2) was presented by ATA

plants, with no differences between other types of

plants. The maximum quantum yield of photosynthe-

sis (Table 2) was higher in ATF plants, which also

exhibited the lowest photosynthetic electron transport

rate (J) (Table 2), while no differences were observed

between the other rootstock combinations. TPU

(Table 2) was higher in ATB plants and lowest in

ATF plants.

No differences were observed between ATA, ATM,

and CTR plants in relation to respiratory rate (Rd*)

(Table 2). ATF and ATA plants exhibited the lowest

mesophyll conductance (gm
� ) (Table 2), though this

was not statistically different from ATM plants.

Table 1 Photosynthetic photon flux density (PPFD, lmol m-2 s-1), air temperature (�C), and relative air humidity (%) in the

experimental greenhouse from 8:00 a.m. to 4:00 p.m.

PPFD (lmol m-2 s-1) Air temperature (�C) Relative humidity (%)

08:00 a.m. 831.72 ± 18.85 29.06 ± 0.38 40.78 ± 1.25

10:00 a.m. 1357.57 ± 24.60 30.60 ± 0.32 40.78 ± 0.93

12:00 a.m. 1536.50 ± 16.89 34.99 ± 0.20 32.76 ± 0.97

02:00 p.m. 1206.72 ± 39.61 34.07 ± 0.15 32.58 ± 0.63

04:00 p.m. 674.39 ± 21.82 32.18 ± 0.26 35.58 ± 0.81
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4 Discussion

The daily gas exchange analysis performed in this

experiment demonstrated that grafting increased the

photosynthetic efficiency of atemoya, regardless of the

combination used, while also increasing Anet, E, Anet/

Ci and gs values. These increases also occurred in ATA

plants, providing evidence for increased photosyn-

thetic efficiency throughout the day being caused by

the grafting itself, which differed according to the

rootstock used. This result was also evident upon

analyzing the maximum carboxylation rate of RuBP

(Vcmáx)—which was lower in all grafted plants—

indicating that grafting increases the efficiency of this

enzyme and resulted in an increased affinity with its

substrate (CO2), consequently enhancing the CO2

assimilation.

In herbaceous plants belonging to Cucurbitaceae

and Solanaceae families, the reestablishment of vas-

cular connections in grafted plants is of fundamental

importance for water flow (Martı́nez-Ballesta et al.

2010). When forming the callus at the scion/rootstock

interface, grafted plants enable water flow from the

rootstock to the scion and, when the vascular connec-

tion is successful, several authors have reported that

the graft improves Anet, A/Ci, E and gs, which results in

increased growth and productivity (Amaro et al. 2014;

He et al. 2009; Salehi et al. 2010; Yang et al. 2006).

Fig. 1 a Net assimilation

rate (Anet, lmol CO2

m-2 s-1) and b stomatal

conductance (gs, mol H2O

m-2 s-1) in atemoya scions

grafted onto atemoya

(ATA), araticum-de-terra-

fria (ATF), araticum-mirim

(ATM), and biribá (ATB)

rootstocks, and ungrafted

atemoya (CTR), from

8:00 a.m. to 4:00 p.m.

Values are mean ± SE

(n = 12)
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Additionally, rootstocks may affect the scion in

different ways, and these alterations can also be

observed in the production of secondary metabolites

and in ionic accumulation (Huang et al. 2015; Penella

et al. 2015, 2017).

We observed that ungrafted (CTR) and autografted

(ATA) plants presented little variation in gas exchange

rates throughout the day. Therefore, it suggests that

the rootstock may increase gas exchange rates.

In this study, ATM plants exhibited greater effi-

ciency in keeping the stomata open, presenting higher

gs (p\ 0.05) even during the hottest hours of the day

(12:00 a.m. and 02:00 p.m.). This provided higher

Anet than other combinations used (p\ 0.05), and it

also exhibited higher carboxylation efficiency at

02:00 p.m. (p\ 0.05) and the lowest Vcmáx

(p\ 0.01). Improved Anet can result in improved

growth, dry matter accumulation, yields, and fruit

quality.

The literature reports the evolutionary origin and

domestication of both A. emarginata var. mirim (sin.

Rollinia emarginata Schltdl.) and A. emarginata var.

terra-fria predominantly occurred in subtropical and

tropical regions of the globe, experiencing higher

environmental temperatures (Paul et al. 1992). How-

ever, the terra-fria variety has exhibited the greatest

adaptation to milder temperature conditions (Baron

et al. 2014; Tokunaga 2005), which may explain the

greater stomatal opening of ATM plants during the

hottest hours of the day.

The type of rootstock used influences the absorp-

tion, synthesis, and the translocation of water, miner-

als, and plant hormones (Martı́nez-Ballesta et al.

2010). This increases the availability of water in the

plant, causing an increase of the water flow that keeps

the stomata open, even during the hottest hours of the

day, providing high rates of CO2 assimilation (Amaro

et al. 2014).

