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Abstract Relationships between leaf spectral reflectance at 400–900 nm and nitrogen

levels in potato petioles and leaves were studied. Five nitrogen (N) fertilizer treatments

were applied to build up levels of nitrogen variation in potato fields in Israel in spring 2006

and 2007. Reflectance of leaves was measured in the field over a spectral range of 400–

900 nm. The leaves were sampled and analyzed for petiole NO3–N and leaf percentage N

(leaf-%N). Prediction models of leaf nitrogen content were developed based on an optical

index named transformed chlorophyll absorption reflectance index (TCARI) and on partial

least squares regression (PLSR). Prediction models were also developed based on simu-

lated bands of the future VENlS satellite (Vegetation and Environment monitoring on a

New Micro-Satellite). Leaf spectral reflectance correlated better with leaf-%N than with

petiole NO3–N. The TCARI provided strong correlations with leaf-%N, but only at the

tuber-bulking stage. The PLSR analysis resulted in a stronger correlation than TCARI with

leaf-%N. An R2 of 0.95 (p \ 0.01) and overall accuracy of 80.5% (Kappa = 74%) were

determined for both vegetative and tuber-bulking periods. The simulated VENlS bands

Y. Cohen (&) � V. Alchanatis � Y. Zusman � V. Ostrovsky � A. Levi � R. Brikman
Agricultural Research Organization, Volcani Center, Institute of Agricultural Engineering,
Bet-Dagan, Israel
e-mail: yafitush@volcani.agri.gov.il

Y. Zusman � M. Shenker
The Seagram Center for Soil and Water Sciences, Hebrew University of Jerusalem, Rehovot, Israel

Z. Dar � A. Zilberman
Extension Service, The Ministry of Agriculture, Bet-Dagan, Israel

D. J. Bonfil
Field Crops and Natural Resources Department, Agricultural Research Organization,
Gilat Research Center, Negev, Israel

A. Karnieli
The Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben Gurion
University of the Negev, Sede-Boker Campus, Beersheba, Israel

A. Moulin
Brandon Research Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada

123

Precision Agric (2010) 11:520–537
DOI 10.1007/s11119-009-9147-8



gave a similar correlation with leaf-%N to that of the spectrometer spectra. The satellite

has significant potential for spatial analysis of nitrogen levels with inexpensive images that

cover large areas every 2 days.

Keywords Spectral reflectance � VENlS satellite �
Transformed chlorophyll absorption in reflectance index (TCARI) �
Partial least squares regression (PLSR) � Nitrogen � Potato

Introduction

Potato (Solanum tuberosum L.) is an important crop worldwide, with total world pro-

duction of about 360 million metric tons (National Potato Council (NPC) 2006). Potato is

also becoming an important crop in Israel: in 2000 an area of 11 000 ha was seeded, which

had increased to around 17 000 ha in 2005 (http://www.cbs.gov.il/reader). Potato yield and

quality are very dependent on an adequate supply of nitrogen (Dar 2002; Errebhi et al.

1998). The relatively shallow root system of the potato crop, coupled with its large

nitrogen (N) requirement and sensitivity to water stress on coarse textured soil increases

the risk of nitrate (NO3–N) leaching. Therefore, precise N management for potato is

important, both for maximizing production and for minimizing N loss to groundwater.

Applying the right amount of N in the right place at the right physiological stage presents a

challenge to potato growers, and matching fertilizer supply to the demands of the crop

requires an adequate assessment of N status in the field. Potato growers usually apply more

fertilizer N than is recommended as a safety measure because they do not want to sacrifice

yield of a high-value crop when there are uncertainties about the accuracy of the recom-

mended rates. There are few commercially available sensors to assess N status (Shock et al.

2007; Zebarth and Rosen 2007) or that account for spatial variability. The recent signifi-

cant increase in nitrogen fertilizer costs has prompted efforts to devise strategies that will

improve N use efficiency (NUE) in major crops such as potato. Previous research con-

cluded that split applications of N to match potato growth needs would improve NUE

considerably (e.g. Westermann and Kleinkopf 1985). In Israel potatoes are grown under

irrigation, primarily on coarse sandy soil with a low organic content that is subject to N

leaching when water and N are applied in excess (Alva 2008). Errebhi et al. (1998) showed

that reducing the amounts of N applied at planting resulted in less NO3–N leaching, greater

N recovery by the crops and improved yield of marketable tubers. Meyer and Marcum

(1998) demonstrated the need for pre-planting measurements of soil–N concentration to

determine appropriate rates of N to apply. Dar (2002) suggested that the appropriate mid-

season N rates and timing of application might be determined from petiole NO3–N con-

centrations. Because of the temporal variability of soil N supply, strategies based on

detecting crop N status at critical crop growth stages, and meeting crop N requirements

with carefully timed fertilizer application might ultimately be more successful in

improving NUE than those based on application at planting (Ferguson et al. 2002; Van-

Alphen and Stoorvogel 2000). However, fertilizer management in irrigated potato pro-

duction worldwide is currently based on uniform rates of N application and it does not take

into account the spatial variation of plant N demand, which may result from within-field

variability in soil and environmental characteristics. In the light of these considerations,

there is considerable potential for varying the recommended timing and rates of N

application according to petiole N level determined by measurements of soil and crop

properties spatially distributed in the field at critical points of the growing season.
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Remote sensing techniques can indicate crop N status (Al-Abbas et al. 1974; Botha

et al. 2006; Gitelson et al. 2003; Thomas and Gausman 1977; Zakaluk and Ranjan 2007).

Light reflected by vegetation in the visible region of the spectrum is predominantly

influenced by chlorophyll pigments in the leaf tissues, and these relate to the leaf N

concentration (Haboudane et al. 2002). Chlorophyll absorbs light in the red (*670 nm)

and blue (*450 nm) portions of the spectrum (Gates et al. 1965), thereby providing

diagnostic absorption features. In addition, near-infrared (NIR) reflectance is influenced by

the internal structure of the leaf cell; well hydrated, healthy, spongy mesophyll cells reflect

infrared wavelengths strongly (Gates et al. 1965). The spectral region between the red

absorption feature and the region of high NIR reflectance, termed the ‘red-edge’, changes

shape and position when the plant becomes deficient in N (e.g. Jain et al. 2007; Strachan

et al. 2002). Therefore, measurements of reflected energy from crop leaves and canopies

can be used to estimate chlorophyll concentration rapidly and provide a measure of N

content (Haboudane et al. 2002; Jain et al. 2007).

The use of hyperspectral (HS) images, validated by ground-based spectral reflectance

sensors, can address both spatial and temporal variability in leaf N content to improve mid-

season N management. Hyperspectral images obtained by the Hyperion Satellite combine

high spectral resolution with moderate spatial and temporal resolutions. In 2011, VENlS

(Vegetation and Environment monitoring on a New Micro-Satellite) is to be launched

(http://smsc.cnes.fr/VENUS). VENlS is a joint research mission of the French Centre

National d’Etudes Spatiales (CNES) and the Israel Space Agency (ISA). The system has

spectral, spatial and temporal resolutions suitable for precision agriculture (PA), i.e. 12

narrow spectral bands (16–40 nm band width) in the visible and NIR ranges (420–

910 nm); a ground resolution of 5.3 m and a 2-day revisit time (bands 5 and 6 have an

identical range, which leaves 11 bands). Because of the unique combination of high

spectral, spatial and temporal resolutions, and free availability of data during the first

2–4 years of operation, Venls is expected to stimulate the adoption of PA concepts over

large areas in conjunction with research into a variety of environmental conditions. The

seven bands of the multi-spectral mode of the Compact Airborne Spectrographic Imager

(CASI) are similar to some of the VENlS bands. Three of the CASI bands which have

equivalents in the VENlS were used successfully to estimate chlorophyll content and to

discriminate between N treatments in corn fields in Canada (Haboudane et al. 2002). The

present paper describes part of an ongoing research project that aims to assess the potential

of state-of-the-art multi-spectral and HS imaging technology for delineating management

zones for variable-rate N application on potatoes. The objective of this study was to

determine the relationships between spectral data and simulated bands of the VENlS

satellite, and nitrogen levels in potato petioles and leaves.

Materials and methods

The study was conducted in the spring growing seasons of 2006 and 2007 on two com-

mercial potato fields planted with cv. Desiree in Kibbutz Ruhama, Israel (31.388N,

34.598E). This agricultural land is on the southern part of Israel’s coastal plain, on the

boundary between Mediterranean and semi-arid climates. The soil texture of both fields is

sandy loam. The two fields follow a potato-wheat-sunflower or chickpea-wheat-potato crop

rotation. Potato seed tubers were planted so that the hills (i.e. pairs of rows) were 1.93 m

apart, and with a within-row spacing between plants of 0.2 m. The plots were planted at the

beginning of February and harvested in mid-June. The average temperatures during this
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period were between 15 and 35�C. The average annual rainfall during the spring season in

this region is only 100 mm, therefore the fields were irrigated. In both seasons the plots

received the same applications of pre-season compost (30 m3 ha-1), phosphate

(180 kg ha-1) and KCl (180 kg ha-1).