According to Baron et al. (2017), araticuns and

biribá do not restrict the ionic flow to atemoya-grafted

plants. These authors observed that combinations

between atemoya grafted onto ATF and ATM show

great accumulation of K? in their leaves. Furthermore,

Maathuis (2009) suggests that K? is responsible for

several changes in the turgor of guard cells during

stomatal movement, which results in greater stomatal

opening. Additionally, this mineral element is a

cofactor of enzymes involved in respiration and
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photosynthesis (Jin et al. 2011), which explains the

results obtained in the present study.

Gas exchange in grafted plants seems to be

influenced by the rootstock because the rootstock

can modify the gene expression, vigor, and produc-

tivity of the scion (Colla et al. 2012; Merli et al. 2016),

as evidenced by the compatibility between scion/root-

stock, the chlorophyll content (Etehadnia et al. 2008;

Liu et al. 2007; Rouphael et al. 2008) and photosystem

II efficiency (PS II) (Ahn et al. 1999; He et al. 2009;

Zheng et al. 2009).

Over the past decade, the use of grafting in ‘‘model

species’’ such as Arabidopsis thaliana L. and tobacco

(Nicotiana tabacum L.) in plant physiology studies has

contributed to advances in genomic/proteomic studies.

With the important contribution of knowledge regard-

ing the transmission of floral stimuli, proteins, and

long-distance RNAs in plants, it has been shown that

possible signaling from rootstock to scion (Corbesier

et al. 2007; Harada 2010; Kasai et al. 2011; Notaguchi

et al. 2008, 2009) may interfere with the metabolism of

the whole plant (Kanehira et al. 2010; Le Hir et al.

2008).

The highest light compensation point (s) presented
by ATA plants was not evidenced in the other

rootstock combinations. This result may be due to the

fact that ATA showed the highest respiratory rate

(Rd*), indicating that these plants require more

Fig. 2 a Transpiration rate

(E, mmol H2O m-2 s-1)

and b carboxylation

efficiency (Anet/Ci), in

atemoya scions grafted onto

atemoya (ATA), araticum-

de-terra-fria (ATF),

araticum-mirim (ATM), and

biribá (ATB) rootstocks,

and ungrafted atemoya

(CTR), from 8:00 a.m. to

4:00 p.m. Values are

mean ± SE (n = 12)
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photosynthetic photons to assimilate the same amount

of CO2 compared to other rootstocks combinations.

Although apparent CO2 exchange does not occur, CO2

uptake will follow the linear increase of radiation until

reaching the light saturation point if the stomata are

open and other environmental factors do not limit the

gas exchange after the light compensation point.

The light saturation point of atemoya was affected

by the rootstocks, regardless of the combination used,

although this result did not change J, with the excep-

tion of ATF plants, which besides presenting the

lowest light saturation, also showed the lowest

J. Notably, this rate is used to estimate the maximum

rate of electron transport under saturating light, and

it is based on the number of electrons required to

reduce NADP to NADPH ? H?, as used by triose

phosphate in the regeneration of RuBP (Sharkey et al.

2007). This indicates that ATF is the most efficient

scion for utilizing irradiance.

Photosynthesis may be limited by three biochem-

ical processes: (1) the maximum carboxylation rate

of the RuBisCO enzyme, (2) the regeneration rate of

RuBP, or (3) TPU limitation (Ding et al. 2017;

Sharkey et al. 2007). ATF plants showed the highest

maximum quantum yield of photosynthesis (U),
suggesting that this rootstock species increased the

efficiency of the Calvin cycle in terms of the use of

ATP and NADPH ? H?, as also observed in tomato

Fig. 3 a Water use

efficiency [WUE, lmol CO2

(mol H2O)
-1] and b leaf

temperature (�C), in
atemoya scions grafted onto

atemoya (ATA), araticum-

de-terra-fria (ATF),

araticum-mirim (ATM), and

biribá (ATB) rootstocks,

and ungrafted atemoya

(CTR), from 8:00 a.m. to

4:00 p.m. Values are

mean ± SE (n = 12)
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plants (Solanum lycopersicum L.) (Ding et al. 2017).

However, for ATF plants, photosynthesis was limited

by the TPU, which was the lowest among all

combinations. In combinations of watermelon [Citrul-

lus lanatus (Thunb.) Mansf.] grafted onto calabash

(Lagenaria siceraria Standl.), it has been reported that

the rootstock contributes significantly to the expres-

sion of key enzymes involved in the Calvin cycle and

the tricarboxylic acid cycle (Yang et al. 2012). Finally,

ATB plants presented the highest TPU, indicating an

increased export rate of photoassimilates, which could

be directed to growth and yield.

We accepted our hypothesis, suggesting that graft-

ing may affect the photosynthetic metabolism of the

atemoya hybrid, regardless of the combination used.

In addition, we demonstrate that grafting seems

to promote increased Anet and lower maximum car-

boxylation rates of RuBP and light saturation points.
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