To assess the N status of potatoes, five N treatments with four replicates were applied in

each season. In 2006 an area of 1.2 ha was divided into 20 sub-plots of 5 9 120 m. In

2007, to enable the recognition and analysis of the sub-plots in airborne hyperspectral

images, an area of 8 ha was divided into sub-plots of 18 9 50–100 m. The treatments in

both seasons included commercial treatment (fertigation) with N (supplied as urea) at

400 kg N ha-1. In the first year four reduced rates of N were applied, 0, 100, 215 and

335 kg N ha-1, and in the second year the rates were changed to 0, 100, 200 and

300 kg N ha-1. In both years the reduced N treatments were applied as a slow release

coated urea granular fertilizer (Multigro 43-0-0 SRN, Haifa Chemicals Inc., Haifa, Israel)

at a single application before planting (Tables 1 and 2).

Spectral data collection

Reflectance of leaves in the field was measured with an HR2000 mini-spectrometer

(OceanOptics Inc., Dunedin, FL, USA) with a spectral range of 400–900 nm and a 50-lm

slit. The optical spectral resolution of the system, determined by the slit width and the

diffraction grating, was 1.8 nm (full width at half maximum, FWHM). The spectrometer

was equipped with a 2048-pixel silicon based array, with a signal-to-noise ratio of 250:1

and connected to a laptop computer. An LS-1halogen light source (Ocean Optics Instru-

ment, OOI), in combination with a fiber optic reflectance probe were used to illuminate the

leaf and to collect the reflected light. The reflectance probe consisted of six 400 lm

diameter optical fibers arranged in a circle to illuminate the sample, and a sensing fiber

Table 1 Nitrogen treatments applied in the potato field in spring 2006

Nitrogen treatment N rate (kg ha-1) Percentage N rate relative
to commercial rate

Application type

T100% 400 100 Commercial (urea); fertigation

T84% 335 84 Multigro� 43-0-0 SRN; base

T54% 215 54 Multigro� 43-0-0 SRN; base

T25% 100 25 Multigro� 43-0-0 SRN; base

T0% 0 0 Base

Table 2 Nitrogen treatments applied in the potato field in spring 2007

Nitrogen treatment N rate (kg ha-1) Percentage N rate relative
to commercial rate

Application type

T100% 400 100 Commercial (urea); fertigation

T75% 300 75 Multigro� 43-0-0 SRN; base

T50% 200 50 Multigro� 43-0-0 SRN; base

T25% 100 25 Multigro� 43-0-0 SRN; base

T0% 0 0 Base
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which transferred the reflected light to the spectrometer. A sampling cell was designed and

constructed to conduct leaf reflectance measurements in the field. The sampling cell

shielded the sampled leaf against ambient light, and maintained a constant distance of

10 mm between the leaf sample and the reflection probe (Alchanatis et al. 2005). The

integration time was 1500 ms, with an average of three spectra per acquisition. White and

dark reference signals were sampled at the beginning of each plot.

Field observations were made on four days in each of the two seasons. On each day,

spectral reflectance was measured in the youngest fully expanded leaf of each of 20 plants

from each of the two replicates of each N treatment. These leaves were sampled and

NO3–N was measured in five 4-petiole groups for each of the sampled sub-plots. In 2007

leaves were analyzed for leaf-%N also.

The spectral data from the second acquisition date in 2006 were found to be corrupted

and were not used for further analysis. Table 3 summarizes the measurement dates and the

available spectral and ground truth data.

Spectral data analysis

Prediction models of N levels were developed by three methods:

1. Calculation of the transformed chlorophyll absorption reflectance index (TCARI),

2. Partial least squares regression (PLSR) analysis of the whole spectrum,

3. Simulation of the VENlS bands, followed by TCARI calculation and multivariate

linear regression (MLR) analysis of the simulated bands.

Calculation of TCARI

Many vegetation indices (VIs) have been developed to estimate crop biophysical param-

eters and various stresses. The majority of the VIs developed for assessing N content in

vegetation are based on indirect indicators of chlorophyll content (Daughtry et al. 2000).

These indices, can be grouped into two categories, namely, chlorophyll related indices such

as the chlorophyll vegetation index (CVI) and the CARI family; and the red edge indices

which are essentially a ratio between reflectance of two bands in the the red-edge range

such as the ratio 740 and 720 (q740:q720). From proposed indices in the literature

(e.g. Jain et al. 2007 and Vincini and Frazzi 2009) TCARI was shown to be an effective

Table 3 Summary of measure-
ment dates and available spectral
and ground truth data

Days after
planting

Spectral
measurements

Petiole NO3–N
analysis

Total %N
in leaves

2006 50 H H Not measured

78 Corrupted H Not measured

92 H H Not measured

99 H H Not measured

2007 55 H H H

69 H H H

82 H H H

97 H H H
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leaf chlorophyll estimator (Vincini and Frazzi 2009). Therefore, we selected TCARI to

represent the VI approach in this study. The equation for TCARI introduced by Haboudane

et al. (2002) is given by

TCARI ¼ 3 q700� q670ð Þ � 0:2 q700� q550ð Þ q700

q670

� �� �
; ð1Þ

where q is the reflectance value of the corresponding wavelength. The TCARI is a mod-

ification of the modified chlorophyll absorption reflectance index (MCARI) that was

developed by Daughtry et al. (2000):

MCARI ¼ q700� q670ð Þ � 0:2 q700� q550ð Þ½ � q700

q670

� �
: ð2Þ

According to Gitelson and Merzlyak (1997), wavelengths in the range 530–630 nm and of

700 nm are sensitive to the chlorophyll content in plant leaves. The 550 nm band matches

the minimum chlorophyll absorption in the visible region (Haboudane et al. 2002);

therefore the MCARI comprises one chlorophyll absorption band at 670 nm and two

chlorophyll-sensitive bands at 550 and 700 nm. The MCARI was applied to corn

(Daughtry et al. 2000; Haboudane et al. 2002, 2004), wheat and soybean (Haboudane et al.

2004). The TCARI is calculated from the same bands as the MCARI, but the ratio between

the reflectance at 700 and 670 nm is used to filter the background reflectance at 700 and

550 nm. To differentiate further between LAI and chlorophyll sensitivity Haboudane et al.

(2002) proposed the ratio of TCARI:OSAVI, where the optimized soil adjusted vegetation

index (OSAVI, Rondeaux et al. 1996) is introduced to minimize the sensitivity to differ-

ences in the canopy LAI:

TCARI

OSAVI
¼

3 q700 � q670ð Þ � 0:2 q700 � q550ð Þq700
q670

h i
1:16 ðq800 � q670Þ
q800 þ q670þ0:16

: ð3Þ

Hu et al. (2004) predicted chlorophyll content successfully from airborne sensor mea-

surements by applying the TCARI:OSAVI ratio to corn, soybean and wheat fields. Zarco-

Tejada et al. (2005) compared chlorophyll estimates of vines obtained with TCARI and

with TCARI:OSAVI; they found TCARI advantageous for pure vegetation data and

TCARI:OSAVI for mixed soil and vegetation data. Vincini and Frazzi (2009) showed that

TCARI:OSAVI and the CVI (Vincini et al. 2008) resulted in stronger correlations with

chlorophyll concentration in the canopy level than those for the red-edge based indices.

When applied to potato, both TCARI and TCARI:OSAVI were insensitive to changes in N

content in the canopy level (Jain et al. 2007; Herrmann et al. 2009). TCARI:OSAVI was

found sensitive to changes in N content in potato canopy when band 670 nm was replaced

with band 1505 nm (Herrmann et al. 2009).

In the present study a regression model that linked the means of replicate data of TCARI

and leaf N levels was calculated for 66% of the data, leaving 34% of the data to be used for

validation. The regression model was applied to the entire data set.

Partial least squares regression (PLSR)

This analysis is a chemometric technique that generalizes and combines the methods of

principal component analysis (PCA) and multiple regression; it is used to predict a set

of dependent variables from a large set of independent ones (i.e. predictors) that may be
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correlated. The PLSR analysis has enabled N status in wheat and corn to be predicted

from ground-based spectral data (Alchanatis et al. 2005; Bonfil et al. 2005) and in

forests from hyperspectral images (Coops et al. 2003; Ollinger et al. 2002; Smith et al.

2002; Townsend et al. 2003). The PLSR analysis of spectra is based on the statistical

analysis of wavelengths from a wide spectrum, in contrast to linear regression for

indices such as TCARI. It exploits the whole length of the spectrum by forming

predictive models of the constituent concentration data, e.g. N concentration, based on a

few extracted factors (components or latent variables (LVs)) (Shenk and Westerhaus

1991). As a result, wavelength loadings for significant PLSR factors, from which

regression coefficients are derived, are related directly to concentrations of constituents.

The PLSR factors also describe the spectral variation most relevant to modeling the

chemical variation. In the present study, the independent variables for PLSR analysis

were the raw spectra and the first-derivatives (see below) of the reflectance spectra over

the whole measured range (400-900 nm). They were used to predict both petiole

NO3–N and leaf-%N. By contrast to the TCARI analysis, which was based on means of

replicate data, the data from all sites were used as input for PLSR analysis. Thus, for

petiole NO3–N there were 350 samples (50 from each of seven dates from both 2006

and 2007), and for leaf-%N there were 200 samples (50 from each of four dates from

2007 only) (Table 3). The first derivative was calculated for a given wavelength as the

slope of smoothed reflectance (Savgol smoothing in a 15 nm window). The use of first

derivative spectra provided an alternative for identifying the actual absorbance features

that form the physical basis for identifying N concentration through spectroscopy.

Specifically, the first derivative identifies differences between the slopes of the spectra,

meaning that absorbance features related to canopy chemistry are identified from rel-

ative differences in the linear rate of change of reflectance within a given wavelength

region. As a consequence, the actual bands identified as being related to N concen-

tration may not be centered on wavelengths known to exhibit absorbance features, but

rather on those adjacent to known absorbance features. In addition, the use of the first

derivative enables baseline offsets of intensity and low-frequency variations to be

removed or substantially minimized (Smith et al. 2002). The PLSR models were cal-

ibrated and cross validated with the PLS Toolbox (Eigenvector Research Inc.,

Wenatchee, WA, USA) and MATLAB software (The MathWorks, Natick, MA, USA).

The performances of the models were evaluated by a full leave-one-out cross validation.

This process calibrated the PLSR models iteratively using all the data except for one. In

each iteration, a different sample was left out from the data until every sample had

been left out once. Values for samples left out of the calibration were then predicted

and the prediction residuals were computed. All prediction residuals were combined to

calculate the cross-residual variance. The number of latent variables for each model was

selected by choosing the number that resulted in the smallest root mean squared error

of cross validation (RMSECV). The measured and predicted N values were then

averaged for each replication and the RMSECV was recalculated and used as an

indication of the average model error.

Simulation of VENlS satellite bands, TCARI calculation and MLR analysis

Based on the spectrometer data, we simulated 10 out of 11 VENlS bands (Table 4), taking

into account the equivalent central wavelength (nm) and band-width. The theoretical

spectral response of each VENlS band was overlaid with the actual spectral reflectance

curve obtained from the spectrometer. The TCARI was calculated by Eq. 1 where bands
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550, 670 and 700 nm were shifted with the simulated VENlS bands 555, 667 and 702,

respectively. Since there are only 10 VENlS bands, MLR analysis rather than PLSR was

applied. The MLR was applied to data from all sites for all dates. The measured and the

predicted N values were then averaged for each replication and the RMSECV was used as

an indication of the average model error.

Analysis of classification accuracy

In addition to the RMSECV, the quality of the models was evaluated based on their

ability to classify nitrogen content into pre-defined nitrogen ranges. Such a classification

is suitable for the future use of such models to support decisions on variable-rate

applications. The accuracy of classification was determined with the Kappa coefficient

for four classes of measured and predicted petiole NO3–N and leaf-%N values, which

represented a reasonable number of possible variable application rates. The classes were

based on intervals of 250 mg kg-1 and 0.5% for petiole NO3–N and leaf-%N, respec-

tively (Table 5).

A confusion matrix was formed to calculate the Kappa coefficient of agreement (k) for

each model in which the principal diagonal entries reflected the correct classification. The

proportion of the total number of instances correctly classified among the total number of

instances represented the ‘overall accuracy’ of the classification. The coefficent k was

calculated by Eq. 4 based on overall accuracy and the proportion of units expected by

chance agreement (Tso and Mather 2001):

k ¼ N
Pr

i¼1 Xii �
Pr

i¼1 xiþ � xþið Þ
N2 �

Pr
i¼1 xiþ � xþið Þ ; ð4Þ

where r is the number of rows in the confusion matrix, Xii is the number of combinations

along the principal diagonal, xi? is the total number of observations in row I, x?i is the total

number of observations in column I and N is the total number of instances. In addition, the

percentages of incorrect classifications to adjacent classes were calculated on two or three

levels of proximity, i.e. high cost errors.

Table 4 VENlS multispectral
camera bands

a Band 12 was not simulated
because the spectral range
measured was 400–900 nm

Band number Equivalent central
wavelength (nm)

Band-width
(nm)

Region

1 420 40 Blue

2 443 40 Blue

3 490 40 Green

4 555 40 Green

5–6 620 40 Red

7 667 30 Red edge

8 702 24 Red edge

9 742 16 Red edge

10 782 16 NIR

11 865 40 NIR

12a 910 20 NIR
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Results

Temporal changes in N levels and yield variables

Petiole NO3–N decreased during the growing season for all fertilizer treatments. When

petiole NO3–N data for day 50 after planting in 2006 are compared with optimal, excess

and deficient guidelines (Dar, 2002) (Fig. 1a), means for all treatments are close to the

optimum value with the exception of the ‘no-N’ treatment (T0%). On all other days, petiole

NO3–N levels of T100%, T84% and T54% are above the excess guideline, whereas for

T25% and T0% they are below the deficit.

The 2007 data (Fig. 1b) show that similar temporal changes occurred, but with a few

differences. Although T100% and T75% values are close to the optimum guideline or

above the excess at all dates, those for T25% and T0% are close to or below the deficit.

Petiole NO3–N concentrations for T50% are close to the optimal level on the first three

dates, but are below the deficit on the last date, i.e. 97 days after planting, and those for

T25% and T0% behave similarly.

Potato yield and the percentage of large tubers were assessed for each treatment in each

year of the study (Fig. 2). With the slow-release N formulations, yield quantity and quality

increases with increasing N content. It reaches maximum values at an application rate of

around 50%, with no significant differences (p \ 0.05) from the values for T84% in 2006

and T75% in 2007. Nevertheless, both yield variables are slightly less for T84% than for

T54% in 2006, whereas in 2007 those for T75% are slightly larger than those in the latter

two. The commercial fertigation treatment, T100%, elicited different responses in each

season: in 2006 its values are similar to those for T54% and larger than those for T84%,

whereas in 2007 T100% gives smaller values than either T50% or T75%.

Table 5 Petiole NO3–N and
leaf-%N classes

N level Petiole NO3–N
range (mg kg-1)

Leaf-%N range

1 \250 \3.5

2 250–500 3.5–4.0

3 500–750 4.0–4.5

4 [750 4.5–5.0
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Fig. 1 Petiole NO3–N content in the youngest fully expanded leaves of plants from the five N treatments
for the growth period in: a 2006 and b 2007, compared to the optimal, excess and deficit guidelines for
petiole NO3–N in potato, ‘Desiree’, for the spring season. Each data point is the average of five 4-petiole
groups for each of the sampled sub-plots
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Relationships between TCARI and N levels

Petiole NO3–N content, leaf-%N and TCARI values were averaged among replicates. All

petiole NO3–N contents from all dates in the two spring seasons were plotted against

TCARI values (Fig. 3). The vegetative stage (data from 50-55 days after planting) and the

subsequent production stage (the tuber-bulking period, i.e. from 60 to 100 days after

planting) are shown separately. The ‘TCARI - NO3–N‘ relationships for data from the

vegetative stage are different from the data of the tuber-bulking period. For the first period,

there are different negative linear models for each season. By comparison, there is a single

negative non-linear relationship for the tuber-bulking period for both seasons. The

RMSECV is 326 mg kg-1, which is about 30% of the range of petiole NO3–N content

(0–1100 mg kg-1). Moreover, the non-linear model provides a qualitative separation

between the two main levels of petiole NO3–N content, i.e. less than and more than

250 mg kg-1. This binary division showed an overall accuracy of 90% (n = 41). The

confusion matrix for four groups is given in Table 6. It shows that when the NO3–N

content was classified into four levels, the overall accuracy reduces to 61% (p \ 0.01) with

a Kappa coefficient of 41.5%. In addition, there are 19.5% (n = 8) of high cost errors.
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The correlation between TCARI and leaf-%N is stronger for the 2007 data. Figure 4a

shows that, when data from the first date were excluded, the relationship between TCARI

and leaf-%N is a negative linear one. For comparison, Fig. 4b shows the scatter plot of

TCARI against NO3–N for 2007. The RMSECV of ‘TCARI - leaf-%N’ was 0.2%, which is

10% of the range of leaf-%N (2.9-4.8%). The overall accuracy and Kappa coefficient were

81% (p \ 0.01) and 72.5%, respectively, with no high cost errors (n = 26).

Partial least squares regression (PLSR) analysis

Prediction models were developed by analyzing the raw reflectance data and their first

derivative by PLSR; both gave similar results. The PLSR analysis results in prediction

Table 6 Confusion matrix
between measured and predicted
petiole NO3–N values based on
the TCARI model

Overall accuracy 25/41 = 61%
high cost errors (in italics) 8/
41 = 19.5%

Measured petiole
NO3–N (mg kg-1)

Predicted petiole NO3–N (mg kg-1)

\250 250–500 500–750 [750

\250 19

250–500 1 1 2

500–750 3 2 3 1

[750 5 2 2
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models of petiole NO3–N with R2 = 0.82 (n = 64; p \ 0.01) for all data from all dates in

both seasons (Fig. 5a). The best prediction model for reflectance was determined with ten

latent variables (factors), and the first derivative was calculated with only five. The

RMSECVs of both models were 164 mg kg-1, or 12% of the range of petiole NO3–N

content (0–1100 mg kg-1). This is an improvement of 50% over the TCARI-based model.

The overall classification accuracy for four groups and the Kappa coefficient were 70 and

59%, respectively, with no high cost errors.

The correlation between spectral data and leaf-%N values for the model developed with

PLSR is stronger (Fig. 5b; R2 = 0.95, n = 36; p [ 0.01) than for NO3–N content. The

RMSECV was 0.11%, i.e. 5% of the range of leaf-%N values (2.9–5.1%). Overall clas-

sification accuracy and the Kappa coefficient were 80.5 and 74%, respectively, with no

high cost errors.

Analysis of simulated VENlS bands

The petiole NO3–N and leaf-%N were analyzed by TCARI which was calculated from

three of the simulated VENlS bands, and also by MLR applied to all spectral bands. The
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relationships between TCARI based on the VENlS simulated bands and petiole NO3–N

and leaf-%N (Fig. 6a and b) are similar to their equivalents based on the original narrow

bands of the spectrometer data (Fig. 4a and b). The relationship between TCARI and leaf-

%N is similar (R2 = 0.79; n = 27; p \ 0.01; RMSECV = 11%), but the accuracy was less

when four classes were used (overall accuracy of 70% and Kappa of 57%).

The MLR models calculated from the simulated VENlS bands give inferior results to

those of similar models based on the original spectral data. The correlation with petiole

NO3–N content is weak (R2 = 0.48; n = 64), with an RMSECV of 230.7 mg kg-1 (17%

of the overall range, Fig. 7a). Furthermore, the accuracy of the overall petiole NO3–N

classification and Kappa coefficient were only 61 and 46%, respectively, with 2% of high-

cost errors.

By contrast, leaf-%N is strongly correlated with the simulated bands (RMSECV = 0.2,

10% of the overall range, Fig. 7b). The overall classification accuracy and Kappa coeffi-

cient are 60 and 46%, respectively, with no high cost errors.

Discussion

Stable calibration models need comprehensive data that cover several seasons (Bonfil et al.

2005, Pimstein et al. 2007). The main objective of this study was to test the feasibility of

determining the relationships between leaf spectral reflectance and simulated bands of the

VENlS satellite, and nitrogen levels in potato petioles and leaves. Two seasons were used

in this study for model calibration and cross validation. Table 7 summarizes the perfor-

mance measures of all types of analysis. Leaf-%N was more strongly correlated with

Table 7 Accuracy indices for the various types of data analyses

Data type Nitrogen
measure and
season

Analysis
technique

R2 RMSECV
(%)

Overall
accuracy
(%)

Kappa
(%)

High
cost
errors
(%)

Phenological
stage

Original
spectra

Petiole NO3–N
content
2006–2007

TCARI 0.76a

n = 41
30 61 40.5 19.5 prod.

PLSR 0.82
n = 65

12 70 59 0 veg. ? prod.

Leaf-%N-2007 TCARI 0.80
n = 26

10 81 72.5 0 prod.

PLSR 0.95
n = 36

5 80.5 74 0 veg. ? prod.

Simul-ated
VENlS
bands

Petiole NO3–N
content
2006–2007

TCARI 0.67
n = 44

29 61 40 14 prod.

MLR 0.48
n = 64

17 61 46 2 veg. ? prod.

Leaf-%N-2007 TCARI 0.79
n = 27

11 70 57 0 prod.

MLR 0.78
n = 35

10 60 46 0 veg. ? prod.

veg. and prod. relate to the vegetative stage and the production stage, respectively
a All R2 are significant at p \ 0.05
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spectral data than petiole NO3–N. This might be because petiole NO3–N reflects N status in

the short term, whereas leaf-%N represents it in the longer term. The TCARI was mod-

erately correlated with leaf-%N, but this was limited to the tuber-bulking stage. The use of

the full measured spectrum (400–900 nm) with PLSR analysis increased the accuracy of

estimated N levels compared with the use of TCARI using a few selected bands. In

addition, and in contrast to the TCARI results, a single model could apply to both the

vegetative and the tuber-bulking periods. Furthermore, PLSR analysis achieved greater

accuracy in terms of all performance measures.

PLSR versus TCARI

The relative importance of spectral wavelengths can be determined by PLSR analysis. The

relative importance of each wavelength can be evaluated according to the variable

importance in projection (VIP) of the independent variables. In general, a VIP value larger

than one unit indicates that the contribution of that wavelength is significant, and the larger

the VIP value, the greater is the contribution of that wavelength to the model. Despite the

differences between the VIP values obtained by PLSR analysis of the raw reflectance data

(Fig. 8a) and of the first derivatives (Fig. 8b), two expected ranges can be observed: 450–

530 and 680–730 nm. The first range features rapid change from relatively low reflectance

in the blue range to greater reflectance in the green range (Fig. 8c); the second range

straddles the red edge (Fig. 8c). The spectra in the 450–530 nm range are strongly influ-

enced by the presence and abundance of chlorophyll (Gates et al. 1965; Townsend et al.

2003). By contrast, the spectra in the 680–730 nm range may be correlated with internal

leaf structure also. In the relatively limited spectral range measured in the present study,

these were the spectral ranges that could be indirectly related to nitrogen content. These

results are consistent with those of studies that analyzed hyperspectral images with PLSR

for estimating N concentrations in forests (Coops et al. 2003; Smith et al. 2002).

Within these two ranges of wavelengths, large VIP scores (of the raw spectra and the

first derivative) were obtained for the TCARI bands. The large VIP scores for a wider

range around these bands showed the importance of the gradual change in reflectance for

predicting leaf-%N. Thereby, the predictive potential of PLSR analyses of spectra is

greater than that for indices such as TCARI.
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Spectrometer reflectance versus simulated VENlS bands:

The simulated VENlS bands performed similarly to the full width spectra for predicting

leaf-%N. However, the accuracy was much less than for the prediction of petiole NO3–N

content. Five of the 11 simulated VENlS bands are in the two important transition zones

(bands 3–4 and 7–9, Table 4), a position that enables them to be used to evaluate leaf-%N.

However, there are far fewer VENlS bands and they are wider (Fig. 8e). Thereby the

VENlS bands may describe a significant part of the differences in the transition zones, but

their use may not be as accurate as that of the whole spectrum.
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TCARI

Comparison of two TCARI-based models for prediction of leaf-%N, one based on narrow-

bands from the intensive spectral data of the spectrometer (Fig. 4a) and one on broad bands

from the simulated VENlS bands (Fig. 6b), shows the importance of the wavelengths and

distribution of the VENlS bands. The two models have similar slopes (-0.13 and -0.15),

but have different intercepts. This is attributed to a shift of the TCARI values when they

are calculated for the simulated VENlS bands (Fig. 9). Despite the expected strong cor-

relation between the two sets of TCARI values (Fig. 9), the TCARI values derived from

the simulated VENlS bands are significantly (p \ 0.001) larger than those based on the

original spectral data. The 550- and 700-nm bands of the TCARI are in the transition zones

of typical leaf spectra (Fig. 8d and e), and the equivalent VENlS bands for TCARI are not

identical to the original central bands, as indicated by Haboudane et al. (2002)

(Eq. 1, Table 4). Also, the VENlS bands are much wider than the bands of the spec-

trometer. Both modifications contribute to the differences in reflectance of the TCARI

bands, especially in transition zones such as the red-edge range (Fig. 10). These differ-

ences resulted in significantly different TCARI values, which changed the intercept of the

prediction model.

MLR analysis

When all simulated VENlS bands are analyzed by MLR the differences mentioned above

in reflectance may be enhanced, as can be seen in the results derived from the PLSR

models of the intensive spectral data, the MLR models of the simulated VENlS bands, and

their accuracies (Table 7; Figs. 5 and 7).

Conclusions

The results of this study demonstrate both the need for continuous monitoring of leaf

nitrogen levels in potato fields and the potential of the use of spectral indices and sensors

for this purpose. The TCARI for single leaves in the field was strongly correlated with

potato petiole NO3–N and leaf-%N. A model based on PLSR of the spectrum in the 400–

900 nm range was strongly correlated with petiole NO3–N and leaf-%N during the veg-

etative and tuber-bulking periods. The correlation of simulated VENlS spectra with leaf-

%N was similar to that of the spectra obtained from the spectrometer. However, the

correlation was weaker with respect to petiole NO3–N. The VENlS satellite has consid-

erable potential for mapping spatio-temporal changes in leaf-%N since it can provide

images of large areas every 2 days at low cost. However, in Israel (and also in other

countries, e.g. the USA and Canada) decisions on fertilizer application in potato fields

during the course of the season are based on petiole sampling and chemical analysis for

NO3–N content, which is relatively quick and cheap. The 2007 data show that the cor-

relation between petiole NO3–N and leaf-%N was statistically significant but moderate

(r2 = 0.63). Our future research will investigate aerial HS images that were taken above

the experimental fields and assess the correlation of simulated VENlS images (rather than

bands only) with the spatial variation of N levels in potato fields. If aerial HS images and or

simulated VENlS images were strongly correlated with the spatial variation of leaf-%N or
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plant-%N and not with petiole NO3–N, then additional research would be required to relate

petiole NO3–N content or decisions on N fertilizer application to leaf-%N and or plant-

%N.
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